Indivisibility of special values of Dedekind zeta functions of real quadratic fields

by

DONGHO BYEON (Seoul)

1. Introduction and statement of results. For a number field k and a prime number p, we denote by h(k) the class number of k and by $\lambda_p(k)$, $\mu_p(k)$ the Iwasawa λ -, μ -invariants of the cyclotomic \mathbb{Z}_p -extension of k, where \mathbb{Z}_p is the ring of p-adic integers.

Let p be an odd prime number. Hartung [3] proved, using the Kronecker class number relation for quadratic forms, that there exist infinitely many imaginary quadratic fields k whose class numbers are not divisible by p.

Later, using the idea of Hartung and Eichler's trace formula combined with the *p*-adic Galois representation attached to the Jacobian varieties of certain modular curves, Horie [4] proved that there exist infinitely many imaginary quadratic fields k such that p does not split in k and p does not divide h(k). Thus from a theorem of Iwasawa [7], there exist infinitely many imaginary quadratic fields k with $\lambda_p(k) = \mu_p(k) = 0$.

Let F be a totally real number field. For a prime number p, we denote by n(p) the maximum value of n such that the primitive p^n th roots ζ_{p^n} of unity are at most of degree 2 over F. If F is fixed, we have n(p) = 0 for all but finitely many p. Thus we can put $\omega_F = 2^{n(2)+1} \prod_{p \neq 2} p^{n(p)}$. Let $\zeta_F(s)$ be the Dedekind zeta function of F. Serre [11] proved that $\omega_F \zeta_F(-1)$ is a rational integer. Let K be a totally imaginary quadratic extension over F. Define

$$\lambda_p^-(K) := \lambda_p(K) - \lambda_p(F), \quad \mu_p^-(K) := \mu_p(K) - \mu_p(F).$$

Using a result of Shimizu about the trace formula of Hecke operators and a result of Ohta about the *p*-adic representation of the absolute Galois group over F related to automorphic forms, Naito [8], [9] generalized the above results of Hartung and Horie to the case of totally imaginary quadratic extensions over a totally real number field and obtained the following theorem.

²⁰⁰⁰ Mathematics Subject Classification: 11R16, 11R23, 11R29.

This work was supported by a new faculty grant from the Seoul National University in 2002 and KOSEF Research Fund (01-0701-01-5-2).

D. Byeon

THEOREM (Naito). Let F be a totally real number field. Let p be an odd prime number which does not divide $\omega_F \zeta_F(-1)$. Then there exist infinitely many totally imaginary quadratic extensions K over F such that the relative class number of K is not divisible by p and no prime ideal of F over p splits in K, that is, $\lambda_p^-(K) = \mu_p^-(K) = 0$.

Thus it would be interesting to know when or how often p does not divide $\omega_F \zeta_F(-1)$. In this direction, in this note we will show the following theorem.

THEOREM 1. Let p be an odd prime number. Then there exist infinitely many positive fundamental discriminants D > 0 such that p does not divide $\omega_{\mathbb{Q}(\sqrt{D})}\zeta_{\mathbb{Q}(\sqrt{D})}(-1)$.

Then, from the above theorem of Naito, we immediately have the following theorem.

THEOREM 2. Let p be an odd prime number. Then there exist infinitely many positive fundamental discriminants D > 0 such that the real quadratic field $\mathbb{Q}(\sqrt{D})$ has infinitely many totally imaginary quadratic extensions K such that $\lambda_p^-(K) = \mu_p^-(K) = 0$.

2. Proof of Theorem 1. Let D be the fundamental discriminant of a quadratic number field and $\chi_D := \left(\frac{D}{\cdot}\right)$ the usual Kronecker character. Let $M_k(\Gamma_0(N), \chi)$ denote the space of modular forms of weight k on $\Gamma_0(N)$ with character χ . Let r and N be nonnegative integers with $r \ge 2$. If $N \not\equiv 0, 1 \pmod{4}$, then let H(r, N) = 0. If N = 0, then let $H(r, 0) := \zeta(1 - 2r)$. If $Dn^2 = (-1)^r N$, then

$$H(r,N) := L(1-r,\chi_D) \sum_{d|n} \mu(d)\chi_D(d) d^{r-1} \sigma_{2r-1}(n/d),$$

where $\sigma_{\nu}(n) := \sum_{d|n} d^{\nu}$. Cohen [1] proved the following proposition.

PROPOSITION (Cohen). Let $D \equiv 0$ or 1 (mod 4) be an integer such that $(-1)^{r-1}D = |D|$. Then for $r \geq 2$,

$$\sum_{N\geq 0} \left(\sum_{\substack{|s|\leq \sqrt{4N}\\s^2\equiv 4N \pmod{D}}} H\left(r, \frac{4N-s^2}{|D|}\right) \right) q^N \in M_{r+1}(\Gamma_0(D), \chi_D),$$

where $q := e^{2\pi i z}$.

Applying this proposition to the case r = 2, Cohen also obtained the following Kronecker–Hurwitz type formula for H(2, N):

(1)
$$-30\sum_{|s| \le \sqrt{N}} H(2, N - s^2) = \sum_{d|N} (d^2 + (N/d)^2) \left(\frac{-4}{d}\right).$$

LEMMA. Let D > 0 be a positive fundamental discriminant. Then

$$\omega_{\mathbb{Q}(\sqrt{D})} = \begin{cases} 2^3 \cdot 3 & \text{if } D \neq 5, \\ 2^3 \cdot 3 \cdot 5 & \text{if } D = 5. \end{cases}$$

For an odd prime number $p \neq 3$, we can choose *l* to satisfy the following:

(i) l is an odd prime number,

(ii) $l \equiv 3 \pmod{4}$,

(iii) $l^2 \not\equiv 1 \pmod{p}$,

(iv) $\left(\frac{l}{q}\right) = -1$ for all odd prime numbers q with $3 \le q \le X$, where X > 5 is an arbitrarily large number.

Then from (1) and (i), (ii), we have

$$\sum_{|s| \le \sqrt{4l}} (-2H(2,4l-s^2)) = l^2 - 1.$$

From (ii), (iv), for $|s| \leq \sqrt{4l}$, we have

$$4l - s^2 = D_{l,s}n^2,$$

where $D_{l,s} > X > 5$ is a positive fundamental discriminant.

From the above lemma, for $|s| \leq \sqrt{4l}$, we have

$$-2H(2,4l-s^{2}) = \omega_{\mathbb{Q}(\sqrt{D_{l,s}})}\zeta_{\mathbb{Q}}(-1)H(2,4l-s^{2})$$

= $\omega_{\mathbb{Q}(\sqrt{D_{l,s}})}\zeta_{\mathbb{Q}}(-1)L(-1,\chi_{D_{l,s}})\sum_{d|n}\mu(d)\chi_{D_{l,s}}(d)d\sigma_{3}(n/d)$
= $\omega_{\mathbb{Q}(\sqrt{D_{l,s}})}\zeta_{\mathbb{Q}(\sqrt{D_{l,s}})}(-1)\sum_{d|n}\mu(d)\chi_{D_{l,s}}(d)d\sigma_{3}(n/d) \in \mathbb{Z}.$

Finally from (iii), we see that there exist s such that $|s| \leq \sqrt{4l}$ and

$$-2H(2,4l-s^2) \not\equiv 0 \pmod{p}, \quad \text{i.e.,} \quad \omega_{\mathbb{Q}(\sqrt{D_{l,s}})}\zeta_{\mathbb{Q}(\sqrt{D_{l,s}})}(-1) \not\equiv 0 \pmod{p}.$$

Since $D_{l,s} > X$ and X is arbitrarily large, for an odd prime number $p \neq 3$, there exist infinitely many positive fundamental discriminants D satisfying $p \nmid \omega_{\mathbb{Q}(\sqrt{D})} \zeta_{\mathbb{Q}(\sqrt{D})}(-1)$.

For the case of p = 3, we cannot choose l satisfying the above (iii). However we can choose u, v to satisfy the following:

- (i) u, v are odd prime numbers,
- (ii) $u \equiv 1 \pmod{4}$ and $v \equiv 3 \pmod{4}$,
- (iii) $u^2 v^2 \not\equiv -1 \pmod{3}$,

(iv) $\left(\frac{uv}{q}\right) = -1$ for all odd prime numbers q with $3 \le q \le X$, where X > 5 is an arbitrarily large number.

Then by the same method we can easily show that there exist s such that $|s| \leq \sqrt{4uv}$ and $-2H(2, 4uv - s^2) \neq 0 \pmod{3}$ and there exist infinitely many positive fundamental discriminants D satisfying $3 \nmid \omega_{\mathbb{Q}(\sqrt{D})} \zeta_{\mathbb{Q}(\sqrt{D})}(-1)$.

3. Remarks. For the case p = 3 or 5, by a different method, we can obtain stronger results. From the construction of the Kubota–Leopoldt *p*-adic *L*-function $L_p(s, \chi_D)$, the Kummer congruence and the *p*-adic class number formula, we have the following two congruence relations for $\omega_{\mathbb{Q}(\sqrt{D})}\zeta_{\mathbb{Q}(\sqrt{D})}(-1)$, when $D \neq 5$:

$$\begin{array}{ll} (2) & \omega_{\mathbb{Q}(\sqrt{D})}\zeta_{\mathbb{Q}(\sqrt{D})}(-1) = -2L(-1,\chi_D) \\ & \equiv -2L_3(-1,\chi_D) \ (\mathrm{mod}\,3) \\ & \equiv -2L_3(1,\chi_D) \ (\mathrm{mod}\,3) \\ & \equiv -\frac{4h(\mathbb{Q}(\sqrt{D}))R_3(\mathbb{Q}(\sqrt{D}))}{\sqrt{D}} \left(1 - \frac{\chi_D(3)}{3}\right) \ (\mathrm{mod}\,3), \\ (3) & \omega_{\mathbb{Q}(\sqrt{D})}\zeta_{\mathbb{Q}(\sqrt{D})}(-1) = -2L(-1,\chi_D) \\ & \equiv -2L_5(-1,\chi_{5D}) \ (\mathrm{mod}\,5) \\ & \equiv -2L_5(1,\chi_{5D}) \ (\mathrm{mod}\,5) \\ & \equiv -\frac{4h(\mathbb{Q}(\sqrt{5D}))R_5(\mathbb{Q}(\sqrt{5D}))}{\sqrt{5D}} \ (\mathrm{mod}\,5). \end{array}$$

Thus from (2) and a theorem of Davenport and Heilbronn [2], as refined by Horie and Nakagawa [6], we know that a positive proportion of positive fundamental discriminants D > 0 satisfy $3 \nmid \omega_{\mathbb{Q}(\sqrt{D})} \zeta_{\mathbb{Q}(\sqrt{D})}(-1)$ and from (3) and a result of Ono [10], we have

$$\sharp \{ 0 < D < X \mid 5 \nmid \omega_{\mathbb{Q}(\sqrt{D})} \zeta_{\mathbb{Q}(\sqrt{D})}(-1) \} \gg \sqrt{X/\log X}.$$

Finally, we mention that Horie and Kimura [5] recently showed that there always exist infinitely many totally imaginary quadratic extensions K over a totally real number field F such that $\lambda_3^-(K) = \mu_3^-(K) = 0$ whether $\omega_F \zeta_F(-1)$ is divisible by 3 or not.

References

- H. Cohen, Sums involving the values at negative integers of L-functions of quadratic characters, Math. Ann. 217 (1975), 271–285.
- H. Davenport and H. Heilbronn, On the density of discriminants of cubic fields II, Proc. Roy. Soc. London Ser. A 322 (1971), 405–420.
- [3] P. Hartung, Proof of the existence of infinitely many imaginary quadratic fields whose class number is not divisible by 3, J. Number Theory 6 (1974), 276–278.
- [4] K. Horie, A note on basic Iwasawa λ-invariants of imaginary quadratic fields, Invent. Math. 88 (1987), 31–38.

- [5] K. Horie and I. Kimura, On quadratic extensions of number fields and Iwasawa invariants for basic Z₃-extensions, J. Math. Soc. Japan 51 (1999), 387–402.
- [6] K. Horie and J. Nakagawa, *Elliptic curves with no rational points*, Proc. Amer. Math. Soc. 104 (1988), 20–24.
- K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg 20 (1956), 257–258.
- [8] H. Naito, Indivisibility of class numbers of totally imaginary quadratic extensions and their Iwasawa invariants, J. Math. Soc. Japan 43 (1991), 185–194.
- [9] —, Erratum to "Indivisibility of class numbers of totally imaginary quadratic extensions and their Iwasawa invariants", ibid. 46 (1994), 725–726.
- [10] K. Ono, Indivisibility of class numbers of real quadratic fields, Compositio Math. 119 (1999), 1–11.
- [11] J. P. Serre, Cohomologie des groupes discrets, in: Prospects in Mathematics, Ann. of Math. Stud. 70, Princeton Univ. Press, Princeton, NJ, 1971, 77–170.

School of Mathematical Sciences Seoul National University Seoul 151-747, South Korea E-mail: dhbyeon@math.snu.ac.kr

> Received on 5.2.2002 and in revised form on 14.10.2002 (4210)