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1. Introduction. In [8] and [9], I. Schur established four theorems con-
cerning the irreducibility of certain classes of polynomials over the rationals.
The second author [6] generalized one of these results to obtain the following.

Theorem 1. Let a0, a1, . . . , an denote arbitrary integers with |a0| = 1,
and let

f(x) = an
xn

n!
+ an−1

xn−1

(n− 1)!
+ . . .+ a2

x2

2
+ a1x+ a0.

If 0 < |an| < n, then f(x) is irreducible unless

(an, n) ∈ {(±5, 6), (±7, 10)},
in which cases either f(x) is irreducible or f(x) is the product of two irre-
ducible polynomials of equal degree. If |an| = n > 1, then for some choice
of a1, . . . , an−1 ∈ Z and a0 = ±1, the polynomial f(x) is reducible.

I. Schur (in [8]) obtained this result in the special case of an = ±1.
Further results along the nature of Theorem 1 are also discussed in [6].

The purpose of this paper is to establish a generalization of a second
theorem of I. Schur. Namely, we prove

Theorem 2. For n an integer ≥ 1, define

f(x) = an
xn

(n+ 1)!
+ an−1

xn−1

n!
+ . . .+ a1

x

2
+ a0

where the aj’s are arbitrary integers with |a0| = 1. Let k′, k′′, u, v, and w
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be nonnegative integers satisfying

n+ 1 = k′2u with k′ odd

and

(n+ 1)n = k′′2v3w with gcd(k′′, 6) = 1.

Let M = M(n) = min{k′, k′′}. If 0 < |an| < M , then f(x) is irreducible.
Furthermore, the bound M on |an| is best possible for every n > 2; that is,
for each such n, there exist aj as above but with an = ±M and with f(x)
reducible.

I. Schur [9] dealt with the case again in which an = ±1. He also noted
that with this restriction on an, the polynomial f(x) can be reducible in
the case that n + 1 is a power of 2 or n = 8. This remark follows from
our theorem upon recalling that 8 and 9 are the only prime powers (with
exponents exceeding 1) that differ by 1 (see [2, p. 744]).

In establishing Theorem 2, we will show the following results:

• If 0 < |an| ≤ n + 1, then f(x) cannot have a factor of degree k in
[3, n/2] except possibly for finitely many pairs (an, n).
• If 0 < |an| < k′, then f(x) cannot have a linear factor.
• If 0 < |an| < k′′, then f(x) cannot have a quadratic factor.

The techniques used for these results will be similar to those used in
[6] and [7]. The above three results show that for 0 < |an| < M , f(x) is
irreducible except possibly for finitely many pairs (an, n). We also show for
the exceptional finite list of pairs (an, n) that f(x) is irreducible if 0 < |an|
< M . Finally, we will demonstrate that the bound on an in Theorem 2 is
sharp if n > 2. As we will note in Section 5, the value of M(2) can be
replaced by 3 in Theorem 2 and this then is the best possible bound in this
case.

2. The first preliminary result. In this section, we establish

Lemma 1. Let a0, a1, . . . , an denote arbitrary integers with |a0| = 1, and
let

f(x) =
n∑

j=0

aj
xj

(j + 1)!
.

Let k be a positive integer ≤ n/2. Suppose there exists a prime p ≥ k + 2
and a positive integer r for which

pr | (n+ 1)n(n− 1) . . . (n− k + 2) and pr - an.

Then f(x) cannot have a factor of degree k.



A generalization of a theorem of I. Schur 67

Lemma 1 implies that if f(x) has a factor of degree k, then each prime
power pr that divides (n+ 1)n . . . (n− k + 2) must also divide an. Thus,

∏

pr‖(n+1)n(n−1)...(n−k+2)
p≥k+2

pr | an.

Our proof of Lemma 1 will be based on the use of Newton polygons
and a theorem of Dumas [3]. If p is a prime and m is a nonzero integer, we
define ν(m) = νp(m) to be the nonnegative integer such that pν(m) |m and
pν(m)+1 -m. We define ν(0) = ∞. Consider w(x) =

∑n
j=0 ajx

j ∈ Z[x] with
ana0 6= 0 and let p be a prime. Let S be the following set of points in the
extended plane:

S = {(0, ν(an)), (1, ν(an−1)), (2, ν(an−2)), . . . , (n− 1, ν(a1)), (n, ν(a0))}.
Consider the lower edges along the convex hull of these points. The leftmost
endpoint is (0, ν(an)) and the rightmost endpoint is (n, ν(a0)). The end-
points of each edge belong to S, and the slopes of the edges increase from
left to right. When referring to the “edges” of a Newton polygon, we shall
not allow two different edges to have the same slope. The polygonal path
formed by these edges is called the Newton polygon of w(x) with respect to
the prime p. We will refer to the points in S as spots of the Newton polygon.

Proof of Lemma 1. Let

F (x) = (n+ 1)!f(x) =
n∑

j=0

aj
(n+ 1)!
(j + 1)!

xj =
n∑

j=0

bjx
j ,

where bj = aj(n + 1)!/(j + 1)!. Note that F (x) has integer coefficients. To
show that f(x) cannot have a factor of degree k, it suffices to show that
F (x) cannot have a factor of degree k.

Consider the Newton polygon of F (x) with respect to the prime p. Note
that the condition

pr | (n+ 1)n(n− 1) . . . (n− k + 2)

implies that pr | bj for j ∈ {0, 1, . . . , n − k}. Thus, the n − k + 1 rightmost
spots, (k, ν(bn−k)), . . . , (n, ν(b0)), have y-coordinates greater than or equal
to r. Consider the coordinates of the leftmost endpoint (0, ν(an)). By the
given, pr - an; thus, the y-coordinate of the leftmost endpoint is less than r.

Since the slopes of the edges of the Newton polygon of F (x) increase
from left to right, the spots (j, ν(bn−j)) for j ∈ {k− 1, k, k+ 1, . . . , n} all lie
on or above edges of the Newton polygon which have positive slope.

The slope of the rightmost edge is

max
1≤j≤n

{
ν(b0)− ν(bj)

j

}
.
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For 1 ≤ j ≤ n,

ν(b0)− ν(bj) = ν(a0(n+ 1)!)− ν
(
aj

(n+ 1)!
(j + 1)!

)

≤ ν((n+ 1)!)− ν
(

(n+ 1)!
(j + 1)!

)

= ν((j + 1)!).

We consider two cases to estimate ν((j + 1)!)/j.

Case (i): Suppose j < p − 1. Since p is prime and since j + 1 < p,
p - (j + 1)!. Therefore, ν((j + 1)!) = 0. So for j < p− 1,

ν((j + 1)!)
j

= 0.

Case (ii): Suppose j ≥ p− 1. Note that

ν((j + 1)!) =
[
j + 1
p

]
+
[
j + 1
p2

]
+ . . .

<
j + 1
p

+
j + 1
p2 + . . . =

j + 1
p− 1

.

Since 1/j ≤ 1/(p− 1), we deduce

ν((j + 1)!)
j

<
1

p− 1
+

1
j(p− 1)

≤ 1
p− 1

+
1

(p− 1)2 =
p

(p− 1)2 .

By the conditions in the lemma, p ≥ k+ 2. One checks that this implies
p/(p− 1)2 < 1/k. By combining Cases (i) and (ii), we obtain

max
1≤j≤n

{
ν(b0)− ν(bj)

j

}
≤ max

1≤j≤n

{
ν((j + 1)!)

j

}
<

p

(p− 1)2 <
1
k
.

In other words, the slope of the rightmost edge is less than 1/k. Since the
slopes of the edges of the Newton polygon increase from left to right, the
slope of each edge of the Newton polygon for F (x) is less than 1/k.

The remainder of the proof now follows in a manner similar to that
given for Lemma 2 in [5] which relies on the classical use of a theorem of
Dumas [3] that the edges of the Newton polygon of a factor of F (x) with
respect to p must be able to be translated into the edges of the Newton
polygon of F (x) with respect to p. The edges in the Newton polygon of
F (x) having slope < 1/k implies that the lattice points along the edges with
positive slope are separated by a horizontal distance > k. The remaining
edges with 0 or negative slope have endpoints among the spots (j, ν(bn−j))
with j ∈ {0, 1, . . . , k − 1}. This implies that F (x) cannot have a factor of
degree k.
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3. The second preliminary result. In this section, we establish

Lemma 2. Let n be an integer ≥ 6, and let k be an integer in [3, n/2].
Then ∏

pr‖(n+1)n(n−1)...(n−k+2)
p≥k+2

pr > n+ 1

unless one of the following holds:

n = 11 and k = 5, n = 8 and k = 4,

n = 26 and k = 4, n = 17 and k = 3,

n = 17 and k = 4, n = 9 and k = 3,

n = 11 and k = 4, n = 8 and k = 3,

n = 10 and k = 4, n = 7 and k = 3.

n = 9 and k = 4,

For the proof of this lemma, we will make use of the following result of
Ecklund, Eggleton, Erdős, and Selfridge [4].

Lemma 3. Let n and k denote positive integers with 2 ≤ k ≤ n/2. Set(
n+1
k

)
= UV where the prime factors of U are all ≤ k and the prime factors

of V are all ≥ k + 1. If k 6∈ {3, 5, 7} and U > V , then (n, k) ∈ S where

S = {(8, 4), (20, 8), (32, 13), (32, 14), (35, 13), (35, 17), (55, 13)}.
Proof of Lemma 2. Observe that

∏

pr‖(n+1)n(n−1)...(n−k+2)
p≥k+2

pr =
∏

pr‖(n+1
k )

p≥k+2

pr.

Initially, suppose q = k + 1 is a prime. Then q divides at most 1 of the k
consecutive numbers n + 1, n, n − 1, . . . , n − k + 2. We let s be the integer
such that qs‖

(
n+1
k

)
. Since q divides at most 1 of the numbers n+1, n, n−1,

. . . , n− k + 2, we obtain qs ≤ n+ 1. Thus,

(n+ 1)
∏

pr‖(n+1
k )

p≥k+2

pr ≥ qs
∏

pr‖(n+1
k )

p≥k+2

pr =
∏

pr‖(n+1
k )

p≥k+1

pr.(1)

Note that the left-hand side of (1) is still at least the right-hand side of (1)
if k+ 1 is not a prime. We will make use of this inequality then independent
of whether k + 1 is prime.

We consider k ∈ [3, n/2]. We will show next that, for k ≥ 6, k 6= 7, and
n ≥ 33, ∏

pr‖(n+1
k )

p≥k+1

pr > (n+ 1)2.(2)
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Then, by combining (1) and (2),
∏

pr‖(n+1
k )

p≥k+2

pr > n+ 1,(3)

which will establish Lemma 2 for k ≥ 6, k 6= 7, and n ≥ 33.

Claim 1. For n ≥ 33 and k ≥ 6,(
n+ 1
k

)
> (n+ 1)4.

Since n/2 ≥ k ≥ 6,
(
n+1
k

)
≥
(
n+1

6

)
. It suffices therefore to show that

(n+ 1)n(n− 1)(n− 2)(n− 3)(n− 4) > 720(n+ 1)4.

Dividing by n+ 1 and rearranging shows that the above inequality is equiv-
alent to

(n+ 2)(n4 − 12n3 − 661n2 − 888n− 360)

= n5 − 10n4 − 685n3 − 2210n2 − 2136n− 720 > 0.

Descartes’s Rule of Signs implies that h(x) = x4−12x3−661x2−888x−360
has only one positive real zero. Since h(32) = −50280 < 0 and h(33) =
5184 > 0, the claim is easily seen to follow.

Set
(
n+1
k

)
= UV where the prime factors of U are all ≤ k and the prime

factors of V are all ≥ k + 1. By Lemma 3 for k ≥ 6, k 6= 7 and (n, k) 6∈ S,
U ≤ V . Thus,

(
n+ 1
k

)
= UV ≤ V 2 ⇒ V ≥

√(
n+ 1
k

)
.

By Claim 1,
(
n+1
k

)
> (n+ 1)4 with k as above and n ≥ 33. Therefore,

∏

pr‖(n+1
k )

p≥k+1

pr = V ≥
√(

n+ 1
k

)
> (n+ 1)2.

Thus, (2) and, hence, (3) follow for k ≥ 6, k 6= 7, n ≥ 33, and (n, k) 6∈
{(35, 13), (35, 17), (55, 13)}. We check directly that (3) also holds for (n, k) ∈
{(35, 13), (35, 17), (55, 13)}.

Claim 2. For n ≥ 34, ∏

pr‖(n+1
7 )

p≥9

pr > n+ 1.

To establish this claim, we consider

T = {n+ 1, n, n− 1, n− 2, n− 3, n− 4, n− 5}.
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Remove from T an integer divisible by the largest possible power of 2, an
integer divisible by the largest possible power of 3, an integer divisible by
the largest possible power of 5, and an integer divisible by the largest pos-
sible power of 7. Some of these integers may be the same, but at least three
integers remain. Let a, b, and c denote integers that are not removed. Only
one of the seven numbers in T is divisible by 7, and this number was re-
moved; thus, 7 - abc. At most two of the seven numbers are divisible by 5, and
one divisible by the largest possible power of 5 was removed; thus, 25 - abc.
Similarly, 33 - abc and 25 - abc. So

∏

pr‖(n+1
7 )

p≥9

pr ≥ abc

5 · 9 · 16
≥ (n− 3)(n− 4)(n− 5)

5 · 9 · 16
.

One checks that
(n− 3)(n− 4)(n− 5)

5 · 9 · 16
> n+ 1 ⇔ n3 − 12n2 − 673n− 780 > 0.

Set h(x) = x3 − 12x2 − 673x− 780. By Descartes’s Rule of Signs, h(x) has
only one positive real root. Since h(33) < 0 and h(34) > 0, h(n) > 0 for
n ≥ 34. Claim 2 follows.

Claim 3. For n ≥ 30, ∏

pr‖(n+1
5 )

p≥7

pr > n+ 1.

The argument is similar to the one given for Claim 2. Let

T = {n+ 1, n, n− 1, n− 2, n− 3}.
Remove from T an integer divisible by the largest possible power of 2, an
integer divisible by the largest possible power of 3, and an integer divisible
by the largest possible power of 5. Again, some of these numbers may be the
same, but at least two numbers remain, say a and b. Thus, ab ≥ (n−2)(n−3).
Also, 5 - ab, 32 - ab, and 24 - ab. We obtain

∏

pr‖(n+1
5 )

p≥7

pr ≥ ab

3 · 8 ≥
(n− 2)(n− 3)

24
> n+ 1

provided n2 − 29n − 18 > 0. The latter inequality is easily deduced for
n ≥ 30, implying the claim.

Claim 4. For n ≥ 12 with n 6∈ {17, 26},
∏

pr‖(n+1
4 )

p≥6

pr > n+ 1.
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We begin in a similar manner to the previous arguments. Let T denote
the set {n+1, n, n−1, n−2}, and remove an integer divisible by the largest
possible power of 2, an integer divisible by the largest possible power of 3,
and an integer divisible by the largest possible power of 5. At least one inte-
ger remains, say a. Let b, c, d denote the other three integers. An argument
similar to Claims 2 and 3 would give

∏

pr‖(n+1
4 )

p≥6

pr ≥ a

6
≥ n− 2

6
.

The above inequality is not strong enough. We modify the argument estab-
lishing the lemma, by considering two cases.

First, we suppose one of the numbers b, c, or d is divisible by a prime
q ≥ 7. In this case, one gets an extra factor of 7 above so that the product
is at least 7(n− 2)/6. One checks that this is greater than n+ 1 for n ≥ 21,
establishing the claim in this case for n ≥ 21.

Next, we suppose p - bcd for each prime p ≥ 7; that is, b, c, and d are
divisible only by the primes 2, 3, and 5. At most one of b, c, and d is divisible
by 5. Let b and c denote two that are not. Thus, the only prime divisors of b
and c are 2 and 3 and both b and c occur among {n+1, n, n−1, n−2}. It fol-
lows that one of {b, c}, {b/2, c/2}, and {b/3, c/3} consists of two consecutive
integers, one a power of two and one a power of three. We use the fact that
the only pairs of such consecutive positive integers are (1, 2), (2, 3), (3, 4),
and (8, 9); this is a result due to G. C. Gerono in 1857 (see [2, p. 744]). For
n ≥ 12 as in the claim, this leads to only three possibilities for n, namely
n = 17, n = 18, and n = 26.

Given the two cases just considered, the full strength of the claim follows
by a direct calculation of the product for 12 < n ≤ 20.

Claim 5. For n ≥ 6,∏

pr‖(n+1
3 )

p≥5

pr > n+ 1 unless n ∈ {7, 8, 9, 17}.

This claim is established along lines similar to the previous claim. We
omit the details.

We combine the information just obtained. The inequality in Lemma 2
follows with the indicated exceptions by a computation. More specifically,
for 5 ≤ k ≤ n/2 and 10 ≤ n ≤ 33, the inequality was checked and the only
case in these ranges where the inequality did not hold was for k = 5 and
n = 11. The exceptions to the inequality given in Lemma 2, which arise
when combining the claims above, are easily checked to in fact not satisfy
the inequality of Lemma 2. This completes the proof of that lemma.
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4. The elimination of possible degrees of factors. We first show
the following result.

Result 1. For 0 < |an| < M(n), f(x) cannot have a factor of degree
k in [3, n/2], where M(n) is as given in Theorem 2. Furthermore, if 0 <
|an| ≤ n + 1, then f(x) cannot have a factor of degree k in [3, n/2] except
possibly if (n, k) ∈ S where

S = {(11, 5), (26, 4), (17, 4), (11, 4), (10, 4),

(9, 4), (8, 4), (17, 3), (9, 3), (8, 3), (7, 3)}.
The set S corresponds to the list of exceptions given in Lemma 2. Assume

that f(x) has a factor of degree k in [3, n/2]. Lemma 1 implies that
∏

pr‖(n+1)n(n−1)...(n−k+2)
p≥k+2

pr ≤ |an|.(4)

If (n, k) 6∈ S, we deduce from Lemma 2 that |an| > n+ 1. Suppose now that
(n, k) ∈ S. Using direct computations, one checks that for (n, k) ∈ S the
inequality ∏

pr‖(n+1)n(n−1)...(n−k+2)
p≥k+2

pr ≥M

holds. We deduce then that |an| ≥M and Result 1 follows.

Recall that n+ 1 = k′2u where u is an integer ≥ 0 and (k′, 2) = 1. Also,
(n + 1)n = k′′2v3w where v is an integer ≥ 1 and w is an integer ≥ 0 and
(k′′, 6) = 1. Since M = min{k′, k′′}, the following results imply f(x) cannot
have a quadratic or linear factor for 0 < |an| < M .

Result 2. If 0 < |an| < k′, then f(x) cannot have a linear factor.

Result 3. If 0 < |an| < k′′, then f(x) cannot have a quadratic factor.

The proofs of these two results are straightforward. They follow as a
consequence of (4) holding for k = 1 and 2 and since the product on the left
of (4) is simply k′ in the case k = 1 and k′′ in the case k = 2.

5. Reducible examples. Finally, we show that for every n > 2, if
|an| = M(n) = min{k′, k′′} and |a0| = 1, then there exist integers an−1, an−2,
. . . , a1 such that f(x) is reducible. In particular, we will show the following:

• If |an| = k′ and |a0| = 1, then an−1, an−2, . . . , a1 can be chosen such
that x+ 2 (or x− 2) is a factor of f(x).
• If |an| = k′′ < k′ and |a0| = 1, then an−1, an−2, . . . , a1 can be chosen

such that x2 − 3x− 6 is a factor of f(x).
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Note that when n = 2, then f(x) is a quadratic polynomial. It follows
from Result 2 that f(x) is irreducible for 0 < |an| < 3 and |a0| = 1. Fur-
thermore, by our first construction below, when |an| = 3 and |a0| = 1, a1
can be chosen so that x+ 2 (or x− 2) is a factor of f(x). This justifies our
final remarks in the introduction concerning M(2).

For our arguments, we will make use of the following result which can
be found in [1].

Lemma 4. Let n be a positive integer , and let p be a prime. Then

νp(n!) =
n− sp(n)
p− 1

,

where sp(n) denotes the sum of the base p digits of n.

First we show that there exist integers an−1, an−2, . . . , a1 such that x+2
or x−2 (whichever we choose) is a factor of f(x) when |an| = k′ and |a0| = 1.
Let an = k′, a0 = 1, and an−2 = an−3 = . . . = a2 = 0 (the cases an = −k′
or/and a0 = −1 can be treated similarly). Then

(n+ 1)!f(x) = k′xn + an−1cn−1x
n−1 + a1c1x+ c0,

where cn−1 = n + 1 = k′2u, c0 = (n+ 1)!, and c1 = c0/2. To establish that
f(±2) = 0 for some choice of integers an−1 and a1, it suffices to show that
each of the equations

2n−1cn−1x+ 2c1y = 2nk′ and 2n−1cn−1x+ 2c1y = c0

is solvable in integers x and y. The second of these is clearly solvable with
x = 0 and y = 1. For the first, we use that the equation is solvable if and
only if gcd(2n−1cn−1, 2c1) divides 2nk′. As cn−1 = 2uk′, it suffices to show
ν2(2c1) ≤ n. By Lemma 4,

ν2(2c1) = ν2((n+ 1)!) = n+ 1− s2(n+ 1) ≤ n,
so the existence of an−1 and a1 as above follows.

Now, we consider the case that |an| = k′′ < k′ and |a0| = 1 and show
how to obtain x2− 3x− 6 as a factor of f(x). One checks that the condition
k′′ < k′ implies 2 |n and 3 | (n+1). Therefore, we consider n = 2km ≥ 8 and
n+1 = 3lm′ where k, l, m, and m′ are positive integers and gcd(mm′, 6) = 1
(there is no restriction here on the size of mm′). We show that if an = mm′,
then there exist integers an−1, an−2, . . . , a1 such that the polynomial

an
xn

(n+ 1)!
+ an−1

xn−1

n!
+ . . .+ a1

x

2!
+ 1

is divisible by the quadratic q(x) = x2−3x−6 (the cases an = −mm′ or/and
a0 = −1 can be treated similarly). To do this, we multiply the polynomial
of degree n above by (n+ 1)!, replace an with mm′, and divide through by
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mm′ to obtain the polynomial

xn + 3l
an−1

m
xn−1 + 3l2kan−2x

n−2 + . . .

+ 3l−12k−1(n− 1)!a2x
2 + 3l2k−1(n− 1)!a1x+ 3l2k(n− 1)!.

Take an−1 = mr, an−2 = s, an−3 = an−4 = . . . = a3 = 0, a2 = −y, and
a1 = w + y and rewrite this polynomial as

g(x) = xn + 3lrxn−1 + 3l2ksxn−2 − 3l−12k−1(n− 1)!yx2

+ 3l2k−1(n− 1)!(w + y)x+ 3l2k(n− 1)!.

It suffices now to show that there exist integers r, s, y, and w such that g(x)
is divisible by q(x).

For j ≥ 0, define integers cj and bj by

xj ≡ cj + bjx (mod q(x)).

Note that for j ≥ 1 we have

xj+1 ≡ 3xj + 6xj−1 (mod q(x)).(5)

It follows that, for j ≥ 1, we have

cj+1 = 3cj + 6cj−1 and bj+1 = 3bj + 6bj−1.(6)

Letting

A =
(

0 1
6 3

)
,

we deduce from (6) and an induction argument that, for each j ≥ 0, we have

Aj =
(

cj bj
cj+1 bj+1

)
.

Next, we obtain some results concerning the values of ν2(cj), ν2(bj), ν3(cj),
and ν3(bj). An induction argument gives, for j > 1,

Aj ≡
(

2 3
2 3

)
(mod 4).

Hence, it follows that, for j > 1, we have

ν2(cj) = 1 and ν2(bj) = 0.(7)

We claim that for all j ≥ 0 we have

ν3(cj) ≥
j

2
and ν3(bj) ≥

j − 1
2

.(8)

For j = 0 and j = 1, one checks directly that (8) holds. From (6), we deduce

ν3(cj+1) ≥ min{ν3(cj), ν3(cj−1)}+ 1

and
ν3(bj+1) ≥ min{ν3(bj), ν3(bj−1)}+ 1.



76 M. Allen and M. Filaseta

An easy induction argument implies (8). Using the fact that det(Aj) =
det(A)j, we obtain

cjbj+1 − cj+1bj = ±6j .(9)

Given (8), we deduce that, for j ≥ 0, at least one of ν3(cj) = j/2 and
ν3(cj+1) = (j+ 1)/2 holds. Only one of j/2 and (j+ 1)/2 can be an integer.
It follows that

ν3(cj) = j/2 if j is even.(10)

Note that parity considerations also imply from (8) that ν3(cj) ≥ (j + 1)/2
if j is odd and that ν3(bj) ≥ j/2 if j is even.

Observe that x2 ≡ 3x + 6 (mod q(x)). From the definition of cn and bn
we obtain

g(x) ≡ (bn + 3lrbn−1 + 3l2ksbn−2 + 3l2k−1w(n− 1)!)x

+ cn + 3lrcn−1 + 3l2kscn−2 + 3l2k(n− 1)!(1− y)

modulo q(x). We will show that for some r, s, y, and w,

cn + 3lrcn−1 + 3l2kscn−2 + 3l2k(n− 1)!(1− y) = 0

and
bn + 3lrbn−1 + 3l2ksbn−2 + 3l2k−1w(n− 1)! = 0.

It will follow then that g(x) ≡ 0 (mod q(x)). We first show that there are
integers r, s, and y such that

3lrcn−1 + 3l2kscn−2 = −(cn + 3l2k(n− 1)!(1− y)).

The above equation has integer solutions r and s if

gcd(3lcn−1, 3l2kcn−2) | (cn + 3l2k(n− 1)!(1− y)).

Since n+ 1 = 3lm′ and, from Lemma 4, ν3((n+ 1)!) < (n+ 1)/2, we obtain
ν3(3l2k(n − 1)!) ≤ n/2. Also since n is even, (10) implies ν3(cn) = n/2. It
follows that there is an integer y such that

ν3(cn + 3l2k(n− 1)!(1− y)) ≥ min{ν3(3lcn−1), ν3(3lcn−2)}.
Fix such a y. From (7) and k ≥ 1, we obtain

ν2(cn + 3l2k(n− 1)!(1− y)) ≥ min{ν2(3lcn−1), ν2(3l2kcn−2)}.
Note that (9) implies that 2 and 3 are the only prime factors possibly in
common with cn−1 and cn−2. It follows that there are integers r0 and s0
such that

cn + 3lr0cn−1 + 3l2ks0cn−2 + 3l2k(n− 1)!(1− y) = 0.(11)

We will use later the fact that r0 is odd, which follows from (7), the above
equation, and the conditions k ≥ 1 and n ≥ 3. We fix r0 and s0 (and y) as
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above and note that for any integer t we have

cn + 3lcn−1(r0 + 2kcn−2t) + 3l2kcn−2(s0 − cn−1t) + 3l2k(n− 1)!(1− y) = 0.

We set
r = r0 + 2kcn−2t and s = s0 − cn−1t

and seek t and w so that

bn + 3lrbn−1 + 3l2ksbn−2 + 3l2k−1w(n− 1)! = 0.

In other words, we want

3l2k−1w(n− 1)! + 3l2k(cn−2bn−1 − cn−1bn−2)t

+ bn + 3lr0bn−1 + 3l2ks0bn−2 = 0.

By (6), we can rewrite this equation as

(12) 3l2k−1w(n− 1)! + 3l2k(cn−2bn−1 − cn−1bn−2)t

+ (3lr0 + 3)bn−1 + (3l2ks0 + 6)bn−2 = 0.

From (6) and (11), we obtain

(3lr0 + 3)cn−1 + (3l2ks0 + 6)cn−2 + 3l2k(n− 1)!(1− y) = 0.(13)

Multiplying both sides of (12) by cn−2 and both sides of (13) by −bn−2 and
then adding, we obtain

(14) cn−23l2k−1(n− 1)!w + cn−23l2k(cn−2bn−1 − cn−1bn−2)t

+ (3lr0 + 3)(cn−2bn−1 − cn−1bn−2)− 3l2k(n− 1)!(1− y)bn−2 = 0.

Observe that (13) implies that if (14) holds, then so does (12).
We show that (14) holds for some integers w and t. Since n = 2km, with

k a positive integer, n is even so that ν3(cn−1) ≥ n/2, ν3(cn−2) = (n− 2)/2,
and ν3(bn−2) ≥ (n− 2)/2. Let

c = cn−23l2k−1(n− 1)!, c′ = cn−23l2k(cn−2bn−1 − cn−1bn−2),

c′′ = (3lr0 + 3)(cn−2bn−1 − cn−1bn−2), and c′′′ = 3l2k(n− 1)!(1− y)bn−2.

Recall that ν3(3l2k(n− 1)!) ≤ n/2. We deduce

ν3(c) ≤ n

2
+
n− 2

2
= n− 1.

Observe that ν2(n!) < n (for example, from Lemma 4). Since n = 2km, we
have ν2(2k−1(n−1)!) = ν2(n!)−1. From (7), we see that ν2(c) ≤ ν2(n!) < n.
Since ν2(c) is an integer,

ν2(c) ≤ n− 1.

Note that 3 divides 3lr0 + 3. Since r0 is odd, 2 divides 3lr0 + 3. We deduce
from (9) that

ν2(c′′) ≥ n− 1 and ν3(c′′) ≥ n− 1.
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Observe that (7) implies ν2(c′′′) ≥ ν2(c). Next, we show that ν3(c′′′) ≥ ν3(c).
Recall that since n is even,

ν3(bn−2) ≥ (n− 2)/2 = ν3(cn−2).

So,

ν3(c′′′) = ν3(3l2k(n− 1)!(1− y)bn−2) ≥ ν3(cn−23l2k−1(n− 1)!) = ν3(c).

Combining the above, we deduce

ν2(c′′′ − c′′) ≥ ν2(c) and ν3(c′′′ − c′′) ≥ ν3(c).

We claim that gcd(c, c′) divides c′′′−c′′. Let p be a prime and u a positive
integer for which pu ‖ gcd(c, c′). The above analysis shows that if p = 2 or
p = 3, then pu | (c′′′ − c′′). Now, consider the case p > 3. From (9) and the
definition of c′, we obtain pu | cn−2. From (13), we see that pu must also
divide

((3lr0 + 3)cn−1 + 3l2k(n− 1)!(1− y))bn−2 − (3lr0 + 3)cn−2bn−1 = c′′′ − c′′.
Hence, gcd(c, c′) divides c′′′ − c′′.

It now follows that there exist integers w and t for which cw + c′t =
c′′′ − c′′. This establishes the existence of integers w and t as in (12) and
(14) and, hence, the existence of integers r, s, y, and w for which g(x) is
divisible by x2 − 3x− 6.

Comment. The above argument for the case k′′ < k′ is hampered some-
what by the presence of a nonzero coefficient of x in our choice of g(x). It
can be shown, however, that there are n (for example, n = 32) for which
k′′ < k′ and for which f(x), with |an| = k′′ and |a0| = 1, has no factors
ax2 + c ∈ Z[x] regardless of the integral values chosen for a1, . . . , an−1.
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