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On the solutions of certain diagonal quadratic equations
and Lang’s conjecture

by

HI1ZURU YAMAGISHI (Saitama)

1. Introduction. In this paper, we consider rational solutions of two
types of systems of diagonal quadratic equations. First, we describe our
motivation for concerning them. The following is Biichi’s problem.

PROBLEM 1.1. Does there exist an algorithm to determine, given m,n
€N, A= (aij)ij € Mmn(Z), and b € Z™, whether there exist x1, ... ,z, € Z
satisfying the equations

n

2 .
g aijr; =bj, i=1,...,m?7
i=1

When Problem 1.1 is solved negatively, we immediately have a nega-
tive solution to Hilbert’s tenth problem. On the other hand, Matiyasevich’s
work implies a negative answer to Problem 1.1 if we have a solution of the
following n square problem (see [1]).

PROBLEM 1.2 (n square problem). There ezists a positive integer n such
that the set of integral solutions of

a7 =22t +ah, =2, i=1,...,n—2,
coincides with the set of integral solutions of
(—D)%zy = (=1)%x; — (i—1), i=2,3,...,n,
where €1,9,...,e,, =0 or 1.

In [1], Paul Vojta showed that the following Conjecture 1.3 on rational
points on surfaces of general type implies a solution of the n square problem.

CONJECTURE 1.3. Let X be a nonsingular projective algebraic variety
of general type, defined over a number field k. Then there exists a proper
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Zariski-closed subset Z of X such that for all number fields K containing k,
X(K)\Z(K) is finite.

On the other hand, we showed in [3] that construction of elliptic curves
whose Mordell-Weil rank is at least a given positive integer is reduced to
finding rational points on certain varieties, and in [2] that Conjecture 1.3
implies the boundedness of Mordell-Weil ranks of a certain family of elliptic
curves by connecting a part of results in [1] to the rank problem for elliptic
curves. In order to show the latter, we generalized the algebraic varieties
in [1]. By using this result and generalizing an argument in [1], we now
show that there exist no nontrivial solutions of certain types of systems of
equations.

In Sections 2 and 3, we describe our systems of equations and the theorem
related to their solutions.

2. Certain systems of Diophantine equations. Let k£ be a number
field. Let {c;} (i =0,1,2,...) be an infinite sequence of elements of k. Let
d(i,j) = a; — aj for any pair (4,7), and d; = d(;41 ;). We assume that

(i) ai # oy (if @ # j),
(ii) Qp = 0,
(iii) the sequence {d;} is cyclic with period m > 1.
Let X,, € P" be a variety defined by the equations
(1) diq1a} — dpoi@ipg + divyy = didisrdyo g, i=1,...,n—2,

and let L,, be the union of 2" lines (called trivial lines) defined by the equa-
tions

(2)  (=D%21=(-1)%x; —dgnro, =2,...,m, €1,...,ep=0o0r L
Note that L,, C X,,. For (1) is expressed as

0 1 1 1

0 o o o
(3) oo TR g, i=1,...,n—2
I of ofyy o

2 .2 2 2
Ty Ty Tip1 Tigo

(expand along the last row), and points on (2) are expressed as
B fro=s a=Ca

(_1)62‘{“ =t+d(i71)8, 1=2,3,...,1n,
where (s,t) € P'. Now z7 = (t+d(; 1ys)? = (soq —t)* —2s(a1s — t)oy + 520
(i=1,...,n). Substitute (4) for z; in (3), and add —(sa; — t)? x (the first
row), 2s(as —t) x (the second row), and —s? x (the third row) to the fourth
row. Then the determinant is 0.
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THEOREM 2.1. If there exists an integer ng > 8 such that Conjecture 1.3
holds for Xy,,(k), then there exists an integer n > ng such that the set of
rational points on X,, coincides with the set of rational points on L,,.

REMARK 2.2. The main theorem (Theorem 0.5) of [1] concerns the case
oy = 1.

Proof of Theorem 2.1. Let g; (i = 1,...,n — 2) be the left hand side of
(3). Put a; = 1/B;, x =Yi/B;i (i=1,...,n), Bo = o, o = Yo. Then (3)
becomes

1 1 1 1

Bo Bi Biv1 Bit2

(5) =0, i=1,...,n—2.
By B Bl B
Y§ VP YA, Vi,

By an argument similar to that in [2], we see that for integers n > 8, the
only curves on X,, of genus 0 or 1 are the 2" lines defined by (2).

Next, let ng > 8 be an integer such that Conjecture 1.3 holds for X, (k).
Then the number mg of rational points on X,,, — Ly, is finite. Let i be the
remainder of an integer ¢ modulo m. Then d; = ;41 — «; for any @ by
assumption (iii). We show that all k-rational points on X, 4mem are on a
trivial line or zg = 0. Note that if i — j = 0 then the equations ¢g; = 0 and
g; = 0 are the same equations.

For any i with 0 < i < myg, the projection map @; : Protmom _, Ppro
defined by

(0, T1, %2, . - - s Tngtmom) — (20, T1tim, L24ims - - - » Tno-+im)

(¢t = 0,1,...,mp) restricts to a morphism ¢; : Xy4mem — Xn,. Let
X, zo=0 = {(zi) € Xyy; 20 = 0}. Then one can check that

¢i_1(Lno) C Lng—l—mgmv ¢Z‘_1(Xno,:c0:0) C ‘Xvno—l—mom7 zo=0-

Let W,, = X;, — LU X, go=0. Then it follows that ¢;(Whygtmom) C Wa,. We
show that Wi, +mem (k) = 0. Suppose, on the contrary, that Wi, +mem (k) # 0
and let P = (0,21, ., Tngtmem) € Whot+mom (k). We will show that the
mo + 1 points ¢;(P) (i =0,1,...,mg) are all distinct. This contradicts the
assumption on mg. Suppose that there exist integers u,v (0 < u < v < myg)
such that ¢, (P) = ¢,(P). Then

2 .2 2 .2
L1tum = L14+vm and Lotum = L24+vm:

Since the coefficients of gy, and g, coincide, these equalities imply z2, =

x2,.. This in turn implies z2 = 22, ;. Hence by downward induction

um—1 —
we see that
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2 2
Ty = Ti41,
2 2
Lo = L1492,

where [ = (v —u)m. Then

92‘(3707371’7%‘—1—17551‘-}—2) 207 Z':]-7"’7l_27
gl—l(aj()?xl—lvxlvxl) - 07
gl(x07$l’x17$2) =0.

Dividing both sides of g; = 0 (i = 1,...,1) by did;+123, and letting y; =

(w;/w0)? (i = 1,...,1), we obtain a system of linear equations in y1,. ..,
of the form
(6) Ay=0b, y="(1,-.-,m), b="(b,..., ),
where A = (ai,j)lgz‘,jgl with
1 d(i+2,1) 1
= Qi = — 2 ir2 = i=1,....01-2
;5 di’ Qg 541 didi_t,-l y o (42 di+1 y 0 ) ) )
. L 1 . d(+1,-1)
1-11= 75 Q-11-1= 35—, Q-1]=——F7—F—
dy di—1 di—1dy
d(i42,) 1 1
a1 =

- ; a2 = ) apl = —,
dyd;yq dit1 d

a;; = 0 for other i, j,
bi:d(i+2,i)7 Z:17,l
Since the sum of the columns of A is the 0-vector, the rank of A is less

than . Let C be the matrix obtained from A by replacing the Ith column
by b, that is,

£ “den L g . 0 0 0 d(s1)

o ER a0 00w

0 0 0 0 T (Z(Ll:;jl:? s d(i-1,1-3)

0 0 0 0 ... 0 B - P

3 0 0 0 ... 0 0 = dayi-
o T 0 0 ... © 0 0 d(i42,0)

We compute the determinant of C'. We add the first, second, ..., and (I—1)th
row to the lth row. Noting that

dit1=di,  dayin) =dayo2),
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we find that the [th row is
(O, 07 “ e 7O7 2d(l+1’1))

Expanding the determinant of C' along the [th column, we find that it is
2d(141,1) times

1 d(3,1) 1
- i & 0 0 0 0
1 da2) 1
0 s bhdy & 0 0 0
1 da_1,-3) 1
0 0 0 U di—3 di_3d;_2 di_2
1 _ dai-2
0 0 0 0o ... 0 A Y
1 1
a 0 0 0o ... 0 0 a

Expanding this along the first column, we see that

1 1
Cl=2d — + —1l—Dl—2>
01 = 2y (g + (-1 DAL =2)

where D(l — 2) is the determinant

d
_ 961 1
aids 5 0o ... 0 0 0
1 daz) 1
do daods ds 0 0 0
1 _da—1,1-3) 1
0 0 0 ... di—3 di—3di—2 di—2
1 _ dai-2)
0 0 0 0 di—2 di_2d;—1
1 1
T 7 0 0 0
1 1 1 1
7 %G & 0 0 0
1 1 _1
0 0 0 ... di_3 di_3 di_2 di_2
1 1 1
0 0 0 0 T T do

(Note that d(;;2,;) = d;+di+1 for any i.) This determinant can be simplified
as follows.

LEMMA 2.3. gt d J
+do+ ...+ diy1
D(l) = (-1)! =
== dids ... dpi1
Proof. We prove this by induction. If [ = 1, then
1 1 dy + do
DlH)y=—-————=——"—=.
( ) di do d1d2

Assume that the lemma holds for [ — 1 > 1. Then
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1
LT % @ 0
1 11 1 0
da dy d3 d3
D(I) = |+
0 111 1
odi di—1 d d
1 1 1
0 0 0 0 4 4T
Add the first, second, ..., (I — 1)th column to the [th column of M(I) to
obtain
1 1 1 1
BT R 0 0 X2
1 1 11
& @ & 0 0 0
D(I) = [ o vvreeee
1 1 1
0 0 0 ... IS TdS T a@ 0
1 1
0 0 0 ... 0 L —
Expanding along the [th column yields
1 1
D(l) = (-1)" ~ D(l-1
1 di+de+...+d
— () — (- 2 T T
dyds ... d; didgy . ..dj11

(by induction assumption)

1)ld1+d2+"'+dl+l
- . n

= dids ... di
By Lemma 2.3, it follows that
1 1 - dn)
Cl=2d — (D)= (-
’ ‘ (+1,1) <d1d2 oodiq ( ) d; ( ) dids ...dj_1
di+dgy 2d3, ) 4

— 2d = 0
LD didy . dyy didy .. dj 7

Hence the rank of C is [. So rank(A) < rank(C), which implies that there
exist no solutions of (6). Therefore ¢;(P) # ¢j(P) (i # j). m

3. Other systems of Diophantine equations. In this section, we
consider another kind of systems of Diophantine equations. Notation is the
same as in Section 2, i.e. k is a number field, d(; j) = a; — a; for any pair
(4,7), and d; = d(j41,). Let {a;} (i = 0,1,2,...) be an infinite sequence of
elements of £ such that

(i) o # oy (if @ # j),
(i) ag = 1,
(iii) the sequence {a;+1/a;} is cyclic with period m > 1.
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Let X, be a variety defined by the equations
(7)  Qit1ipadip1a? — aiai+2d(i+2,i)x%+1 + iis1diat, o = didi+1d(i+2,i)x(2)v
1=1,...,n—2,

and L, be the union of 2" lines (called trivial lines) defined by the equa-
tions

(8) (_1)81aix1 - (_l)gialxi - d(i,l)':UO’ 1= 27 37 o n,
€1,€2,...,6n,b =0 or 1.
THEOREM 3.1. If there exists an integer ng > 8 such that Conjecture 1.3

holds for Xy,,(k), then there exists an integer n > ng such that the set of
rational points on X,, coincides with the set of rational points on L.

Proof. Note that (7) is expressed as

1 1 1 1

9) 0 GiotR YRRl i=1,...,n—2

0 af oy aj,

ag  x} xz2+1 5U12+2
(expand along the last row). Let g; (i = 1,...,n — 2) be the left hand side
of (9). Notation being as in the proof of Theorem 2.1, suppose that there
exists a P = (20, %1, -, Tno+mom) € Wno+mom (k). We show that the mo+1
points ¢;(P) are all distinct. By an argument similar to that in the proof of

Theorem 2.1, we obtain again the equations
9i(x0, Tiy Tig1, Tivo) =0, i=1,...,1—2
(10) gi—1(wo, T1—1, 21, 1) = 0,
9i(z0, 21, 21, 72) = 0.

Dividing the both sides of g; = 0 (i = 1,...,1) by a;t1q;1223, and let-

ting y; = (x;/20)% (i = 1,...,1), we obtain a system of linear equations in
Y1, ...,y of the form
(11) Ay:b, y:t(yl,...,yl), b:t(bl,...,bl),

where A = (aid')lgingl with

d(it2,)0 dicy;

a;; = diy1, ai,i—&-l:_Tla Giit2 = — > i=1,...,1-2
it it
di—10q_1 d(41,-1)-1
W11 = ———— @111 = dy, ai_1;= S —
I+1 !
d(42,1)0 dyoy
g =———"—-—, aq2=—"1, a; =d}1,

041 ' 042
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a;; = 0 for other i, j,

b — didit1d(i12,)

()

i=1,...,1.
Q10642

We compute the determinant of A. Factoring the common factor «; out of
the 7th row, we have

Al =a1...q

da . d(3,1) di
o Ty as 0o ... 0 0 0
ds _d2y do
0 o o e 0 0 0
X dl—l d(l,l72) dl_g

0 0 0 0 a—2 Q-1 o
dj_1 d; A1)
apy1 0 0 0 0 a1 )
dat2,0) d; i1
o s 0 o ... 0 0 )

Factoring the common factor 1/c; out of the ith column shows that |A|
equals

do —d(3,1) dq 0 ... 0 0 0
0 ds —dug) d2 ... 0 0 0
0 0 0 0 ... di1 —dgi-9 di_o
di—1a
dites 0 0O 0 ... 0 d; —ds1o1)
_day2nm dion
o Olll-é 0 0 ... 0 0 dis1
Noting that ﬁ = ﬁ (: o%)’ and letting r be this value, we add the first,
second, ..., and (I — 1)th column to the Ith column to find that
do —d@izy  d 0 ... 0 0 0
0 d3  —dug d2 ... 0 0 0
Al = 0 0 0 0 ... diy —dgyog 0
dl_l’l" 0 0 0 ... 0 dl dl_l(’l“ — 1)
—dqyoyr  dir 0 0 0 0 —dpy1(r—1)
dy  —dgy di 0 0 0 0
0 dy  —dyy do 0 0 0
=(-1 0 0 0 0 diy —dg_g O
dl_17’ 0 0 0 ... 0 dl dl—l
_d(l+2,l)r dﬂ“ 0 0 0 0 —dl+1
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Adding the [th column x (—r) to the first column shows that

d2 _d(371) d1 0 0 0 0
0 ds  —dug da 0 0 0
A= (=1 0 0 0 dy —dgs 0
0 0 0 0 0 d; di_1
—dﬂ‘ dl’l“ 0 0 0 0 _dl—i-l
dy  —dy dy 0 0 0 0
O d3 —d(4’2) d2 0 0 0
=Dy 0 0 di-y —dgy s O
0 0 0 0 ... 0 d; d_;
—dr 0 0 0 ... 0 0 —dy41

(add the first column to the second).
We similarly repeat adding the ith column (i =
(¢ + 1)th column to obtain

dy —di 0 0 0 0 0
0 di —dy 0 0 0 0
[Al==D1"0 0 g g Ay —do 0
0 0 0 0 ... 0 d  d
—dﬂ“ 0 0 0 ... 0 0 _dl+1

Expanding along the first column gives
|A] = (r — 1)(=da...dpe1 + (=1) (=dpr)(—1)d; ..
=(r—1)dy...d(—d41 + dyr)
= (T — 1)d2 ce dl(—dl/T + dlr)
=dy...dj(r —1)*(r+1)/r.

Since af = ag # ag = 1, we have oy # £1. So |A| # 0. Therefore (11) has
unique solution. On the other hand,

di—1)

Yy :t(ylvaa"'vyl) :t(lala"'al)
is a solution of (11). Therefore the solutions of (10) are

(zo,21,...,2) = (1,41, £1,...,+1),

and hence
(J}Q, Tl4+imy - - - ,xn0+im) = (1, :|:1, :f:l, ey :f:l).

Because every point of these is on L,,, it cannot be equal to ¢;(P). Therefore

¢i(P) # ¢ (P) (i # j). =
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