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and some other “non-standard” exponential sums
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1. Introduction. Some problems in number theory and some other
branches of mathematics can be reduced to the estimation of exponential
sums

> e(F(x)) with X = X5 — X1 < X1,
X1<z<Xo

If F(x) is a polynomial or a function which can be reduced to a polynomial
then the sum can be evaluated by using Vinogradov’s method; if F(x) is
“van der Corput” type function then one uses van der Corput’s method or
Bombieri-Iwaniec method. Here by van der Corput (v.d.c.) type function of
order k we mean a real-valued k£ times continuously differentiable function
F(x) such that FU)(z) < Fj(x)/27 (j = 1,...,k) with piecewise monotone
Fj(x) such that if £ > 1, then

1 <« Fja(x)/Fj(z) <1 and Tmaz'"YEF® () <« 1;

if Kk =1, then
lim Fi(r) =00 and lim|F'(z)| <1

Tr— 00
(see the notation below).

Note that if & > 1 is the smallest integer such that F(z) is a v.d.c.
function of order k and K = 2* then

F® () < 22571 and  FEY(g) s> 2/ K1
so that
(1) K2« P () < 22/ K1
If X is “not small”, the above mentioned methods give non-trivial esti-
mates. We call such sums standard exponential sums. If X is “small”, the

2000 Mathematics Subject Classification: Primary 11L03.

[315]
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sum is called short and the well-known van der Corput’s estimates may
be larger than the trivial estimates. Also, if F'(z) contains an oscillating
term, van der Corput’s method cannot be used directly. We call such sums
non-standard exponential sums. In the past we studied short sums [2] and
sums containing an oscillating term [1], [2].

Wenguang Zhai has recently introduced [4] a method of evaluation of
exponential sums with F(z) = f(z) + g(z){h(x)}. He applied the method
to prove that for any k # 0 and any ¢ > 0 the sequence {[n¢]log” n} is uni-
formly distributed modulo 1 by proving that the discrepancy of the sequence
satisfies

D(X) < X% ]og X for some d(c) > 0.
His result improved the result of Rieger [3] who proved the uniform distri-
bution of the sequence for 1 < ¢ < 3/2 and 0 < k < 1.

The method of Zhai gives a non-trivial estimate if f(x), g(x) and h(x) are
v.d.c. functions and g(x) < x3/4* for any fixed a > 0. One can evaluate
such sums (and more general sums) with g(z) < 2!~% using our method of
evaluation of short sums and

LEMMA 1. Let f(t,z) be a real-valued function such that
|f(t1,.f[?) - f(t27$)‘ < A|t1 - t2|

Then for any real function g(x), any positive integer r and any M > 0 we
have

(2) S =Y a(@)e(f(g(x), {h(z)}))

where
aj = (sin(mj/M)/(xj/M))™ ', ag =1,
bjam = age(—(2m + 1)j/(2M)).

This lemma is also simpler to use than the corresponding lemma of Zhai.
Using Lemma 1, we prove

)

THEOREM 1. Let k be a sufficiently large positive integer such that f(z),
g(x) and h(zx) are v.d.c. functions of order k and let k1 € [2,k — 1] and
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ko € [2,k—2] be the smallest integers such that f(z), g(x) and h(z) are v.d.c.
functions of orders ki, 1 and ky respectively. Assume that g(z) < '~ for
some a > 0 and that for any m the functions fun,(z)/hm(z) are piecewise
monotone on < 1 intervals and

| frn (@) Py 1 (2) /(g1 (2) B () — 1] > 1.
Define
eiw)=f9 W), b)) =rD(g ()

and assume that for any m the functions go ( )/qﬁ( )( ) are piecewise
monotone on <K 1 intervals and

o5 )™ W)/ (0" W)™ () — 1 3> 1,
|90§p)(y)| < y¥P=3, |¢§p) ()| <y T=>  for some integer p > 1.

Then
S

e(f(x) + g(@){h(2)}) < X Ao,

X<w<2X
where
Ay = Xfoz/(?)P) + (G_{_Xl/?))fl/(PK)’ G = g(X)
Also, if f(x) = Ch(x) then the above estimate holds if |C| > 1 and
|IS| < XAo+ X/G  if |C] < 1.

THEOREM 2. Let f(x,y) be a real-valued function on [X,2X]x [0, 1] such
that for any y it is a v.d.c. function of order k. Assume that k is the smallest
such integer. Assume also that g(x) is a v.d.c. function of order 1 such that
for some a > 0 we have g(x) < 17 and, setting h(n) = f(g~1(n),n),
assume that it is a v.d.c. function of order j. Let A\, and p; be such that

0 f(x,y)/02%| = A\, and  |RY) (n)] < p;.
Then
S= > elf(z{g(=)})

X<z<2X
< XN/ g XK Q)T /T

For the sequence {[n®]log’ n} considered by Rieger and Zhai,

f(ill’) =z logﬂ xz, g(l‘) = _logﬁ z, h(.’L’) :xaa
so that if af # 0 the conditions of Theorem 1 are satisfied and one can
use it to prove the uniform distribution of the sequence modulo 1 and to

evaluate the discrepancy. One can do the same for f(x) = 2%, g(z) = 2f
and h(x) = 27 with a # v and < 1, and some other functions.
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. Notation. We will use the following notation: e(x) = exp(2mix);

(a:) << g( ) means that f(z) = O(g(x)); f(x) < g(x) means that f(z) <

g(@)a; f(z) = g(x) means that f(z) < 9(z) < f(z); {w},[z] and Ja] are

the fractlonal part, the integer part and the distance to the nearest integer

functions; |S| is the cardinality of the set S. For positive integers k, r etc.,
we write K = 2F, R = 2" etc.

3. Proofs. To prove Lemma 1, we take

Xr,m (Z) = Xor,m (23 6)
1 d
=2 |V xom@+tr+. . +t)dt (m=0,...,M—1),
"

where x¢.m () is the characteristic function of [m/M, (m+1)/M) modulo 1.
Expanding xo,m (z) into a Fourier series, we obtain

§ § 1 (o)
B)  Xem(x)=06)7" | ... | (M + 3 ajmelx+t +...+tr)> dt

- -6 l7l=1

=7+ > Jm(smzjj;;é)) e(jz)

l71=1

where

, M

sin(mj/M) (—(2m+1)j
ajom = e :
J Tj 2M
We use (3) with § = 1/M so that a;,(sin(27j0)/(27j0))" = bjm/M
from the lemma. Since E%;Ol Xo,m(z) = 1, we have Z%;OI Xr,m(x) =1 and
we obtain

M-—-1

5= 3 a(0) 3 xem(h(@)e(Flg(2), {h(2)}))
x m=0

= S a(@) S e (h@))e(F(g(), m/M))
x m=0

+Yala ZXW (F(g(x), {h(x)})) - e(f(g(x), m/M))].

The first sum is reduced to the first sum in (2) by using (3) with 6 = 1/M.

To evaluate the second sum (which we denote with S7), we divide it into

two subsums: the first subsum, S}, is over all m with ||m/M]|| > r/M, and
1 is the remaining part of S;.
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If ||m/M| > r/M then xym(g(x)) = 0 unless |g(x) — m/M| < r/M.
Since |e(a) — e(b)| = 2|sin(7w(b — a))| < 27|a — b|, we obtain

A TA
St <Y la@) Y xrm(b(@) 75 = 5 D la(z)
To evaluate SY, we write first

ST <) la(@)] Y 2xem(h(z)) < 22\ )Ixa(h(z);1/(2M))

where
5 5

xat;6) =) o\ xt+ti ) dt
-5 =5
and x(t) is the characteristic function of [—r/M,r/M) modulo 1. Similarly
to (3), we obtain

. 2r sin(27rj /M) (sin(mj/M) re'
a/em) =2 2|j21 D (D <

so that
Z alz Zsin(27rrj/M) woelibla
’< o = sin(mj /M) ie(Fh(z))-

To prove the theorems, we need three more lemmas.

LEMMA 2. Let f(z) € CFH) X, Xo] with k> 1,5 >0 and 1 < X =
Xo — X1 < X,. Assume that
FE (@) <X and (@) < Ay
Then
‘ Z e(f(a:))‘ < X[)\}/(K_Q) (X720 Nt )4/(K(J+4))
X1<z<X>
+ (Mt B 'Gaxkn S/K) 4/(K(3+2))

Lemma 2 is a simple generalization of van der Corput estimates (for the
proof, see [1, Lemma 4.1]).

LEMMA 3 [2, Lemma 4.2]. Let f(z)€C?[X1, Xa] be such that f"(x)=\a
for X1 <ax < Xo=X;+ X <2X5. Assume that || f'(x)|| > X Xa. Then

Y elf @) < XV o + 1+ min{X; 1/ A 1/ £/ (Xo) |15 1/ (X))}
X1<z<X>

LEMMA 4. Let f(xz,y) be a real-valued function on {(z,y) : ¥ <y <
2Y, X1 = Xa(y) <z < Xo(y) = Xa} such that f(z,y) is a v.d.c. function
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of order k as a function of x and either gi(y) = fFV(X1,y) or g2(y) =
fE=1(Xy,y) is a v.d.c. function of order j. Assume that

k
%(m,y)x)\k and  g;(y)

Then
s= Y | X @)

Y<y<2Y X;<z<X»

< XY (/D 4 x/GR) y 2K TR s

(4 <~ pi  for a v.d.c. function 9i(y).

and
S < XY (/Y +1/Y +log X/X)  if k=1.

Proof. If k =1, we use van der Corput’s Lemma to get

S < Y min{X; 1/ fy (X0, 9)ll + 1/11fy (X2, )1}

<y min{X; /(£ (X0, 9) 5 1/ £y (X291}

and proceed as below. If £k = 2 then we use van der Corput’s estimates
(Lemma 2 with j = 0) to get

S < X/ A2 +1/v/ A2

If Ay > X%4/3 the above implies S < XY/, + Y X2/3.
If XXo = Ao < X~ 1/3, we can evaluate S differently. We define

Yi(4) =Y (4) =y e [V, 2Y] : lg(y)]| < A}l.
Using Lemma 3, we obtain

(4) S < XY(XX)+ XY/ Ao+ min{X;1/v/A:1/(27Ag)}Y (2" Ag).

Now we need to evaluate Y (A). If p; is small, we divide the interval [Y, 2Y]
into < Yy + 1 subintervals of length < 1/p1 such that [g(y)] remains
constant for all y in a subinterval. Each of them contains < A/p; + 1
integers y such that ||g(y)|| < A so that

YA <Y +1)(A/ i +1) K YA+ Y + 1.

If p1 is not small but puy is small for some k > 1, we use (3) with r = 1,
M =3/, m=0and m =M — 1 to obtain

< m
Y(A) < gnzng(é),
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where
Y(5) < Y6+ Z min{1/M; M1~ 2}‘2 (lg(y ‘
ll|=1

<L Y6+ min{l/M; M1~}
l

X [V () VD 4 Y12 logy 4 Y8R0 o2l
and Y(4) < YA+ Y,u]/(‘] Y We substitute this into (4) to obtain
(5) S < XY /Ao + X2V )y +XYM;/(J—1) L XVT

< XY\ + XY + Xy /YT 4 XVY
This proves the lemma for k = 2. If k > 2, we apply H. Weyl-van der Corput
inequality m = k — 2 times:
QM/?

‘x—i‘ <@+ G 1XYZ ZZ\ > elh@y))|,

q1=1 gm=1 y X1(g)<z<Xa2(q)

where

M =27 Q=min{x; YD, x 2/, 2 (MO -2)y
and R

fl(l‘ay) = Q1~~-Qms~~'8fa:m(x+th1 +---+thm’y)d§-

0 0
Using (5), we obtain
1
e M2, -
‘XY‘ <@ Giixy
X > (XY@ g+ XY + XVY + XY (g1 gepy) )
q1,---,9m

<<Q_M/2+ /QMfl)\k+X—1/3+Y—1/2+(QM—1HJ_)1/(J—1)
< MBS L Xm1B gy /2 g MRS,

To prove Theorem 1, we assume first that G = g(X) < X/ GK) We use
Lemma 1 with 7 = 3 and M = max{X /K /q; GX1/(4K)} to obtain

S < Z\a]\Z’Z z)m/M + jh(z))

l7]=0

+—+Zla3|\z (jh())]
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Lemma 2 with & = k1 + 1 and m = 0 shows that the last sum is

< X min{1/M; M*j~*}
j=1
(A1) FE 72 XK (g, g XA UG

L X[(MXgy 1)V CE =D L X2 E (M), XAV E) VK 11/ 4K),

To evaluate the first sum, for a fixed j, we divide the interval [X,2X] into
< log X subintervals with |f®)(z) + jA®) (z)] < A, > [fP)(X)| Xt and
one interval (which we denote with I') on which the last inequality does not
hold, where 1 > 0 is a sufficiently small number and p is the smallest integer
such that
FPX)XTYP <1 and  [jRP(X)XTVP <1
Obviously, p < k. The conditions of the theorem imply that if x € I then
|fPHD (@) + G ()] 3> | P (X)),

Using Lemma 2 with £k = p and m =1 if z € I and m = 0 otherwise, we
find that the first sum is
< Zmin{l;M%ij}Xl*l/K log X < X171/(4K)
J
so that
S<<X1_1/(4K).

Now we assume that G > X1/GK) We take gy = (G")*/(OP) 4 G=4/(PK)
and define a(z) = 1 — x(x) where G’ = ¢’(X) and x(z) is the characteristic
function of [—&g, 9] modulo 1. Then

S= Y alg@)elf(@) +g@{h@N+0( Y xlg@).

The O-term is < |[{z € [X,2X] : ||g(z)]| < 3e0}|. As above, we divide the
interval [X,2X] into < XG’ + 1 subintervals of length <« 1/G’ each such
that [g(X)] remains constant on each subinterval. The number of z in each
subinterval such that [|g(z)|| < 3¢¢ is < 14 €0/G’ so that the O-term is

< (XG' +1)(1+60/G") < Xep + XG'.
Now we apply Lemma 1 with 7 = 3 and M = GX/(4K) to obtain

s< Y lal] 33 alh@el @)+ ghie) + glw)m/M +mj/M)|

jl=0  m=0 @

+ Xeo+ XG4+ X' 1/<4K>+Z|ay|‘z (Gh(z )‘
j=1
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As above, the last sum is < X'~1/(#K) Now we need to evaluate the first
sum. We denote it by X' and denote the sum over m and x by S7; summing
over m, we obtain

G+ g@)/ M) -1

Let G and G2 be the minimum and maximum of g(z) on [X,2X].

Setting
I(y) ={z € [X,2X] 1y +e0 < g(z) Sy +1—co} = [Xa(y), X(v)]
and writing j = u + vM with |u| < M/2, we obtain

o £z . e(g(x)) —1
e 2| 2 e e |

If ()ifl(y) <z < X(y)—1then 1/|e((u+g(z))/M) — 1| < M/(|u+ y| + €0)

1 _ 1 ‘ < MG
e((utg(x)/M) =1 e((u+tgle+1)/M)=1] = (y+u)>+ef

Abel’s summation formula and the above inequalities yield

Sl<<z{|y+u|+eo‘ > el(a)

r€l(y)

Mf' D SRS S|

+— T
(y +u)? +e X1(y)<s<X(y) s<z<X(y)

where (x) = f(z) + jh(z) +ig(z) and i = 0 or 1. We set Xy = 1/G’. Then
the second sum above is

<<MG’ZZu+y ( S (@)

s<Xo Y X(y)—s<z<X(y)
so we get
I zz{ | > ww)
o — vt + u<M/2 ” |y—|—u|—|—50 s
e === D D I SRR
(y 0 s<Xo X(y)—s<az<X(y)
Vv
R/
<max 3 o Y z‘ﬁuw( > @)+ R,

[v]=0 \ |<M/2 y X(y)—s<z<X(y)
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where

V=xY00 " and R <> 0! X(log X +¢,7%) < X1THAH,
v=V
Let r be the smallest integer such that
FO@) < XYRY and RO (@)] < X2/RT,
Obviously, 1 < r < k. To evaluate the sum in (6) we need to evaluate

Y(4) = {y € [G1,Ga] : o)l < A} where o(y) = AYT D (X (y))

and A < Xéfl/ R is a fixed number. Assume that ¢ is the smallest integer
such that

(AFTDX )W < G and (470D (X ()] < G2

We take a small constant € > 0 and divide the set of all y into < log X
intervals with

@ @A > AT X @)D+ [GRCD (X)) )X

and at most one interval, I, in which the above inequality is not satisfied.
The conditions of the theorem imply that if y € I then

[P )] > Al (X () V|G

Using Lemma 2 with k = ¢ and m = 0 if y € I and m = 0 otherwise as
above we obtain

(M Y(A)< miny()

< min (G5 + Y min5:1/(62) | X eliolw)|)

Jj=1 Y

< Gmin (3 + > min{’ V)GV + ()T

€ Gmin(d+ G (e /0)/ T2

< G(A+ GYP 4 /Ty
< G(A+GYP).

To evaluate the sum in (6) we assume first that » = 2. We divide the
interval [X(y) — s, X (y)] into < log X subintervals with ¢”(z) < Ay and
consider one of them, corresponding to the largest subsum. We denote it by
S(u,v,y).

If Ay > X(;4/3, we use Lemma 2 with £ = 2 and m = 0 and obtain

S(u,v,y) < Xg/?’.
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If Ay < X0_4/3 we use Lemma 3 to evaluate S(u,v,y) if
(8) [P (X))l = CXoA2 = Ao

with an appropriate C' or evaluate it trivially otherwise.
Note that if (8) holds then for all z € [X(y) — s, X (y)] we have

19" ()]l = [[¢"(X(y)) + O(X2Xo) | =< [[" (X ()]l

Summing over all v and y and using (7), we obtain

(9) S) = S(u,v,y) < (log X +¢57)

u7y

X [Xg/ P13 min{Xo; 1/(A02')}Y (A62') + XUY(AO)] log X
l

< (log X +e52)(GXZ? + XoG'/P)log? X.
If r > 2, we apply Holder’s inequality to get

1-4/R
Sl < <Z TETEd
(Eprral Zeee

Now we use H. Weyl-van der Corput inequality » — 2 times with Q =
4/R
Xo

R/a\ Y/ R
‘ > log X.

to obtain

—ovl— 1 _
S(v) < [G(log X + ¢4 )]* 4/R[Z P <X§/4Q R/8
o 0

QRr/8

4/R
XS S | S etane)]

q1=1 qr—2=1 z

where
11
A=q...¢-—2 and 1/11(53):S---S¢($+Q1t1+---+QT—2tr—2)d£-
0o 0

Using (7) we obtain, as in the proof of (9),
S(v)< g5 XQ V% log? X + g5 2 X 4 Flog X

x| 2 e (X577 + XoG V)

q1,---,qr—2

]4/R

< ey’ XX, 4/(3R)+G 4/(PR)] Jog? X,



326 G. Kolesnik

and
Z S(v) < g2 X [X, PV 4 G (PR log? X « X170/ 4 x G/ PE),

To prove Theorem 2 we set n = [g(x)]. Let G; and G2 be the minimum
and maximum of g(z) on [X,2X] and G’ = ¢/(X). Using Lemma 4, we
obtain

S < (Z 1)(A11g/(K_2) (G YCK) 4 GrUK | M IIHE))

x,mn

Since ), , 1 < X and G’ = g1(X)/X >> X~ this completes the proof.
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