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Greenberg’s conjecture for Zdp-extensions
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1. Introduction. Let k be a number field and let p be a prime. Let k̃

be the compositum of all the Zp-extensions of k. Let Gal(k̃/k) ' Zdp and
choose d independent topological generators τ1, . . . , τd. There is a noncanon-
ical isomorphism

Zp[[Gal(k̃/k)]] ' Zp[[T1, . . . , Td]] =: Λd

given by τi → Ti + 1 (see [Se]).

Let k̃ =
⋃
kn where each kn is a finite extension of k. Let Akn be the

p-part of the ideal class group of kn. The Akn ’s form a projective system
with respect to the natural norm maps Nkm/kn for any m ≥ n. Taking their
projective limit we get

lim←−n Akn =: Y
k̃
' Gal(L

k̃
/k̃)

where L
k̃

is the maximal abelian unramified pro-p-extension of k̃. With this

identification it is easy to see that Gal(k̃/k) acts on Y
k̃

via conjugation.
Then Y

k̃
can be viewed as a Λd-module and, in particular, it is a finitely

generated torsion Λd-module (see [Gr1]).
We say that a torsion Λd-module is pseudo-null if it has at least two

relatively prime annihilators. If this is the case we shall write M ∼Λd 0.
We have the following

Conjecture 1.1 ([Gr3, Conjecture 3.5]). With all notations as above,
Y
k̃

is pseudo-null as a Λd-module.

This conjecture has been extensively studied for the case of real quadratic
fields (see [FT], [IS], [KS] and the references there) and imaginary quadratic
fields ([Mi] or [Hu]) but very little is known in general (see [Ma] and [McC]
for the case of certain cyclotomic fields).

In the second section of this paper we shall consider an odd prime p and
a totally real field K which is a biquadratic extension of a number field k.
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In this case d = 1, K̃ = Kcyc, the cyclotomic Zp-extension of K, and a
Λ1-module is pseudo-null if and only if it is finite. Thus the conjecture is
equivalent to proving that the classical Iwasawa λ-invariant for Kcyc/K is
zero (see [Iw]). Decomposing Y

K̃
in eigenspaces with respect to the action

of the characters of Gal(K/k) we prove the following

Theorem 1.2. Let F , E, H be the three quadratic extensions of k lying
between K and k. Then

Y
K̃

is finite ⇔ Y
k̃
, Y

Ẽ
, Y

F̃
, Y

H̃
are finite.

The choice of biquadratic extensions is due to the fact that, to produce
new examples, we have to rely on fields for which the conjecture is known to
hold, i.e. only on quadratic fields up to now. Nevertheless the procedure of
taking eigenspaces seems to work in general provided that p does not divide
[K : k].

In the third section with similar techniques and some more restrictive
hypothesis we will see how the conjecture can be proved for some imaginary
biquadratic fields.

Finally we shall give some numerical examples using as “base fields” the
ones from the tables of [FT], [IS], [KS] and [Mi] for which the conjecture is
known to hold.

In the rest of the paper we will use the following notations, for any
number field k:

• kcyc the cyclotomic Zp-extension of k;

• k̃ the compositum of all the Zp-extensions of k;
• Lk the maximal abelian unramified p-extension of k;
• Ak ' Gal(Lk/k) the p-part of the ideal class group of k.

We will use the same notations even for fields which have infinite degree
over Q, for example:

• if kcyc =
⋃
kn then Lkcyc =

⋃
Lkn and

Akcyc = lim−→n
Akn , Ykcyc = lim←−n Akn ' Gal(Lkcyc/kcyc)

where the direct limit is taken with respect to the inclusion maps and the
projective limit is with respect to the norms.

We will assume Leopoldt’s conjecture for all the fields involved so that

Gal(k̃/k) ' Zr2(k)+1
p (see [Wa, Theorem 13.4], r2(k) is the number of pairs

of conjugate complex embeddings of k).
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institution for its hospitality. I am especially grateful to Ralph Greenberg
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2. The real case. Let p be an odd prime. Let K be a totally real bi-
quadratic number field with ∆=Gal(K/Q)'(Z/2Z)2. Let χ0 =1, χ1, χ2, χ3

be the characters of ∆ and, for any i, let Kχi be the fixed field of Kerχi,
for example Kχ0 = Q.

Kχ1

〈χ1〉

{{{{{{{{
Kerχ1

DDDDDDDD

Q
〈χ2〉

Kχ2
Kerχ2

K
AK

LK

Kχ3

〈χ3〉

CCCCCCCC Kerχ3

zzzzzzzz

Lemma 2.1. AK '
3⊕

i=1

AKχi .

Proof. ∆ acts on AK via conjugation so if we define AχiK to be the sub-
module of AK on which Kerχi acts trivially we obtain a decomposition

AK '
3⊕

i=0

AχiK .

For any i let LKχi be the maximal abelian unramified p-extension of
Kχi , so Gal(LKχi/Kχi) ' AKχi . Then, since p is odd, LKχi ∩K = Kχi and
LKχiK/K is still an abelian unramified extension with Gal(LKχiK/K) '
AKχi . With this identification one can easily check that Gal(K/Kχi) '
Kerχi acts trivially on AKχi , i.e. AKχi ⊆ AχiK by the definition of AχiK .

LKχi

Kerχi

JJJJJJJJJ

Q Kχi

AKχi

mmmmmmmmmmmmmm
KLKχi

K

Kerχi

CCCCCCCC AKχi

kkkkkkkkkkkkkkkkk

AχiK is also a quotient of AK so we have a sequence of fields Q ⊆ Kχi ⊂
K ⊆ Nχi such that Gal(Nχi/K) ' AχiK and Nχi is an abelian unramified
p-extension of K. By definition Gal(K/Kχi) ' Kerχi acts trivially on AχiK
so Nχi is abelian over Kχi as well. Hence there exists an abelian unramified
p-extension of Kχi , call it Mχi , such that

Gal(Mχi/K
χi) ' AχiK ,

Gal(Nχi/Mχi) ' Kerχi.
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This clearly implies Mχi ⊆ LKχi and AχiK ⊆ AKχi .

Mχi

Kerχi

FFFFFFFF
LKχi

Q Kχi

A
χi
K

nnnnnnnnnnnnnnn

Kerχi

CCCCCCCC Nχi LK

K
A
χi
K

lllllllllllllllll

The two inclusions give equalities for any i = 0, . . . , 3 and it suffices
to notice that Aχ0

K = AKχ0 = AQ = 0 to complete the proof with the
decomposition formula given above.

For any number field k let kcyc be its cyclotomic Zp-extension. We can use
the construction of the previous lemma for kcyc and Ykcyc which is isomor-
phic to the Galois group of the maximal abelian unramified pro-p-extension
of kcyc.

Theorem 2.2. YKcyc '
3⊕

i=1

YKχi
cyc
.

Proof. For any real field Kcyc = KQcyc. Moreover p odd implies that for
any i = 0, . . . , 3 we have isomorphisms

Gal(Kcyc/Qcyc) ' Gal(K/Q), Gal(Kχi
cyc/Qcyc) ' Gal(Kχi/Q),

Gal(Kcyc/K
χi
cyc) ' Gal(K/Kχi).

Qcyc

〈χi〉
EEEEEEEE

Q

Zp
mmmmmmmmmmmmmmmm

〈χi〉

AAAAAAAAA Kχi
cyc

Kerχi

EEEEEEEE

Kχi

Kerχi

FFFFFFFFF

Zp
lllllllllllllllll

Kcyc

YKcyc
LKcyc

K

Zp
kkkkkkkkkkkkkkkkkk

Hence we can consider the action of ∆ via conjugation on YKcyc and
obtain a decomposition similar to the one of the previous lemma

YKcyc '
3⊕

i=0

Y χi
Kcyc

where Y χi
Kcyc

denotes the submodule of YKcyc on which Kerχi acts trivially.

Using the same proof of Lemma 2.1 but with the cyclotomic Zp-extensions



Greenberg’s conjecture for Zdp-extensions 361

instead of the number fields we see that Y χi
Kcyc

= YKχi
cyc

for any i. Moreover

it is well known that YQcyc = 0 so the decomposition formula above proves
the theorem.

Corollary 2.3. Greenberg’s conjecture holds for K ⇔ it holds for any
Kχi , i = 1, 2, 3.

Proof. The conjecture in the real case states that YKcyc is finite so the
corollary immediately follows from the theorem.

Now let k be a totally real number field and let K be a totally real Galois
biquadratic extension of k with Gal(K/k) = ∆. Let χ0 = 1, χ1, χ2, χ3 be
the characters of ∆. Then, with notations as above, we have the following

Theorem 2.4. YKcyc is finite ⇔ YKχi
cyc

is finite for any i = 0, . . . , 3.

Proof. The proof relies again on the decomposition formula

YKcyc '
3⊕

i=0

Y χi
Kcyc

which still holds with “base field” k instead of Q.
Following the same path of Lemma 2.1 and Theorem 2.2 we can prove

that this is the same as

YKcyc '
3⊕

i=0

YKχi
cyc

and the theorem follows.

Remark 2.5. (1) In the last theorem Kχ0 = k so Y χ0

Kcyc
' YKχ0

cyc
' Ykcyc

and we need to assume that it is finite because we do not have it “for free”
as in the previous case where k = Q.

(2) Note that we have no restrictive hypothesis on the degree of k, the
orders of the p-ideal class groups of the number fields involved and the
factorization of p in k or in K. We will need this kind of hypothesis in the
next section.

3. The complex case. Now let K be a totally complex quadratic ex-
tension of a totally real quadratic field H. Let Gal(K/Q) = ∆, and with the
usual notation let Kχ0 = Q, Kχ1 = F , Kχ2 = E and Kχ3 = H. Assume
again p 6= 2.

We mention a result which will be useful in what follows.

Proposition 3.1. Let M be a finitely generated torsion Zp[[T1, . . . , Td]]-
module. If M/TdM is pseudo-null over Zp[[T1, . . . , Td−1]] then M is pseudo-
null over Zp[[T1, . . . , Td]].

Proof. See [Mi] or [Hu]; original proof in [PR, Lemme 2].
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The following two theorems give the basis to prove the conjecture in
some special cases. We will not prove the conjecture for all the fields K
as above, nevertheless Theorems 3.2, 3.3 and 3.6 provide a lot of explicit
examples as we will show in Section 4.

Theorem 3.2. Assume that :

(1) p does not split in K;

(2) the conjecture holds for F and H, i.e. Y
F̃
∼Λ2 0 and YHcyc ∼Λ1 0;

(3) YEcyc ∼Λ1 0.

Then Y
KF̃

is pseudo-null as a module over Λ2 ' Zp[[Gal(KF̃/K)]].

Proof. With the previous method we obtain

YKcyc '
3⊕

i=1

YKχi
cyc

= YFcyc ⊕ YEcyc ⊕ YHcyc .

Let ∆F = Gal(K/F ) ' Gal(KF̃/F̃ ). Then this group acts via conjugation
on Y

KF̃
. Let Y +

KF̃
(resp. Y −

KF̃
) be the submodule of Y

KF̃
on which ∆F acts

trivially (resp. nontrivially). Then Y
KF̃

= Y +

KF̃
⊕ Y −

KF̃
.

F̃
Y
F̃
'Y +

KF̃ L
F̃

Fcyc

〈τ2〉
yyyyyyyyy

KF̃

∆F

FFFFFFFFFF
Y
KF̃ L

KF̃

F

}}}}}}}}

∆F BBBBBBBB Kcyc

∆F

EEEEEEEE

〈τ2〉 xxxxxxxxx
LKcyc L0

EEEEEEEEE T2YKF̃

zzzzzzzz

K

xxxxxxxxx

It is easy to see that Y +

KF̃
' Y

F̃
so, by hypothesis, it is pseudo-null over

Λ2 and we are left with Y −
KF̃

.

Let Gal(KF̃/Kcyc) ' Gal(F̃ /Fcyc) = 〈τ2〉 and consider the quotient

Y
KF̃

/(τ2 − 1)Y
KF̃
' Y

KF̃
/T2YKF̃ .

This quotient is isomorphic to Gal(L0/KF̃ ) where L0 is the maximal abelian
extension of Kcyc contained in L

KF̃
. By (1) there is only one prime in Kcyc

above p. So one has L0 = KF̃LKcyc and, via restriction, one gets

Y
KF̃

/T2YKF̃ ' Gal(L0/KF̃ ) ' Gal(LKcyc/LKcyc ∩KF̃ ).
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Taking the minus part with respect to the action of ∆F we see that

(Y
KF̃

/T2YKF̃ )− ' Y −
KF̃

/T2Y
−
KF̃
' Gal(LKcyc/LKcyc ∩KF̃ )−

is a submodule of Y −Kcyc
.

The submodule of YKcyc on which ∆F acts via −1 is YEcyc⊕YHcyc , which

is finite by our hypothesis. Then Y −
KF̃

/T2Y
−
KF̃

is finite, i.e. pseudo-null over

Λ1 = Zp[[T1]] ' Zp[[Gal(Kcyc/K)]].

Using Proposition 3.1 with M = Y −
KF̃

and d = 2 we get Y −
KF̃
∼Λ2 0 and

eventually

YKF̃ = Y +

KF̃
⊕ Y −

KF̃
∼Λ2 0.

Theorem 3.3. Assume that :

(1) F̃ /Fcyc is unramified ;

(2) the conjecture holds for F and H, i.e. Y
F̃
∼Λ2 0 and YHcyc ∼Λ1 0;

(3) YEcyc ∼Λ1 0.

Then Y
KF̃
∼Λ2 0.

Proof. Keeping the notations of the previous theorem we again reduce
ourselves to showing that Y −

KF̃
∼Λ2 0.

Let again Y
KF̃

/T2YKF̃ ' Gal(L0/KF̃ ). Obviously LKcyc ⊆ L0 and we

claim that they are equal. By definition L0/KF̃ is unramified and, by hy-

pothesis (1), KF̃/Kcyc is unramified as well. Therefore L0/Kcyc is abelian
and unramified so L0 ⊆ LKcyc and the equality is proved.

Taking the minus part in the isomorphism above one has

Y −
KF̃

/T2Y
−
KF̃
' Gal(LKcyc/KF̃ )−.

The latter is a submodule of

Gal(LKcyc/Kcyc)
− ' Y −Kcyc

' YHcyc ⊕ YEcyc ,

which is finite by hypothesis. Therefore, by Proposition 3.1,

Y −
KF̃

/T2Y
−
KF̃
∼Λ1 0 ⇒ Y −

KF̃
∼Λ2 0

and eventually Y
KF̃
∼Λ2 0.

An immediate application is the following

Corollary 3.4. Assume that :

(1) p does not split in E and does not divide the class number of E;

(2) p does not split in H and YHcyc ∼Λ1 0;

(3) Y
F̃
∼Λ2 0.

Then Y
KF̃
∼Λ2 0.
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Proof. It is well known that hypothesis (1) yields YEcyc = 0 so if p does
not split in F , we can apply Theorem 3.2. If p splits in F it is easy to see
that LFcyc ⊇ F̃ , i.e. F̃ /Fcyc is unramified and Theorem 3.3 applies.

Remark 3.5. 1. The results of the theorems are “improvements” of
the conjecture because K̃/K is a Z3

p-extension while KF̃/K is only a Z2
p-

extension. It has been conjectured (and proved in some cases, see [Ba], [Gr2]
and [LN]) that for a general Zdp-extension k∞/k,

lim←−n Akn = Yk∞ ∼Λd 0 ⇒ lim−→n
Akn =: Ak∞ = 0.

Moreover the triviality of Ak∞ is strictly related with capitulation of ideals
in the extension k∞/k, which is an interesting but still quite mysterious
phenomenon. Therefore it is important to find the “minimal” extension in
which ideals capitulate. Conjecture 1.1 tells us to expect capitulation in k̃
and our theorems provide examples of pseudo-nullity and capitulation at a
“lower level”.

2. To find some explicit examples we need YEcyc to be finite, i.e. pseudo-
null over Λ1. We know that this is false for complex quadratic fields E in
which p splits, but for fields with just one prime above p, YEcyc might be
finite. In the corollary we decided to use the more restrictive hypothesis (1)
to find some numerical examples (see next section) because the original one
needs the calculation of #YEcyc , which is not easy at all.

In our situation the theorems imply the conjecture for K.

Theorem 3.6. With K as above,

Y
KF̃
∼Λ2 0 ⇒ Y

K̃
∼Λ3 0.

Proof. Obviously r2(K) + 1 = 3 so K̃/KF̃ is a Zp-extension.

Let Gal(K̃/KF̃ ) = 〈τ3〉 and Λ3 = Zp[[T1, T2, T3]] with T3 ∼ τ3 − 1. It

is known that the primes of F above p are finitely decomposed in F̃ , i.e.
their decomposition groups in Gal(F̃ /F ) have Zp-rank exactly 2. Hence the

decomposition groups in Gal(KF̃/K) of the primes of K lying above p have
Zp-rank 2 as well.

Let L0 be the fixed field of T3YK̃ . Then L0 is the maximal abelian ex-

tension of KF̃ contained in L
K̃

. For any prime p of KF̃ lying above p let

Ip be its inertia group in Gal(L0/KF̃ ). Since L
KF̃

is the maximal abelian

unramified extension of KF̃ contained in L0 we have

Gal(L0/LKF̃ ) '
∑

p|p
Ip.

Moreover the extension L0/K̃ is unramified so each inertia group embeds in
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Gal(K̃/KF̃ ), which means that they are 0 or isomorphic to Zp.

L
KF̃

∑
p|p Ip

L0

T3YK̃ L
K̃

K KF̃

yyyyyyyy 〈τ3〉
K̃

Y
K̃

nnnnnnnnnnnnnnn

��������

Let pK be a prime of K lying below p, p in KF̃ as above. Let ν1(pK),
ν2(pK) be two independent topological generators of its decomposition group

DpK in Gal(KF̃/K). Since DpK fixes p, it acts on Ip, and it acts trivially

because Gal(K̃/K) is abelian and Ip embeds in Gal(K̃/KF̃ ). Therefore
ν1(pK) − 1 and ν2(pK) − 1 correspond to two relatively prime elements of
Λ2 which annihilate

∑
p|pK Ip. Hence

∑
p|pK Ip ∼Λ2 0 and moreover

∑

p|p
Ip =

∑

pK |p

∑

p|pK
Ip ∼Λ2 0

because the number of such p is finite.

We have an exact sequence

0→ Gal(L0/LKF̃ )→ Gal(L0/KF̃ )→ Gal(L
KF̃

/KF̃ )→ 0,

i.e.

0→
∑

p|p
Ip → Gal(L0/KF̃ )→ Y

KF̃
→ 0.

This and the hypothesis yield Gal(L0/KF̃ ) ∼Λ2 0. It immediately follows

that Gal(L0/K̃) ' Y
K̃
/T3YK̃ ∼Λ2 0. This implies Y

K̃
∼Λ3 0 again by Propo-

sition 3.1.

4. Numerical examples. We shall give some examples of real fields
of degree 2n over Q, for some small n, for which Theorem 2.4 proves the
conjecture, and some examples of biquadratic fields. In what follows we fix
the prime p = 3.

4.1. The real case. For real fields we can use Theorem 2.2 to find bi-
quadratic fields for which the conjecture holds. It suffices to choose Kχi ,
i = 1, 2, 3, among the fields given in [FT], [KS] and [IS]. Note that these
papers cover all the cases Q(

√
d) with d < 10000 and d ≡ 0, 2 (mod 3) while

there are some gaps in [FT] for d ≡ 1 (mod 3). René Schoof kindly informed
me that he is able to fill these gaps with a method similar to the one used
in [KS] but the paper is not published yet.

After that we can combine biquadratic fields, using a quadratic field as
the k of Theorem 2.4, to obtain the conjecture for fields of degree 8 and so
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on. This procedure could lead to the determination of the “largest” field for
which the conjecture is proved to hold to date.

For an explicit example fix the diagram

k(
√
d)

EEEEEEEEE

k

zzzzzzzzz

DDDDDDDDD k(
√
m) K

k(
√
l)

yyyyyyyyy

where m is the squarefree part of dl.
Assume k = Q. Then we can prove the conjecture for the following K’s:

d l K d l K

2 3 Q(
√

2,
√

3) 2 21 Q(
√

2,
√

21)

2 5 Q(
√

2,
√

5) 2 35 Q(
√

2,
√

35)

2 7 Q(
√

2,
√

7) 2 105 Q(
√

2,
√

105)

2 15 Q(
√

2,
√

15)

Now assume k = Q(
√

2). Then we get

d l K d l K

3 5 Q(
√

2,
√

3,
√

5) 3 35 Q(
√

2,
√

3,
√

35)

3 7 Q(
√

2,
√

3,
√

7)

Finally with k = Q(
√

2,
√

3) and d = 5, l = 7 we get K = Q(
√

2,
√

3,√
5,
√

7).
In the same way we can prove the conjecture for Q(

√
2,
√

3,
√

5,
√

7,
√

11)
or Q(

√
2,
√

3,
√

5,
√

7,
√

13) (and many others). The only thing that stops the
process is the fact that we are limiting ourselves to d, l,m < 10000.

4.2. The complex case. Let F = Q(
√
−d), E = Q(

√
−l) and H =

Q(
√
m) with d, l > 0 squarefree and m the squarefree part of dl. For any

number field k let hk be its class number.
In [Mi] the conjecture is proved in the following cases:

(1) (hF , 3) = 1;
(2) d ≡ 2 (mod 3) and AF is generated by powers of primes lying

above p;
(3) d = 31, 247, 283, 298.

We consider the “nontrivial” cases of (2) and (3), i.e. the ones in which
3 divides hF . Examples for case (1) can be found in a similar way.
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Fix one of the four fields in (3). To build our biquadratic extension
according to Corollary 3.4 we need E = Q(

√
−l) with:

(i) l ≡ 0 (mod 3), to avoid the splitting of 3 in E or H;
(ii) (hE, 3) = 1.

We will limit ourselves to 0 < l < 500 and 0 < m < 10000. We shall give
all the possible combinations in this range for the four fields above.

1. F = Q(
√
−31): 38 fields. We distinguish two cases:

(a) 31 does not divide l: then 31l = m < 10000 implies l < 323.
Together with conditions (i) and (ii) this gives 36 values, namely
l = 3, 6, 15, 21, 30, 33, 39, 42, 51, 57, 66, 69, 78, 102, 105, 111,
114, 123, 138, 141, 159, 165, 177, 183, 195, 210, 213, 219, 258, 267,
273, 282, 285, 291, 303, 321;

(b) 31 divides l: then m = l/31. Between 0 and 500 we find only two
values l = 93, 465.

2. F = Q(
√
−283): 6 fields. To have m < 10000 we need l < 36 and we

find 6 values, namely l = 3, 6, 15, 21, 30, 33.

3. F = Q(
√
−298): 12 fields. We distinguish three cases:

(a) (298, l) = 1: then 298l = m < 10000 yields l < 34. There are 4
values, namely l = 3, 15, 21, 33;

(b) (298, l) = 2: then m = 298l/4 < 10000 yields l < 135. There are 7
values, l = 6, 30, 42, 66, 78, 102, 114;

(c) (298, l) = 149: between 0 and 500 we only get l = 447.

4. F = Q(
√
−247): 16 fields. We distinguish three cases:

(a) (247, l) = 1: l < 40. There are 6 values, namely l = 3, 6, 15, 21,
30, 33;

(b) (247, l) = 13: then m = 247l/169 and between 0 and 500 we get
l = 39, 78, 195, 273, 390, 429;

(c) (247, l) = 19: in our range we have l = 57, 114, 285, 399.

The same thing can be done with the fields in (2) choosing E such that

(i) l ≡ 0, 1 (mod 3), to avoid splitting in E or H;
(ii) (hE, 3) = 1.

We give just one example:

5. F = Q(
√
−23): 117 fields. We distinguish two cases:

(a) (23, l) = 1: l < 435. There are 108 values, namely l = 1, 3, 6, 7,
10, 13, 15, 19, 21, 22, 30, 33, 34, 37, 39, 42, 43, 51, 55, 57, 58, 66,
67, 70, 73, 78, 79, 82, 85, 91, 93, 94, 97, 102, 103, 105, 111, 114,
123, 127, 130, 133, 141, 142, 145, 151, 154, 159, 163, 165, 166, 177,
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178, 181, 183, 187, 190, 193, 195, 205, 210, 213, 217, 219, 223, 226,
229, 235, 238, 258, 259, 265, 267, 271, 273, 282, 285, 291, 295, 301,
303, 310, 313, 319, 321, 330, 337, 346, 349, 354, 355, 357, 373, 381,
382, 385, 390, 394, 399, 402, 403, 406, 409, 415, 418, 421, 427, 429;

(b) 23 divides l: in our range we have l = 46, 69, 115, 138, 253, 322,
345, 391, 483.

References

[Ba] A. Bandini, Capitulation of ideals in Zdp-extensions, preprint, University of Pisa,
2002.

[FT] T. Fukuda and H. Taya, The Iwasawa λ-invariants of Zp-extensions of real
quadratic fields, Acta Arith. 69 (1995), 277–292.

[Gr1] R. Greenberg, The Iwasawa invariants of Γ -extensions of a fixed number field ,
Amer. J. Math. 95 (1973), 204–214.

[Gr2] —, On the Iwasawa invariants of totally real number fields, ibid. 98 (1976), 263–
284.

[Gr3] —, Iwasawa theory—Past and present , Adv. Stud. Pure Math. 30 (2001), 335–
385.

[Hu] D. Hubbard, The nonexistence of certain free pro-p-extensions and capitulation
in a family of dihedral extensions of Q, Ph.D. thesis, Univ. of Washington, 1996.

[IS] H. Ichimura and H. Sumida, On the Iwasawa invariants of certain real abelian
fields, Tohoku Math. J. 49 (1997), 203–215.

[Iw] K. Iwasawa, On Zl-extensions of algebraic number fields, Ann. of Math. 98 (1973),
246–326.

[KS] J. S. Kraft and R. Schoof, Computing Iwasawa modules of real quadratic number
fields, Compositio Math. 97 (1995), 135–155.

[LN] A. Lannuzel et T. Nguyen Quang Do, Conjectures de Greenberg et extensions
pro-p-libres d’un corps de nombres, Manuscripta Math. 102 (2000), 187–209.

[Ma] D. C. Marshall, Galois groups and Greenberg’s conjecture, Ph.D. thesis, Univ. of
Arizona, 2000.

[McC] W. G. McCallum, Greenberg’s Conjecture and units in multiple Zp-extensions,
Amer. J. Math. 123 (2001), 909–930.

[Mi] J. Minardi, Iwasawa modules for Zdp-extensions of algebraic number fields, Ph.D.
thesis, Univ. of Washington, 1986.

[PR] B. Perrin-Riou, Arithmétique des courbes elliptiques et théorie d’Iwasawa, Bull.
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