The diophantine equation $x^{2}+C=y^{n}$, II

by
J. H. E. Cohn (London)

The problem is for given C to determine possible solutions in positive integers x, y and $n \geq 3$. As in the first paper in the series [2], it suffices to consider only odd prime values of n, say p. Much of the previous paper was concerned with the question of determining possible solutions of the equation

$$
\begin{equation*}
\pm 1=\sum_{r=0}^{(p-1) / 2}\binom{p}{2 r+1} a^{p-2 r-1}(-C)^{r} \tag{A}
\end{equation*}
$$

As a result of the ground-breaking [1], this is now easily treated, for it is equivalent to

$$
\pm 1=\frac{\alpha^{p}-\beta^{p}}{\alpha-\beta} \quad \text { where } \alpha, \beta=a \pm \sqrt{-C}
$$

and it then follows that there are no solutions for any $p>5$. This removes the need for most of the third section of [2] except for Lemma 7, and enables Theorem 1 to be improved to

Theorem. Let $C>0, C=c d^{2}$, c square-free, $c \not \equiv 7(\bmod 8)$ and h be the class number of the field $\mathbb{Q}[\sqrt{-c}]$. Then a solution of the equation of the title in coprime positive integers x and y can exist only in the following cases:
(a) there exist integers a and b with $b \mid d$ and $b \neq \pm d$ such that $y=a^{2}+b^{2} c$ and $\pm x+d \sqrt{-c}=(a+b \sqrt{-c})^{p}$; or
(b) $c \equiv 3(\bmod 8), p=3$ and there exist odd integers A and B with $B \mid d$ such that $y=\frac{1}{4}\left(A^{2}+B^{2} c\right)$ and $\pm x+d \sqrt{-c}=\frac{1}{8}(A+B \sqrt{-c})^{p}$; or
(c) $p \mid h$; or
(d) $p=3$ if $C=3 a^{2} \pm 8$ with $x=a^{3} \pm 3 a$ or if $C=3 a^{2} \pm 1$ with $x=8 a^{2} \pm 3 a ;$ or
(e) $p=5$ if $C=19$ with $x=22434$ or if $C=341$ with $x=2759646$.

[^0]Secondly, two problems left open in [2], viz. the cases $C=74$ and 86 with $p=5$, have been completely solved in [3].

Finally, we note that we are unaware of any progress in dealing with the very difficult problems in which the principal ideals generated by $x \pm d \sqrt{-c}$ may have common factors, in particular for the values $C=7$ or 25 .

References

[1] Yu. Bilu, G. Hanrot and P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers, J. Reine Angew. Math. 539 (2001), 75-122.
[2] J. H. E. Cohn, The diophantine equation $x^{2}+C=y^{n}$, Acta Arith. 65 (1993), 367-381.
[3] M. Mignotte and B. M. M. de Weger, On the diophantine equations $x^{2}+74=y^{5}$ and $x^{2}+86=y^{5}$, Glasgow Math. J. 38 (1996), 77-85.

23, Highfield Gardens
London NW11 9HD, U.K.
E-mail: J.Cohn@rhul.ac.uk

[^0]: 2000 Mathematics Subject Classification: Primary 11D61.

