Rang de familles de courbes elliptiques

par

Odile Lecacheux (Paris)

1. Introduction. Soit E une courbe elliptique sur \mathbb{Q} . Le théorème de Mordell-Weil donne la structure du groupe des points rationnels de E:

$$E(\mathbb{Q}) \simeq E(\mathbb{Q})_{\text{tors}} \times \mathbb{Z}^r$$

où r est appelé le rang sur $\mathbb Q$ de E. Un théorème de Mazur donne les seules structures de torsion possibles :

$$E(\mathbb{Q})_{\text{tors}} = \begin{cases} \mathbb{Z}/m\mathbb{Z}, & m = 1, 2, \dots, 10, 12, \\ \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2m\mathbb{Z}, & m = 1, \dots, 4. \end{cases}$$

On notera \mathcal{E}_N (resp. $\mathcal{E}_{n,m}$) l'ensemble des courbes elliptiques sur \mathbb{Q} telles que $E(\mathbb{Q})_{\text{tors}} \simeq \mathbb{Z}/N\mathbb{Z}$ (resp. $E(\mathbb{Q})_{\text{tors}} \simeq \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$), et on définit

$$b(N) = \sup\{r; E \in \mathcal{E}_N\}, \qquad B(N) = \limsup\{r; E \in \mathcal{E}_N\},$$

$$b(n, m) = \sup\{r; E \in \mathcal{E}_{n, m}\}, \qquad B(n, m) = \limsup\{r; E \in \mathcal{E}_{n, m}\}.$$

On ignore si b(n, m) et b(N) sont finis. Sans entrer dans les détails il faut retenir les résultats suivants :

- $b(0) \ge 24$ et $B(0) \ge 14$,
- B(N) et $B(n,m) \ge 1$ pour toutes les valeurs de N,n et m, par exemple $B(2) \ge 8, B(5) \ge 3$.

Citons les travaux de divers auteurs qu'on pourrait presque faire remonter à Fermat : Kretschmer, Nagao, Fermigier, Mestre, Martin-McMillen, Kihara, Kulesz, Atkin-Morain, Dujella . . . et d'autres (voir [3]).

Dans cet article nous nous intéresserons à B(N) pour N = 7. Pour cet entier des exemples ont été construits et donnent $B(7) \ge 1$ (Kulesz [4], Atkin-Morain [1]). Notons aussi que $b(7) \ge 5$ [3].

Nous obtenons les résultats suivants :

Théorème 1. L'entier B(7) est supérieur ou égal à 2.

²⁰⁰⁰ Mathematics Subject Classification: Primary 11G05, 14H52; Secondary 14H10, 14J27, 14J28.

132 O. Lecacheux

Plus précisément, il existe des courbes elliptiques sur \mathbb{Q} , de rang au moins deux sur \mathbb{Q} , ayant un point d'ordre 7 rationnel, paramétrées par les points rationnels de plusieurs courbes elliptiques dont au moins deux ont un rang sur \mathbb{Q} égal à 3. Parmi ces familles de courbes ainsi construites, ayant un point de 7-torsion \mathbb{Q} -rationnel, certaines ont un rang 3.

2. Notations et méthode. On désignera par N un entier ≥ 5 ; on note $Y_1(N)$ la courbe modulaire sur \mathbb{Q} qui paramétrise les couples (E, A_N) où E est une courbe elliptique, ayant un point A_N d'ordre exactement N. Soit $X_1(N)$ la compactification de $Y_1(N)$.

Soit E_N la courbe elliptique universelle qui correspond à cette structure. Alors E_N est une surface elliptique définie sur $\mathbb Q$ avec un morphisme de projection

$$\pi: E_N \to Y_1(N)$$

et une section $s: Y_1(N) \to E_N$, tous deux définis sur \mathbb{Q} .

La courbe $X_1(7)$ est de genre 0 et on notera d un générateur de son corps de fonctions. Nous noterons E_d la fibre générique. Enfin nous noterons \mathbb{P}^1_z l'espace projectif avec point générique z.

Pour N=7, le modèle minimal non singulier de la surface E_7 est une surface K3 ([7, pp. 276–277]). Nous montrons que la surface E_7 est birationnellement équivalente à la surface S_7 d'équation

$$(uv - u - v)(dv - 1)(du - 1) = uv(u - 1)(v - 1)d(d - 1)$$

et nous construisons une autre fibration elliptique de la surface S_7 ,

$$\phi_v: S_7 \to \mathbb{P}^1_v$$

avec une section définie sur \mathbb{Q} . Nous noterons H_v la fibre générique. Les sections de E_7 correspondant aux points d'ordre 7 de E_d donnent sur H_v un point d'ordre 4 ainsi qu'un point P d'ordre infini sur $\mathbb{Q}(v)$. On construit ainsi en considérant les multiples de P une infinité de revêtements de

$$\mathbb{P}^1_{v_n} \to \mathbb{P}^1_d$$

et les changements de base $E_d \times_{\mathbb{P}^1_d} \mathbb{P}^1_{v_n}$ correspondants, ce qui donne une courbe elliptique de rang au moins 1 sur $\mathbb{Q}(v_n)$ avec un point de 7-torsion.

Parmi ces revêtements nous avons étudié ceux de petit degré, en particulier de degré 2, correspondant aux fractions rationnelles d_0, d_1, d_4 et d_5 .

En prenant le produit fibré de deux tels changements de base on obtient une famille de courbes elliptiques de rang au moins deux au-dessus d'une base de genre 1. Cette dernière courbe, dans les cas étudiés, est une courbe elliptique de rang au moins 1 sur \mathbb{Q} . On obtient ainsi une infinité de courbes de rang au moins 2 sur \mathbb{Q} munies d'un point \mathbb{Q} -rationnel d'ordre 7. Certaines courbes correspondant à trois points rationnels de $\mathbb{P}^1_{v_{n_i}}$ pour i=1,2,3

donnent des exemples de courbes de rang 3 munies d'un point Q-rationnel d'ordre 7.

2.1. La surface E_7 et ses automorphismes. Soit E une courbe elliptique sur \mathbb{Q} ayant un point rationnel de 7-torsion. Il existe un rationnel d tel que la courbe E soit \mathbb{Q} -isomorphe à la courbe E_d d'équation

$$(E_d): y^2 + (1+d-d^2)xy + (d^2-d^3)y = x^3 + (d^2-d^3)x^2$$

de discriminant $d^7(d-1)^7(d^3-8d^2+5d+1)$ et où le point d'ordre 7 est le point A=(0,0). Si on considère d comme une indéterminée on notera E_7 la surface d'équation

$$y^{2} + (1 + d - d^{2})xy + (d^{2} - d^{3})y = x^{3} + (d^{2} - d^{3})x^{2}.$$

La surface elliptique E_7 admet l'automorphisme d'ordre 6 noté σ défini par

$$x \mapsto \frac{x - d^2(d-1)}{d^4}, \qquad x \mapsto \frac{x + d - d^2}{(d-1)^4},$$

$$y \mapsto \frac{-y - dx + d^3(d-1)}{d^6}, \quad \text{d'inverse} \quad y \mapsto \frac{-(x+y) + xd}{(d-1)^6},$$

$$d \mapsto \frac{d-1}{d}, \qquad d \mapsto \frac{-1}{d-1},$$

qui a l'interprétation modulaire suivante : au couple (E, A) on associe le couple (E, iA) avec (i, 7) = 1.

Si M est un point générique de la courbe E_d , l'automorphisme défini sur E_d par $M \mapsto A + M$ définit un automorphisme noté σ_7 , d'ordre 7, de E_7 .

2.2. La surface S_7 . Faisons les changements de coordonnées

$$x = \frac{d(d-1)}{u+v-uv}, \quad y = \frac{(d-1)^2 d^2 u}{(u+v-uv)^2}$$

d'inverse

$$u = \frac{y}{x^2}$$
, $v = \frac{(x+d)d(d-1) - (x+y)}{x^2}$.

Les fonctions u et v sur E_d ont comme diviseur

$$div(u) = -2(6A) + 5A + \infty, \quad div(v) = -2(A) + 2A + \infty.$$

La surface E_7 est birationnellement équivalente à la surface

(2.1)
$$S_7: -d(d-1)uv + (uv - u - v)(1 + d(uv - u - v)) = 0.$$

Nous utiliserons aussi les deux factorisations suivantes de l'équation de S_7 :

$$(dv-1)(uv-u-v)(du-1) = uv(u-1)(v-1)d(d-1),$$

$$u(u-1)d(v-1)^2 = (dv-1)(ud+vu-u-v),$$

ainsi que celle obtenue en intervertissant u et v.

On remarque que l'involution qui échange u en v correspond à l'involution $P \mapsto -P$ sur la courbe elliptique E_d .

L'automorphisme σ est défini sur 2.1 par

$$(u, v, d) \mapsto \left(\frac{(dv - 1)(uv - u - v)^2}{(d - 1)^2 uv^2}, \frac{(du - 1)(uv - u - v)^2}{(d - 1)^2 vu^2}, \frac{d - 1}{d}\right).$$

L'automorphisme σ_7 est défini sur 2.1 par

$$(u, v, d) \mapsto \left(\frac{(u-1)(uv-u-v)}{du^2(d-1)}, -\frac{1}{d(uv-u-v)}, d\right).$$

PROPOSITION 2. La fibration

$$\phi: S_7 \to \mathbb{P}^1_v, \quad (u, v, d) \mapsto v,$$

définit sur S_7 une structure de surface elliptique de fibre générique H_v . La torsion du groupe de Mordell-Weil $H_v(\mathbb{Q}(v))$ est cyclique d'ordre 4 et le rang de ce groupe est égal à 1.

On pose

$$u = \frac{dv - 1 + Y}{d(v - 1)}$$
, soit $Y = 1 + d(uv - u - v)$.

On obtient alors une cubique en (Y, d) dépendant de v.

Les transformations habituelles pour obtenir une forme de Weierstrass sont

$$U = v(v-1)(Y + dv - (v^2 - v + 1)),$$

$$u = \frac{(U + v^2(v-1)^2)U}{Z(v-1)^2}.$$

Le changement de variable

$$\begin{split} d &= \frac{Z}{vU}, \\ x &= \frac{(v-1)Z^2(Uv-Z)}{v^2U^2(U^2+v^2(v-1)^2U-vZ(v-1))}, \\ y &= \frac{Z^3(Uv-Z)^2(U+v^2(v-1)^2)}{v^4U^3(U^2+v^2(v-1)^2U-vZ(v-1))^2} \end{split}$$

donne un modèle de Weierstrass de la fibre H_v , soit

$$Z^{2} + v(2v - 3)UZ + v^{2}(2v - 1)(v - 1)^{3}Z$$

= $U(U + v(v - 1)(v^{2} - v + 1))(U + v^{2}(v - 1)^{2}).$

Les points d'ordre 7 de E_d correspondent aux sections U=Z et vU=Z, ce qui donne les points de H_v

$$A_1 = (U = -v^2(v-1)^2, Z = -v^2(v-1)^2),$$

$$A_2 = (-(v+1)(v-1)^3, -(v+1)(v-1)^3),$$

$$A_3 = (-v(v-1)^3, -v^2(v-1)^3),$$

$$A_4 = (-v^2(v-1)(v-2), -v^3(v-1)(v-2)),$$

$$A_5 = (0,0).$$

Le point A_3 est d'ordre 2 et $2A_1 = A_3$, donc A_1 est d'ordre 4. D'autre part on a les relations suivantes :

$$A_1 + A_5 = A_2,$$

 $2A_1 + A_5 = A_4,$
 $3A_1 + A_5 = (-v(v-1)(v^2 - v + 1), v^2(v-1)(v-2)).$

En utilisant un résultat de Shioda [5], on peut calculer le rang sur $\mathbb{C}(v)$ de H_v . Par calcul on déduit le type des fibres dégénérées : en v=0 et $v=\infty$ les fibres sont de type I_1^* , en v=1 de type I_8 et en $v=(31\pm 3i\sqrt{7})/32$ de type I_1 . Le nombre de composantes est respectivement $m_s=6,8$, et 1. De la relation fondamentale

$$\operatorname{Rang}(H_v(\mathbb{C}(v))) + 2 + \sum_s (m_s - 1) = \operatorname{Rang} \operatorname{NS}(E_7)$$

il résulte que le rang du groupe de Mordell-Weil de $H_v(\mathbb{C}(v))$ est inférieur ou égal à un, compte tenu de l'inégalité Rang $NS(E_7) \leq 20$. Par spécialisation, par exemple pour v=5 on montre que le point A_5 spécialisé n'est pas d'ordre 2,8 ou 4, il est donc d'ordre infini compte tenu du théorème de Mazur.

On construit alors une infinité de familles à un paramètre de courbes elliptiques ayant de la 7-torsion et un rang ≥ 1 . Pour cela on considère les points $rA_1 + sA_5$ ($s \in \mathbb{Z}$, $0 \leq r \leq 3$) de coordonnées $(u_{r,s}(v), v, d_{r,s}(v))$ sur S_7 . En utilisant le changement de coordonnées $(u, v) \mapsto (x, y)$ précédent on obtient la famille $(E_{d_{r,s}(v)}, P_{r,s}(v))$. Montrons que $P_{r,s}(v)$ est d'ordre infini si $s \neq 0$. Si $rA_1 + sA_5 \neq A_i$, $1 \leq i \leq 5$, le point $P_{r,s}(v)$ n'est pas un multiple de A. Il existe donc au moins une valeur de $v_0 \in \mathbb{Q}$ pour laquelle le point $P_{r,s}(v_0)$ n'est pas multiple de A. Utilisant le théorème de Mazur, le point $P_{r,s}(v_0)$ ne peut être de torsion car la courbe $E_{d_{r,s}(v_0)}$ aurait un point rationnel d'ordre $7m, m \neq 1$.

Si d = P/Q où P et Q sont deux polynômes premiers entre eux, on pose $\operatorname{ht}(d) = \max(\deg(P), \deg(Q))$. Les familles correspondant aux points

$$-2A_5 + hA_1 \quad \text{avec } 0 \le h \le 4,$$

vérifient ht(d) = 2.

2.3. Involutions. L'équation définissant S_7 est quadratique par rapport à chaque variable; la surface S_7 peut être considérée comme un revêtement double de $\mathbb{P}^1 \times \mathbb{P}^1$ de 3 façons différentes, ce qui définit trois involutions

$$e_{u}: \quad (u, v, d) \mapsto \left(\frac{v(dv - 1)}{d(v - 1)^{2}u}, v, d\right),$$

$$e_{v}: \quad (u, v, d) \mapsto \left(u, \frac{u(du - 1)}{d(u - 1)^{2}v}, d\right),$$

$$e_{d}: \quad (u, v, d) \mapsto \left(u, v, -\frac{(u - 1)(v - 1)(d - 1)}{(dv - 1)(du - 1)}\right).$$

On remarque que $(e_u \circ e_v)^2 = \sigma_7$. Si $f = e_u \circ e_v$, $g = e_d \circ e_v$ et $f_1 = g \circ f \circ g^{-1}$ alors $\sigma^3 = f \circ f_1 \circ f \circ e_d$ et $\sigma^4 = (g^2 \circ f \circ f_1 \circ g^2)^2$. Un calcul montre que $e_d \circ e_u$ est d'ordre 4, ainsi que $e_d \circ e_v$.

La surface S_7 contient les droites suivantes :

$$D_0: u = 0, v = 0,$$

 $D_1: d = 1, u = 1,$
 $D_2: d = 1, v = 1.$

Le plan tangent à S_7 passant par D_1 a pour équation

$$u+d=2.$$

La surface S_7 contient les courbes de genre 0:

$$\begin{array}{lll} C_1: & d=0, \ uv-u-v=0, \\ C_2: & d=1, \ uv-u-v=0, \\ C_3: & u=0, \ dv=1; & \widetilde{C}_3: \quad u=1, \ dv=1, \\ C_5: & v=0, \ du=1; & \widetilde{C}_5: \quad v=1, \ du=1, \\ C_6: & u+d=2, \ d=-\frac{v-2}{v^2-v+1}, \\ C_7: & v+d=2, \ d=-\frac{u-2}{u^2-u+1}. \end{array}$$

La conique C_7 (resp. C_6) est stable par e_u (resp. e_v).

Les points $-2A_5 + hA_1$ correspondent à $e_u \circ \sigma_7^2 \circ (e_d \circ e_u)^{h+1} \circ e_u(C_6)$, ce qui donne les quatre valeurs de d:

$$d_0 = \frac{v^2 - 1}{v(v - 2)}, \quad d_1 = \frac{-(v - 2)}{v^2 - v + 1}, \quad d_2 = \frac{2v - 1}{v(v + 1)}, \quad d_3 = \frac{v^2 - v + 1}{2v - 1}.$$

Remarque 3. On remarque que si on note g l'automorphisme d'ordre 6 de la droite projective défini par

$$t \mapsto g(t) = \frac{t+1}{2-t}$$

alors $g^4(v) = (v-1)/v$ et on a les résultats suivants : l'application $d \mapsto (d-1)/d$ laisse invariant d_0 , plus précisément $d_0 = -g(v)g^4(v)$ et $d_0(g^4(v)) = (d_0(v)-1)/d_0(v)$, et elle permute les autres d_i , plus précisément $d_2(v) = (d_1(g^4(v))-1)/d_1(g^4(v))$ et $d_3(v) = -1/(d_1(g(v))-1)$.

La famille E_d avec $d = d_1(z)$ a été donnée dans [4]. Nous obtenons ainsi

THÉORÈME 4. Les courbes elliptiques E_{d_i} avec i = 0, 1, 2, 3 sont de rang ≥ 1 sur $\mathbb{Q}(v)$ et $\operatorname{ht}(d) = 2$.

Le point de coordonnées (x_{P_i}, y_{P_i}) donné dans le tableau 1 est d'ordre infini.

Tableau 1

	d	(x_{P_i},y_{P_i})
$\overline{d_0}$	$\frac{v^2 - 1}{v(v - 2)}$	$\left(-\frac{(v-1)(2v-1)}{v^2(v-2)}, \frac{(v-1)^2(2v-1)^2}{v^3(v-2)^2}\right)$
d_1	$\frac{-(v-2)}{v^2-v+1}$	$\left(\frac{-v(v^2-1)(v-2)^2}{(v^2-v+1)^3}, \frac{(v^2-1)^2(v-2)^2}{(v^2-v+1)^4}\right)$
d_4	$-6 \frac{z-1}{(z-2)(z-4)}$	$\left(-9\frac{(z-1)^2}{(z-2)^2(z-4)^2}, 81\frac{z(z-1)^2}{(z-4)^3(z-2)^4}\right)$
d_5	$\frac{1}{2} \frac{(z+1)(z-4)}{(2z+1)(z-2)}$	$\left(-\frac{3}{2} \frac{z(z-1)(z+1)^2(z-4)^2}{(z+2)^2(z-2)^3(1+2z)^2}, \frac{9}{8} \frac{z^2(z-1)(z+1)^2(z-4)^3}{(2+z)^3(z-2)^4(1+2z)^3}\right)$
d_6	$8\frac{w}{w^3 - w^2 - w + 9}$	$\left(-2\frac{w^2-9}{w^3-w^2-w+9},4\frac{(w^2-9)^2(w^3+w^2-w-9)}{(w^3-w^2-w+9)^3}\right)$
d_7	$-\frac{(v^2-1)(v-2)}{2v-1}$	$\left(-\frac{(v(v-1)^2+1)(v+1)(v^2-v+1)(v^3-v^2-1)(v-2)^2}{(2v-1)^4},\right.$
		$-\frac{(v+1)(v^3-v^2-1)^2(v(v-1)^2+1)^2(v-2)^3}{(2v-1)^6}\Big)$

3. Autres familles de rang 1

3.1. EXEMPLE 1. On cherche s'il existe des courbes C rationnelles sur S_7 telles que si $M=(u,v,d)\in C$ alors $e_d(M)=(u,v,k/d), k\in\mathbb{Q}$. On obtient de telles courbes avec k=1 et k=1/4 en imposant à la projection de C sur le plan u=0 d'être rationnelle. Si k=1 on retrouve d_0 . Considérant la courbe correspondant au cas k=1/4 ainsi que les courbes $(e_d\circ e_v)^h(C)$ on obtient deux nouvelles valeurs de d, $d_i(z)$, i=4,5 avec $\operatorname{ht}(d_i)=2$:

$$d_4(z) = -6 \frac{z-1}{(z-2)(z-4)}, \quad d_5(z) = \frac{1}{2} \frac{(z+1)(z-4)}{(2z+1)(z-2)}.$$

Les coordonnées d'un point d'ordre infini sur E_{d_4} et E_{d_5} figurent dans le tableau 1. La courbe E_{d_4} possède aussi un point rationnel vérifiant $x = -1/(4d^2)$ [2].

Remarque 5. Si G désigne le groupe engendré par les trois involutions on peut construire un sous groupe \neq Id laissant fixe globalement C, correspondant au cas k=1/4. Si $\varepsilon\in G$ nous n'avons pas obtenu d'exemples de courbe $\varepsilon(C)$ avec $\operatorname{ht}(d)<3$.

3.2. Exemple 2. Considérons la courbe

$$e_u(C_6)$$
: $\left(u_1(v), v_1(v) = \frac{v(2v-1)}{v^2-v+1}, d_1(v)\right)$.

La courbe $H_{v_1(v)}$ a un rang sur $\mathbb{Q}(v)$ supérieur ou égal à deux, les points A_5 et l'image de $e_u(C_6)$ sont indépendants. Par combinaison de ces deux points et du point A_1 d'ordre 4, on construit comme au paragraphe précédent d'autres familles avec $\operatorname{ht}(d) \geq 3$. Les exemples d_6 et d_7 du tableau 1 sont ainsi obtenus. On peut de même utiliser la courbe $(u_4(z), v_4(z) = -(z^2 - 4)/3, d_4(z))$ de S_7 et la courbe $H_{v_4(z)}$.

4. Courbes elliptiques de rang ≥ 2

4.1. Première méthode. Les égalités $d_i(v) = d_j(w)$, $(d_i(w) - 1)/d_i(w) = d_j(v)$ et $-1/(d_i(w) - 1) = d_j(v)$ définissent des courbes affines et pour chercher des courbes de rang 2 nous chercherons des points rationnels sur ces courbes. Pour i et $j \in \{0, 1, 2, 3, 4, 5\}$ les courbes obtenues sont des courbes elliptiques sur \mathbb{Q} dont nous allons préciser les équations et le rang sur \mathbb{Q} .

Lemme 6. Soit K le corps engendré par les coefficients de la courbe Γ d'équation

$$(4.1) k(x-a)(x-b)(y^2-ry+t) = (y-a_1)(y-b_1)(x^2-sx+p).$$

Il existe un point Ω K-rationnel de Γ et une transformation birationnelle f définie sur K telle que $f(\Gamma)$ soit, en général, une courbe elliptique sur K d'élément neutre $f(\Omega)$. Cette courbe elliptique possède un point de torsion K-rationnel d'ordre 2 ainsi qu'un point K-rationnel. Si de plus les polynômes $x^2 - sx + p$ et $y^2 - ry + t$ se factorisent sous la forme (x - c)(x - d) et $(y - c_1)(y - d_1)$ la courbe elliptique possède un autre point K'-rationnel où $K' = K(c, d, c_1, d_1)$. Enfin si les fractions rationnelles

$$h\frac{(x-a)(x-b)}{(x-c)(x-d)} - 1$$
 et $m\frac{(y-a_1)(y-b_1)}{(y-c_1)(y-d_1)} - 1$

avec h/m = k ont des numérateurs qui se factorisent sur K' en polynômes de degré 1 en x et en y alors ces courbes elliptiques ont trois points K'-rationnels généralement indépendants.

Par deux transformations homographiques en \boldsymbol{x} et en \boldsymbol{y} on se ramène à l'étude de

$$\frac{U}{U^2 - sU + p} = k \frac{V}{V^2 - rV + t}.$$

On pose $U = X(X - k^2p)/(kY)$, $V = Y/(X - k^2p)$, ce qui définit une application birationnelle d'inverse X = UVk, Y = Vk(VU - kp). On obtient alors le modèle de Weierstrass

$$Y^{2} + YX(-r + sk) = X(X - t)(X - k^{2}p).$$

Si le discriminant n'est pas nul on obtient une courbe elliptique; le point $p_1 = (0,0)$ est de 2-torsion et le point $p_2 = (t,0)$ est en général d'ordre infini sur K. Le point $p_3 = (k^2p,0)$ vérifie $p_1 + p_2 + p_3 = 0$. Si les dénominateurs $U^2 - sU + p$ et $V^2 - rV + t$ se factorisent en (U - m)(U - n) et $(V - m_1)(V - n_1)$, la courbe en X, Y se factorise aussi sous la forme

$$(Y + X(mk - n_1))(Y + X(kn - m_1)) = X(X - kmm_1)(X - knn_1)$$

et possède les points K'-rationnels

$$q_2 = (kmm_1, -mm_1k(km - n_1)),$$
 $-q_2 = (kmm_1, -mm_1k(kn - m_1)),$ $q_3 = (knn_1, -nn_1k(kn - m_1)),$ $-q_3 = (knn_1, -nn_1k(km - n_1)).$

On remarque que q_3, q_2 et p_1 sont alignés, donc $p_1 + q_2 + q_3 = 0$.

S'il existe des factorisations de $h\frac{(x-a)(x-b)}{(x-c)(x-d)}-1$ et $m\frac{(y-a_1)(y-b_1)}{(y-c_1)(y-d_1)}-1$ alors on obtient 4 points supplémentaires, ce qui compte tenu des relations évidentes entre les points augmente le rang de 1 au maximum.

Nous regrouperons les résultats obtenus dans le tableau 2. Pour chaque courbe $d_i(x) = d_j(y)$ nous donnons au moins une valeur de $d = d_i(x_1) = d_j(y_1)$ telle que la courbe E_d soit de rang ≥ 2 , en vérifiant que les points de E_d donnés par le tableau 1 sont indépendants.

Tableau 2

		·
$d_0 = d_1$	$y^2 = x^3 + x^2 - 9x$ rang 1	$d = 15/7$ conducteur $2 \cdot 3 \cdot 5 \cdot 7 \cdot 41 \cdot 127$
$d_0 = d_4$	$y^2 = (x-5)(x^2 + 6x - 379)$ rang 2	$d = 24/35$ conducteur $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 251$
$d_0 = d_5$	$y^2 = (x - 22)(x^2 + 23x - 1638)$ rang 3	$d = 25/168$ conducteur $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 29 \cdot 139 \cdot 1847$
$d_5 = \frac{d_5 - 1}{d_5}$	$y^2 + xy = x^3 - 550315x + 156674225$ rang 3	$d = -7/125$ conducteur $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 1356907$
$d_1 = \frac{-1}{d_4 - 1}$	$y^2 = (x+12)(x^2 - 11x + 48)$ rang 1 et 4-torsion	d = 21/40 et $80/7$ rang 3
$d_1 = \frac{d_5 - 1}{d_5}$	$y^2 = (x+17)(x^2 - 16x + 87)$ rang 2	$d = 21/2$ conducteur $2 \cdot 3 \cdot 7 \cdot 19 \cdot 2633$
$d_4 = \frac{-1}{d_5 - 1}$	$y^2 + xy + y = x^3 - 716x + 182$ rang 2	$d = -12/5$ conducteur $2 \cdot 3 \cdot 5 \cdot 17 \cdot 8863$

Théorème 7. Il existe une infinité de courbes elliptiques sur \mathbb{Q} avec un point rationnel d'ordre 7 et un rang sur \mathbb{Q} supérieur ou égal à 2. Ces courbes sont paramétrées par les points rationnels de courbes elliptiques.

Notons L le corps des fonctions sur \mathbb{Q} d'une courbe définie par $d_i = d_j$. Les résultats du tableau 2 montrent que $E_d(L)$ est de rang ≥ 2 sur L. Il résulte d'un résultat de Silverman [6] que les courbes spécialisées E_d , $d = d_i(z) = d_j(v)$, $(z, v) \in \mathbb{Q}^2$, sont de rang 2 sur \mathbb{Q} , sauf peut-être pour un nombre fini de valeurs de d.

4.2. Deuxième méthode. Si nous partons d'une famille $E_{d_i(t)}$ de courbes de rang 1 sur $\mathbb{Q}(t)$ de générateur P_t , considérons les points $P_t + iA = (x_i, y_i)$ où 7A = 0. Cherchons une condition pour que les points d'ordonnées y_i soient rationnels. Pour deux de nos familles d_i nous sommes ramenés à chercher des points rationnels sur une courbe elliptique \mathfrak{C} sur \mathbb{Q} de rang positif.

Pour $E_{d_0(v)}$, on considère les points de même ordonnée que P+4A, -P+A. La courbe elliptique $\mathfrak C$ correspondante est la courbe $y^2=x^3-12x+20$ de rang 1 sur $\mathbb Q$. On construit ainsi la courbe $E_{35/11}$ de petit conducteur $2\cdot 3\cdot 5\cdot 7\cdot 11\cdot 13\cdot 251$, ainsi que $E_{13/48}$ de conducteur $2\cdot 3\cdot 5\cdot 7\cdot 13\cdot 239\cdot 827$.

Il en est de même pour la courbe $E_{d_5(z)}$ avec le point P+2A. L'une des plus petites valeurs obtenue pour d est $11 \cdot 17/(2^413)$.

- 5. Courbes de rang \geq 3. Divers exemples de courbes de rang 3 ont été trouvés et se répartissent en plusieurs classes.
- 1) Le premier cas correspond à un point sur les courbes $d_i(v) = d_j(w)$, $d_i(v) = d_k(t)$. Chaque égalité définissant une courbe elliptique, ces cas correspondent à des points rationnels sur des courbes de genre > 1. Par exemple, soit

$$d = \frac{72}{275} = d_0 \left(\frac{-11}{7}\right) = d_5(-28) = \frac{d_5 - 1}{d_5} \left(\frac{32}{23}\right)$$

et la courbe E_d

$$y^{2} + \frac{31 \cdot 41 \cdot 71}{5^{4} \cdot 11^{2}} xy + \frac{2^{6} \cdot 3^{4} \cdot 7 \cdot 29}{5^{6} \cdot 11^{3}} y = x^{3} + \frac{2^{6} \cdot 3^{4} \cdot 7 \cdot 29}{5^{6} \cdot 11^{3}} x^{2}$$

de conducteur $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 29 \cdot 41 \cdot 421 \cdot 2143$. Les points suivants sont indépendants :

$$P_{d_0} = \left(-\frac{2^27 \cdot 29}{5^4 11}, \frac{2^27^2 13 \cdot 19 \cdot 29^2}{5^8 11^3}\right),$$

$$P_{d_5} = \left(\frac{2^6 3^4 7 \cdot 29}{5^5 11^2 13^2}, -\frac{2^{14} 3^8 7^2 29^2}{5^9 11^4 13^3}\right),$$

$$P'_{d_5} = \left(-\frac{2^3 3^4 7 \cdot 23}{5^5 11^3}, \frac{2^3 3^7 7^2}{5^7 11^4}\right).$$

2) La valeur d = -45/11 est obtenue en spécialisant en w = -5/3, t = 0, et z = 10 les trois fractions rationnelles construites avec les méthodes

précédemment données, $d_6(w)$, $d_8(t) = -\frac{3(t+3)(2t+5)}{(t+1)(t^2+6t+11)}$ et $(d_5-1)/d_5(z)$. Les points

$$P_8 = \left(\frac{3(t+2)(2t+5)^2(t+4)}{(t^2+6t+11)^2(t+1)^2}, \frac{18(t+4)^2(t+2)(2t+5)^3}{(t^2+6t+11)^3(t+1)^4}\right),$$

$$P_5 = \left(\frac{6(z-1)z^2(2z+1)(z-2)}{(z-4)(z+1)^2(z+2)^2}, \frac{36z^4(z-1)(2z+1)^2(z-2)}{(z-4)^2(z+1)^3(z+2)^3}\right)$$

sont rationnels sur E_d . Le calcul du régulateur montre qu'ils sont indépendants, ce qui donne la courbe et les points suivants :

$$y^{2} - \frac{2399}{11^{2}} xy + \frac{2^{3}3^{4}5^{2}7}{11^{3}} y = x^{3} + \frac{2^{3}3^{4}5^{2}7}{11^{3}} x^{2},$$

$$P_{6} = \left(\frac{2 \cdot 3 \cdot 7}{11}, -\frac{2^{2}3^{2}7^{2}31}{11^{3}}\right),$$

$$P_{8} = \left(\frac{2^{3}3 \cdot 5^{2}}{11^{2}}, \frac{2^{6}3^{2}5^{3}}{11^{3}}\right),$$

$$P_{5} = \left(\frac{2 \cdot 3 \cdot 5^{2}7}{11^{2}}, \frac{2 \cdot 3 \cdot 5^{4}7^{2}}{11^{3}}\right).$$

3) La courbe elliptique de rang 3 de plus petit conducteur est sans doute obtenue avec d=21/40 (voir [2]); son équation est

$$y^{2} + \frac{1999}{2^{6}5^{2}}xy + \frac{3^{2}7^{2}19}{2^{9}5^{3}}y = x^{3} + \frac{3^{2}7^{2}19}{2^{9}5^{3}}x^{2}$$

et son conducteur vaut $2\cdot 3\cdot 5\cdot 7\cdot 19\cdot 239\cdot 419.$ Elle possède les points rationnels indépendants

$$P_{1} = \left(-\frac{3^{2}7 \cdot 19}{2^{6}5^{3}}, \frac{3^{4}7^{2}19}{2^{9}5^{5}}\right),$$

$$P_{2} = \left(-\frac{3 \cdot 7^{2}}{2^{3}5^{3}}, \frac{3 \cdot 7^{4}}{2^{8}5^{4}}\right),$$

$$P_{3} = \left(-\frac{3^{3}19}{2^{7}5^{2}}, \frac{3^{6}19}{2^{13}5^{3}}\right).$$

Les deux premiers points correspondent à

$$\frac{21}{40} = d_4(-6)$$
 et $\frac{21}{40} = \frac{d_1(1/8) - 1}{d_1(1/8)}$.

Le troisième point ne provient pas d'une famille d_n rencontrée dans nos calculs.

REMARQUE 8. Les calculs de rang ont été faits avec Maple et Apecs, Pari et mwrank (J. Cremona).

142 O. Lecacheux

Références

- [1] A. O. L. Atkin and F. Morain, Finding suitable curves for the elliptic curve method of factorization, Math. Comput. 60 (1993), 399–405.
- [2] J. Buddenhagen, communication personnelle.
- [3] A. Dujella, http://www.math.hr/~duje/tors/tors.html.
- [4] L. Kulesz, Arithmétique des courbes algébriques de genre au moins deux, thèse de doctorat, Univ. Paris 7, 1998.
- [5] T. Shioda, On the Mordell-Weil lattices, Comment. Math. Univ. St. Paul. 39 (1990), 211–240.
- [6] J. Silverman, Heights and specialization map for families of abelian varieties, J. Reine Angew. Math. 342 (1983), 555–565.
- [7] J. Stienstra and F. Beukers, On the Picard–Fuchs equation and the formal Brauer group of certain elliptic K3-surfaces, Math. Ann. 271 (1985), 269–304.

Institut de Mathématiques Université Paris VI 175 rue du Chevaleret Paris 75013, France

E-mail: lecacheu@math.jussieu.fr

Reçu le 16.5.2001 et révisé le 26.8.2002 (4031)