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1. Introduction. Let k be an algebraically closed field of characteristic
p ≥ 0, complete with respect to a non-archimedean absolute value. Let
M∗(k) be the set of non-constant meromorphic functions defined on k and
F be a non-empty subset of M∗(k). For f ∈ F and a set S in the range of
f define

E(f, S) =
⋃

a∈S
{(z,m) ∈ k× Z+ : f(z) = a with multiplicity m}.

Two functions f and g of F are said to share S, counting multiplicity, if
E(f, S) = E(g, S). A set S is called a unique range set, counting multiplicity,
for F , if the condition E(f, S) = E(g, S) for f, g ∈ F implies that f ≡ g.
A polynomial P defined over k is called a uniqueness polynomial for F if
the condition P (f) = P (g) for f, g ∈ F implies that f ≡ g; P is called a
strong uniqueness polynomial if the condition P (f) = cP (g) for f, g ∈ F
and some non-zero constant c implies that c = 1 and f ≡ g. The following
properties are immediate consequences of the definitions:

(P1) If F ⊂ F ′ ⊂ M∗(k) then a finite set S in k being a unique range
set for F ′ implies that it is also a unique range set for F .

(P2) If F ⊂ F ′ ⊂ M∗(k) then a polynomial P being a (strong) unique-
ness polynomial for F ′ implies that it is also a (strong) uniqueness polyno-
mial for F .

In studying unique range sets for A∗(k) = non-constant entire functions
defined over k, one is naturally led to the following polynomial:

(1.1) PS(X) = (X − s1) . . . (X − sn)

where S = {s1, . . . , sn} is a finite subset of k. Suppose that f, g ∈ A∗(k) are
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two entire functions sharing S counting multiplicity. Then PS(f) and PS(g)
are non-archimedean entire functions with exactly the same zeros count-
ing multiplicity. This implies that PS(f)/PS(g) is entire and non-vanishing,
hence must be a constant. This shows that:

(P3) With respect to the family of non-constant entire functions A∗(k),
a finite set S is a unique range set counting multiplicity if and only if its
associated polynomial , defined by (1.1), is a strong uniqueness polynomial.

Let S be a subset of k of finite cardinality n. If p = 0, or if p > 0 and does
not divide n, then S is a unique range set counting multiplicity for A∗(k) if
and only if S is affine rigid, i.e. the only affine transformation preserving the
set S is the identity. This result was first proved by Boutabaa, Escassut and
Haddad [4] for the case of polynomials, extended by Cherry and Yang [7]
to entire functions, in characteristic zero; and, in positive characteristic, by
Voloch (cf. the appendix in [8]). If p > 0 divides n, this geometric characteri-
zation of finite unique range sets counting multiplicity for A∗(k) is no longer
valid; counter-examples were provided in [2] and [7]. Let S = {s1, . . . , sn}
with n divisible by p. In this paper we give a complete characterization for
S to be a unique range set counting multiplicity for A∗(k) if the associated
polynomial PS satisfies one of the following two conditions:

(1) P ′S(X) = λ(X − α)m−1 6≡ 0 and the multiplicity of PS(X) at X − α
is strictly less than m which is prime to p;

(2) PS(X) is of the form (X − α)n + a(X − α)m + b where m is prime
to p.

There are several reasons to study polynomials of these two types. First
of all, we will see later that if P ′S(X) = λ(X −α)m−1, m relatively prime to
n, then the set S is affine rigid. Secondly, in [8] the second named author
has shown that when p |n, if (a) PS(X) is injective on the zeros of P ′S(X) =
λ(X − α1)m1 . . . (X − αl)ml , (b) the degree of P ′S(X) is n − 2, and (c) the
multiplicity of X − αi in P (X) − P (αi) is mi + 1, for 1 ≤ i ≤ l, then PS
is a strong uniqueness polynomial for M∗(k) if and only if l ≥ 2 and S is
affine rigid. Therefore, if one looks for a set which is affinely rigid, but not
a unique range set, it is natural to start with those S with l = 1 (note that
Example 2.2 of [2] satisfies the condition l = 1). Thirdly, when l = 1, the
injective condition on the zero of P ′S(X) always holds. Hence this is a good
example to see the impact of the conditions (b) and (c).

The main results in this paper are as follows. We always assume that k
is an algebraically closed field of characteristic p > 0, complete with respect
to a non-archimedean absolute value.

Theorem 1. Let S be a finite set in k with associated polynomial PS.
Assume that #S = n is divisible by p and P ′S(X) = γ(X − α)m−1, α ∈ k,
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where γ 6= 0, m ≥ 2 is relatively prime to n, and PS(α) 6= 0. Then S is
affine rigid.

Theorem 2. Let S be a finite subset of k with associated polynomial
PS. Assume that (i) #S = n is divisible by p, (ii) P ′S(X) = γ(X − α)m−1

where γ 6= 0 and m is relatively prime to n, (iii) PS(α) 6= 0, and (iv) the
multiplicity of X − α in PS(X) − PS(α) is strictly less than m. Then PS
is a strong uniqueness polynomial for M∗(k); in particular , S is a unique
range set for A∗(k).

The polynomial PS satisfies the conditions of Theorem 2 if and only if
#S = n is divisible by p and PS is of the form

(1.2) PS(X) =
∑

0≤i≤n
ai(X−α)ni+a(X−α)m+b, ab 6= 0, ai 6= 0, p |ni,

where m,n are relatively prime and there exists ni such that ni < m. For
example, if p = 2 then X4 + X2 + X3 + 1 satisfies all the conditions of
Theorem 2 but X4 +X2 +X+ 1 does not. Some special examples satisfying
the hypothesis of Theorem 2 were treated by various authors using the
classical genus formula. We are able to arrive at this more general form
by using a new technique which we call the Wronskian construction (see
Section 3 for details).

Theorem 3. Let S be a finite subset of k with n elements and n divis-
ible by p. Suppose that its associated polynomial is of the form

PS(X) = (X − α)n + a(X − α)m + b

where m is relatively prime to n, a 6= 0, and b 6= 0. Then:

(1) S is a unique range set for A∗(k) if and only if either

(a) n = prs, p - s, s ≥ 2 and m ≥ 1, or
(b) n = pr and 3 ≤ m ≤ n− 2.

(2) PS is a strong uniqueness polynomial for M∗(k) if and only if PS is
a uniqueness polynomial for M∗(k) if and only if either

(a) n = pr and 3 ≤ m ≤ n− 2 except m = 3 and n = 5, or
(b) n = prs, p - s, s ≥ 2 and 1 ≤ m ≤ n− 2 except m = 1 and s = 2.

Note that the polynomial in Theorem 3 satisfies all the hypothesis of
Theorem 2 but (iv).

2. Proof of Theorem 1 and some basic reductions. We have seen
that S is a unique range set counting multiplicity for A∗(k) if and only if its
associated polynomial PS is a strong uniqueness polynomial. Let P (X) be a
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monic polynomial of degree n in k[X]; we introduce the following functions:

(2.1)
{
F (X,Y ) = (P (X)− P (Y ))/(X − Y ),

Fc(X,Y ) = P (X)− cP (Y ), c 6= 0, 1 is a constant.

Denote by F (X,Y,Z) and Fc(X,Y,Z) respectively, the homogenizations of
F (X,Y ) and Fc(X,Y ).

The following fact was observed by Cherry and Yang in [7]. For the
convenience of the reader, we include their proof.

Proposition 1. (1) A polynomial P ∈ k[X] is a (strong) uniqueness
polynomial for M∗(k) if and only if it is a (strong) uniqueness polynomial
for the family of non-constant rational functions in k(t).

(2) A polynomial P ∈ k[X] is a (strong) uniqueness polynomial for A∗(k)
if and only if it is a (strong) uniqueness polynomial for the family of non-
constant polynomials k[t].

Proof. Suppose that P is not a uniqueness polynomial forM∗(k). Then
F (f, g) = 0 for some f, g ∈ M∗(k). Therefore there is an irreducible fac-
tor F0(X,Y ) of F (X,Y ) with F0(f, g) = 0. Then by Berkovich’s non-
archimedean Picard Theorem (cf. [1] and also [6] for a more elementary
proof), F0(X,Y ) = 0 is a rational curve, and it can be rationally paramet-
rized since k is algebraically closed. In other words, there exist rational func-
tions r(t), s(t), and R(X,Y ) such that t = R(X,Y ), and F0(r(t), s(t)) = 0.
This shows that P (X) is not a uniqueness polynomial for the family of
non-constant polynomials k[t]. The converse is clear.

For (2), we assume that f, g ∈ A∗(k). From the previous deduction, we
let h = R(f, g), so that f = r(h), and g = s(h). Since f and g are entire, the
non-archimedean meromorphic function h must omit the poles of r(t) and
the poles of s(t). However, a non-constant non-archimedean meromorphic
function can omit at most one point in k ∪ {∞}. Thus the r(t) has only
one pole which is also the unique pole of s(t). Therefore, after making a
projective linear change in coordinates, we can assume that this pole is ∞.
Therefore, r(t) and s(t) are polynomials. Moreover, h is entire since it omits
the pole of r(t). This shows that if P is not a uniqueness polynomial for
A∗(k), then it is not a uniqueness polynomial for the family of non-constant
polynomials k[t]. The converse is clear.

The proof for strong uniqueness is similar.

To prove that a polynomial is a strong uniqueness polynomial forM∗(k),
it suffices to show that the curves F (X,Y,Z) = 0 and Fc(X,Y,Z) = 0
have no irreducible component of genus 0. It was also observed by Cherry
and Yang in [7] that a (strong) uniqueness polynomial for the family of
polynomials over k is also a (strong) uniqueness polynomial for A∗(k).

We refer to [8] for a proof of the following result:
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Proposition 2. Let S be a finite set in k and assume that P ′S(X) is
not identically zero. Then S is affine rigid if and only if neither F (X,Y )
nor Fc(X,Y ), c 6= 0, 1, has a linear factor.

Proposition 3. Let F be a subset of M∗(k) and P (X) a polynomial.
Then

(1) if S is a finite set of k, then the zero set of PS(X) is affine rigid if
and only if the zero set of PS(aX + b), where a, b ∈ k and a 6= 0, is affine
rigid ;

(2) P (X) is a uniqueness polynomial for F if and only if aP (X) + b,
where a, b ∈ k and a 6= 0, is a uniqueness polynomial for F ;

(3) if the family F satisfies the condition that f ∈ F implies that af+b ∈
F for any a, b ∈ k, a 6= 0, then P (X) is a strong uniqueness polynomial for
F if and only if Q(X) = P (aX + b) is a strong uniqueness polynomial for
F where a, b ∈ k and a 6= 0.

Proof. Assertion (2) is clear. For (1), let S = {s1, . . . , sn}. Then

PS(aX + b) = (aX + b− s1) . . . (aX + b− sn)

= an
(
X +

b− s1

a

)
. . .

(
X +

b− sn
a

)
.

Assertion (1) follows from this and the fact that S is affine rigid if and
only if a−1(S − b) is affine rigid. For (3) it suffices to show that if P (X)
is not a strong uniqueness polynomial then neither is Q(X) = P (aX + b).
Suppose that P (f) = cP (g), c 6= 0 ∈ k, for a pair of distinct functions in
F . Let f0 = a−1(f − b) and g0 = a−1(g − b). Then f0, g0 ∈ F , f0 6= g0, and
Q(f0) = Q(g0).

Proposition 4. Let P (X) be a polynomial of degree n divisible by p
and P (0) 6= 0. Suppose that P ′(X) = γXm−1 for some m ≥ 2 relatively
prime to n where γ is a non-zero constant. Then the polynomials F (X,Y )
and Fc(X,Y ), c 6= 0, 1, have no linear factors. Equivalently , the zero set of
P (X) is affine rigid.

Proof. We first claim that if F (X,Y ) or Fc(X,Y ) has a linear factor
X−aY − b with a 6= 0, then P (aY + b) = αP (Y ) where α = 1 if X−aY − b
is a linear factor of F (X,Y ); and α = c if X − aY − b is a linear factor of
Fc(X,Y ). Indeed, F (X,Y ) = (X−aY −b)Q(X,Y ) for a polynomialQ(X,Y )
if and only if P (X)−P (Y ) = (X−Y )(X−aY −b)Q(X,Y ). For X = aY +b
the right hand side is zero and we have P (aY + b) = P (Y ) (so α = 1).
Similarly Fc(X,Y ) = (X−aY − b)R(X,Y ) for a polynomial R(X,Y ) if and
only if P (X) − cP (Y ) = (X − aY − b)R(X,Y ). For X = aY + b the right
hand side is zero and we have P (aY + b) = cP (Y ) (so α = c, recall that
c 6= 0, 1).
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On the other hand, differentiation of P (aY + b) = αP (Y ) shows that
a(aY + b)m−1 = αY m−1, hence b = 0 (by the assumption that m ≥ 2) and
am = α, i.e., P (aY ) = αP (Y ). Comparing the leading coefficients and the
constant terms of P (aY ) and αP (Y ), we see that an = α, and α = 1 since
P (0) 6= 0. Thus an = am = α = 1. But in the case of Fc(X,Y ) we have
α = c 6= 1, thus Fc(X,Y ) with c 6= 1 cannot have a linear factor X−aY − b.
Since m and n are relatively prime, the condition that an = am = α = 1
implies that a = 1. Thus

P (X)− P (Y )
X − Y = F (X,Y ) = (X − aY − b)Q(X,Y ) = (X − Y )Q(X,Y )

which implies that P ′(X) = F (X,X) ≡ 0, contradicting our assumption on
P ′(X). Thus F (X,Y ) cannot have a linear factor either.

Proof of Theorem 1. Let Q(X) = PS(X + α). Then Q(0) 6= 0 and
Q′(X) = P ′S(X + α) = γXm−1. Thus the polynomial Q satisfies the hy-
pothesis of Proposition 4, hence the zero set of Q(X) is affine rigid. By part
(1) of Proposition 3 the zero set of PS(X) is also affine rigid.

3. 1-forms of Wronskian type and the proof of Theorem 2. Con-
sider the problem of computing the genus of a curve in P2(k). The case of a
smooth curve is easily computed via the genus formula g = (q− 1)(q− 2)/2
where q is the degree of the smooth curve. Note that (q − 1)(q − 2)/2 is
the number of distinct monomials of degree q in z0, z1 and z2. There is
also a genus formula for irreducible singular curves in terms of the Milnor
number of an isolated singularity and the number of local branches at the
singular point. It is usually quite a chore to compute these invariants, and
worst of all is the condition that the curve be irreducible. For this reason
we develop a procedure of computing the genus without a priori knowledge
of irreducibility. The main idea is based on modifying the rational 1-forms

∣∣∣∣
zi zj
dzi dzj

∣∣∣∣
z2
j

=
zi
zj

∣∣∣∣
1 1
dzi
zi

dzj
zj

∣∣∣∣ = d

(
zi
zj

)
, i 6= j

(where [z0, z1, z2] are the homogeneous coordinates of P2(k)), or more gen-
erally rational 1-forms of the type

βd

(
zj
zk

)
− αd

(
zi
zk

)
=
∣∣∣∣

1 1
αd
(
zi
zk

)
βd
( zj
zk

)
∣∣∣∣ , 0 ≤ i, j, k ≤ 2, α, β ∈ k.

Any rational 1-form on P2(k) is a linear combination of these forms (over
the rational function field). We introduce formally the notion of 1-forms of
Wronskian type:
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Definition 1. Let C be a curve in P2(k). A differential 1-form ω on C
is said to be a 1-form of Wronskian type if ω = (fdg− gdf)h for some f, g,
and h in the function field of C.

We look for polynomials P such that the curves defined by F (X,Y,Z)
= 0 (resp. Fc(X,Y,Z) = 0, c 6= 0, 1) have no linear component. Then we
construct, on each of these curves, a 1-form ω of Wronskian type whose
restriction to the curve is regular. If C has a rational irreducible component
L then the pull-back of ω to L must be identically zero, as there are no
non-trivial regular 1-forms on a rational curve. The Wronskian condition
implies that if f and g are rational functions such that the image of the
map φ defined by (f, g, 1) is contained in C = F (X,Y, 1) then either f and
g are pth powers or the image of φ is contained in a line (see the proof of
Lemmas 1 and 2 below).

Let Q(X,Y,Z) be a non-trivial homogeneous polynomial in X, Y, Z and
C = [Q = 0] be the curve defined by Q. By Euler’s Theorem the condition
Q = 0 is equivalent to

(3.1) X
∂Q

∂X
(X,Y,Z) + Y

∂Q

∂Y
(X,Y,Z) + Z

∂Q

∂Z
(X,Y,Z) = 0.

The (Zariski) tangent space of C is defined by the equations Q = 0 and

(3.2)
∂Q

∂X
(X,Y,Z)dX +

∂Q

∂Y
(X,Y,Z)dY +

∂Q

∂Z
(X,Y,Z)dZ = 0.

If ∂Q
∂X (X,Y,Z) 6≡ 0, ∂Q∂Y (X,Y,Z) 6≡ 0, ∂Q∂Z (X,Y,Z) 6≡ 0, then, by Cramer’s

rule,

(3.3)

∣∣∣∣
X Y
dX dY

∣∣∣∣
∂Q
∂Z (X,Y,Z)

≡

∣∣∣∣
Y Z
dY dZ

∣∣∣∣
∂Q
∂X (X,Y,Z)

≡

∣∣∣∣
Z X
dZ dX

∣∣∣∣
∂Q
∂Y (X,Y,Z)

defines a rational 1-form of Wronskian type on π−1(C) where π : k3 \{0} →
P2(k) is the projection map. More precisely, each of the rational 1-forms

∣∣∣∣
X Y
dX dY

∣∣∣∣
∂Q
∂Z (X,Y,Z)

,

∣∣∣∣
Y Z
dY dZ

∣∣∣∣
∂Q
∂X (X,Y,Z)

,

∣∣∣∣
Z X
dZ dX

∣∣∣∣
∂Q
∂Y (X,Y,Z)

is well defined on k3 \ {0} and the identity (3.3) says that the pull-backs
of these 1-forms to π−1(C) are identical. To realize these forms defined on
k3 \ {0} as forms on P2(k) we replace the homogeneous coordinates by
inhomogeneous ones. For example,∣∣∣∣

X Y
dX dY

∣∣∣∣
∂Q
∂Z (X,Y,Z)

=
XdY − Y dX
∂Q
∂Z (X,Y,Z)

= − X2

∂Q
∂Z (X,Y,Z)

d

(
Y

X

)
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where d(Y/X) is a well defined rational 1-form on P2(k) because Y/X is a
well defined rational function on P2(k). Suppose that degQ = q ≥ 3. Then,
for any homogeneous polynomial R of degree q− 3,X2R/(∂Q/∂Z) is a well
defined rational function on P2(k), hence

R(X,Y,Z)

∣∣∣∣
X Y
dX dY

∣∣∣∣
∂Q
∂Z (X,Y,Z)

= −X
2R(X,Y,Z)
∂Q
∂Z (X,Y,Z)

d

(
Y

X

)

is a well defined rational 1-form of Wronskian type on P2(k). If degQ ≤ 3
then for any homogeneous polynomial R of degree 3− q,

1
R(X,Y,Z)

∣∣∣∣
X Y
dX dY

∣∣∣∣
∂Q
∂Z (X,Y,Z)

= − X2

R(X,Y,Z)∂Q∂Z (X,Y,Z)
d

(
Y

X

)

is a well defined rational 1-form of Wronskian type on P2(k). Suppose that
fi, 0 ≤ i ≤ 2 (at least one of them not identically zero), are non-archimedean
entire functions such that Q(f0, f1, f2) ≡ 0, i.e., the image of the map f =
[f0, f1, f2] : k→ P2(k) is contained in C. Then we have

f0
∂Q

∂X
(f0, f1, f2) + f1

∂Q

∂Y
(f0, f1, f2) + f2

∂Q

∂Z
(f0, f1, f2) = 0,

f ′0
∂Q

∂X
(f0, f1, f2) + f ′1

∂Q

∂Y
(f0, f1, f2) + f ′2

∂Q

∂Z
(f0, f1, f2) = 0.

If all three partial derivatives ∂Q
∂X (f0, f1, f2), ∂Q

∂Y (f0, f1, f2), ∂Q
∂Z (f0, f1, f2)

are not identically zero, then by Cramer’s rule, we have

(3.4)
W (f0, f1)

∂Q
∂Z (f0, f1, f2)

≡ W (f1, f2)
∂Q
∂X (f0, f1, f2)

≡ W (f2, f0)
∂Q
∂Y (f0, f1, f2)

where

W (fi, fj) :=
∣∣∣∣
fi fj
f ′i f ′j

∣∣∣∣ = fif
′
j − fjf ′i

is the Wronskian of fi and fj . The method of constructing a 1-form of
Wronskian type is particularly useful in the following situation. An entire
function is said to be a pth power if it can be represented as a convergent
power series of the form

∑
i aiX

pi, and a meromorphic function is said to
be a pth power if it is the quotient of two entire functions of pth power.

Lemma 1. Let P (X) be a polynomial of degree n divisible by p and
P (0) 6= 0. Suppose that P ′(X) = mγXm−1 with γ 6= 0 and m ≥ 3 is a
positive integer relatively prime to p. Then for each c 6= 0, 1, P (f) 6≡ cP (g),
for all meromorphic functions f and g which are not pth powers.

Proof. From the given properties of P (X), we have P (X) = Q(X)+γXm

where Q is a pth power polynomial with degQ = n. Let Fc(X,Y,Z) be the
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homogenization of the polynomial Fc(X,Y, 1) = P (X)− cP (Y ):

Fc(X,Y,Z) = Q(X,Z)− cQ(Y,Z) + γXmZn−m − cγY mZn−m

where Q(X,Z) denotes the homogenization of Q(X). Hence

∂Fc
∂X

(X,Y,Z) = mγXm−1Zn−m,

∂Fc
∂Y

(X,Y,Z) = −mγY m−1Zn−m,

∂Fc
∂Z

(X,Y,Z) = (n−m)γZn−m−1(Xm − cY m).

The common zeros of the preceding equations are all points with Z = 0
and also the point (0, 0, 1). However the point (0, 0, 1) is not on the curve
Cc = {Fc(X,Y,Z) = 0} ⊂ P2(k), c 6= 1, for if P (0) − cP (0) = 0 and
P (0) 6= 0 then c = 1. We now consider the following rational 1-form, well
defined on P2(k):

ω :=
∣∣∣∣
Y/X Z/X

d(Y/X) d(Z/X)

∣∣∣∣ =

∣∣∣∣
Y Z
dY dZ

∣∣∣∣
X2 .

Rewrite ω as

(3.5) ω = Xm−3η, η =

∣∣∣∣
Y Z
dY dZ

∣∣∣∣
Xm−1 .

Note that η is not well defined on P2(k) but is a well defined rational 1-form
on k3 \ {0}. From (3.4) and the expressions above for ∂Fc/∂X, ∂Fc/∂Y , we
see that, on the curve π−1(Cc) ⊂ k3 \ {0} (where π : k3 \ {0} → P2(k) is
the standard projection):

(3.6) η =

∣∣∣∣
Y Z
dY dZ

∣∣∣∣
Xm−1 ≡ −

∣∣∣∣
Z X
dZ dX

∣∣∣∣
Y m−1 .

The LHS of (3.6) is regular except possibly when X = 0 (note that the
numerator may vanish when X = 0); on the other hand the RHS is regular
except possibly when Y = 0; hence it is regular with the possible exception
at X = Y = 0. By (3.5), when m ≥ 3, the same is true for ω. However, as
observed earlier, the point (0, 0, 1) is not in Cc = {Fc(X,Y,Z) = 0}, c 6= 1.
Suppose that there exists a non-constant holomorphic map φ = [f0, f1, f2] :
k → Cc ⊂ P2(k). Since f2 6≡ 0 (otherwise the map is constant) we may
represent the map as φ = [f = f0/f2, g = f1/f2, 1]. The condition φ(k) ⊂ Cc
implies that P (f) − cP (g) ≡ 0 and φ∗ω ≡ 0. By the definition of ω this
implies that (using the expression on the LHS of (3.6)) −g′ = W (g, 1) ≡ 0,
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i.e., g is a pth power. Analogously, using the expression on the RHS of (3.6)
yields f ′ = W (1, f) ≡ 0, i.e., f is a pth power.

Note that in the preceding lemma, if n = m+1 then the curve Fc(X,Y ) =
P (X)−cP (Y ), c 6= 0, 1, is non-singular, and the preceding proof can be sim-
plified by using the classical genus formula. However, for n > m+1 the curve
is singular and the classical genus formula cannot be applied unless we know
that the curve is irreducible. Irreducibility is a condition that is usually very
difficult to verify. The Wronskian construction bypasses this difficulty. Next
we deal with the curve F (X,Y ) = (P (X)−P (Y ))/(X−Y ) = 0. The case of
F (X,Y ) is more complicated. In the present situation the curve F (X,Y ) = 0
turns out to be always singular for the class of polynomials P under con-
sideration. As we shall see the Wronskian construction still works provided
that we impose one (fairly minor) additional condition (see condition (C3)
below) on the polynomial P , as counter-examples for uniqueness exist with-
out this condition (see Section 5). The conditions on P in Lemma 1 may be
equivalently stated as follows:

(C1) P (X) = Q(X) + γXm + b, γ 6= 0, b 6= 0, 1 ≤ m < n,

m and n are relatively prime where Q(X) is a pth power polynomial:

(C2) Q(X) =
q∑

l=0

alX
nl , nl = pαlβl,

0 < n0 < n1 < . . . < nq = n. Thus the polynomial F (X,Y ) is of the form

(3.7) F (X,Y ) =
q∑

l=0

Ql(X,Y ) + γ
(m−1∑

i=0

Xm−i−1Y i
)

where

Ql(X,Y ) = al(X − Y )p
αl−1

( βl−1∑

i=0

Xβl−i−1Y i
)pαl

.

We shall impose an additional condition on the lowest degree term of Q(X):

(C3) pα0β0 = n0 < m.

In other words, γXm is not the term of the lowest degree of the polynomial
P (X)−P (0) = P (X)− b. Note that the condition (C3) implies that m ≥ 3.

Lemma 2. Let P (X) = Q(X) + γXm + b be a polynomial of degree n
satisfying the conditions of Lemma 1, and assume in addition that m is not
the lowest degree term of P (X)− b. Then F (f, g) 6= 0 for all f, g ∈ M∗(k)
which are not pth powers.

Proof. As remarked prior to the lemma, the conditions on P are equiv-
alent to the conditions (C1), (C2) and (C3). Let F (X,Y,Z) be the homog-
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enization of the polynomial F (X,Y, 1) = F (X,Y ) (see (3.7)):

F (X,Y,Z) =
q∑

l=0

al(X − Y )p
αl−1

( βl−1∑

i=0

Xβl−i−1Y i
)pαl

+ γZn−m
m−1∑

i=0

Xm−i−1Y i

with the gradient

∂F

∂X
(X,Y,Z) =

mγ(X − Y )Xm−1Zn−m − F (X,Y,Z)
(X − Y )2 ,

∂F

∂Y
(X,Y,Z) =

−mγ(X − Y )Y m−1Zn−m + F (X,Y,Z)
(X − Y )2 ,

∂F

∂Z
(X,Y,Z) = −(n−m)γZn−m−1

m−1∑

i=0

Xm−i−1Y i.

On the curve C = {F (X,Y,Z) = 0} these reduce to

∂F

∂X
(X,Y,Z) =

mγXm−1Zn−m

X − Y ,

∂F

∂Y
(X,Y,Z) =

−mγY m−1Zn−m

X − Y ,

∂F

∂Z
(X,Y,Z) = mγZn−m−1

m−1∑

i=0

Xm−i−1Y i.

Consider the 1-form

η :=
(X − Y )
ZXm−1

∣∣∣∣
Y Z
dY dZ

∣∣∣∣ .

Note that η is well defined only on k3 \ {0}. By (3.4) the restriction of η
to the curve π−1(C) where C = {F (X,Y,Z) = 0} ⊂ P2(k) may also be
expressed as

η :=
(X − Y )

∣∣∣∣
Y Z
dY dZ

∣∣∣∣
ZXm−1(3.8)

≡ −
(X − Y )

∣∣∣∣
Z X
dZ dX

∣∣∣∣
ZY m−1 ≡ −

∣∣∣∣
X Y
dX dY

∣∣∣∣
∑m−1
i=0 Xm−i−1Y i

.

The 1-form is well defined only on k3 \ {0}. As remarked earlier, for any
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homogeneous polynomial B of degree 2,

% =
1
B

∣∣∣∣
Y Z
dY dZ

∣∣∣∣

is a well defined rational 1-form on the projective space, hence we may multi-
ply % by any rational function (i.e., quotient of two homogeneous polynomial
of the same degree) on the projective space to get a well defined rational
1-form. This means that we need to multiply η by a homogeneous polyno-
mial of degree m−3 ≥ 0 to get a well defined 1-form on the projective space.
With this in mind we introduce the following rational 1-form ω well defined
on P2(k):

ω := (Xβ0−1 +Xβ0−2Y + . . .+ Y β0−1)p
α0 (X − Y )m−3−(β0−1)pα0

η

=
(Xβ0−1 +Xβ0−2Y + . . .+ Y β0−1)p

α0 (X − Y )m−2−(β0−1)pα0

ZXm−1

∣∣∣∣
Y Z
dY dZ

∣∣∣∣ .

From (3.8), we see that η, hence also ω, has no poles except possibly at
(0, 0, 1). Indeed, from the identity

(X − Y )
∣∣∣∣
Y Z
dY dZ

∣∣∣∣
ZXm−1 ≡ −

∣∣∣∣
X Y
dX dY

∣∣∣∣
∑m−1
i=0 Xm−i−1Y i

we infer that there is no pole along Z = 0, since the points of the curve C
at infinity are of the form {(1, ν, 0) | νn = 1} and the denominator of the
LHS does not vanish at such points because m is relatively prime to n.

We now check that ω is regular at (0, 0, 1). Let D(0; ε) := {u ∈ k |
|u|v < ε} be an open disc centered at the origin with radius ε > 0. Let
ψ = (x, y, 1) be any local analytic map from D(0; ε) to the curve C such that
ψ(0) = (0, 0, 1). It suffices to show that ord0 ω(x, y, 1) ≥ 0. By symmetry it
is clear that ord0(x) = ord0(y) := µ. This implies that ord0(x− y) ≥ µ and
ord0(xi) = ord0(yi) for all i, hence

ord0(Ql(x, y)) = ord0

(
(x− y)p

αl−1
( βl−1∑

i=0

xβl−1−iyi
)pαl)

≥ (pαlβl − 1)µ

for all l and

ord0

(m−1∑

i=0

xm−1−iyi
)
≥ (m− 1)µ.

Since pα0β0 is the lowest degree of the non-constant monomials in the poly-
nomial P (X), we infer that

{(m− 1)µ, min
1≤l≤q

{(pαlβl − 1)µ}} > (pα0β0 − 1)µ.
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On the curve C = {F (X,Y,Z) = 0},

Q0(X,Y ) = −
∑

1≤l≤q
Ql(X,Y )− γ

m−1∑

i=0

Xm−1−iY i,

hence

ord0(Q0(x, y)) ≥ min
{

min
1≤l≤q

{ord0(Ql(x, y))}, ord0

(m−1∑

i=0

xm−1−iyi
)}
,

which is equivalent to

ord0

(
(x− y)p

α0−1
( β0−1∑

i=0

xβ0−1−iyi
)pα0)

> (pα0β0 − 1)µ.

This last inequality implies that

(3.9) ord0(x− y) > µ

or

(3.10) ord0

( β0−1∑

i=0

xβ0−1−iyi
)
> (β0 − 1)µ.

To estimate the order of ω at 0 note that ord0 x
′ = ord0 x−1 = µ−1, hence

ord0

∣∣∣∣
y 1
y′ 0

∣∣∣∣ ≥ µ− 1.

If (3.9) holds the order of ω(x, y, 1) at 0 is at least

pα0(β0 − 1)µ+ (m− 2− pα0(β0 − 1))(µ+ 1) + µ− 1− (m− 1)µ

= m− β0 p
α0 + pα0 − 3 ≥ pα0 − 2 ≥ 0.

If (3.10) holds then this order is at least

pα0((β0 − 1)µ+ 1) + (m− 2− pα0(β0 − 1))µ+ µ− 1− (m− 1)µ

= pα0 − 1 > 0.

This shows that ω is regular at (0, 0, 1). Therefore ω is regular on C =
{F (X,Y,Z) = 0}.

Suppose that the curve has a component, C ′, of genus zero; then the
restriction of ω to C ′, being a regular 1-form, must be identically zero.
Since the genus of C ′ is zero there exists a non-trivial holomorphic map
φ = [f0, f1, f2] : k → C ′ ⊂ P2(k). Since f2 6≡ 0 (otherwise the map is
constant) we may represent the map as φ = [f = f0/f2, g = f1/f2, 1].
The condition that φ(k) ⊂ C ′ implies that (P (f) − P (g))/(f − g) ≡ 0
and φ∗ω ≡ 0. By the definition of ω this means that either φ∗η ≡ 0 or
(fβ0−1 + fβ0−2g + . . . + gβ0−1)p

α0 (f − g)m−3−(β0−1)pα0 ≡ 0. The second
alternative is eliminated, since F (X,Y ) has no linear factor by Proposition 4
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and (Xβ0−1 +Xβ0−2Y + . . .+ Y β0−1)p
α0 decomposes into linear factors as

the field is algebraically closed. The first alternative is eliminated because
φ∗η ≡ 0 implies that −g′ = W (g, 1) ≡ 0, and f ′ = W (1, f) ≡ 0, i.e., f and
g are pth powers contrary to the assumption that f is not a pth power.

Proof of Theorem 2. By Proposition 3 there is no loss of generality in
assuming that α = 0. Suppose that f and g are two non-constant mero-
morphic functions such that P (f) = βP (g) for some constant β 6= 0. If
f and g are not pth powers then Lemmas 1 and 2 imply that β = 1 and
f ≡ g. It remains to deal with the case where f is a pth power. Suppose
that f = fp

i

0 , i ≥ 1, where f0 is not a pth power. We claim that g is also a
pth power. Differentiating the identity P (f) = βP (g), using the assumption
on P , yields

βgm−1g′ = γfm−1f ′ ≡ 0,

which implies that g is also a pth power so g = gp
l

0 for some l ≥ 1 and g0

is not a pth power. Indeed, g is also a pith power (i.e., i = l). This can be
seen by using the expression (1.2) in the introduction:

PS(X) =
∑

0≤j≤n, p|j
ajX

j + aXm + b.

Let â, b̂, âj be chosen such that âp
i

= a, b̂p
i

= b, âp
i

j = aj and define
a polynomial

P0(X) =
∑

0≤j≤n, p|j
âjX

j + âXm + b̂;

then PS(f) = P0(f0)p
i

. Similarly, PS(g) = P1(g0)p
l

where

P1(X) =
∑

0≤j≤n, p|j
ãjX

j + ãXm + b̃,

and ã, b̃, ãj are chosen such that ãp
l

= a, b̃p
l

= b, ãp
l

j = aj . Thus P (f) =

βP (g) implies that P0(f0)p
i

= βP1(g0)p
l

. If l ≤ i then P0(f0)p
i−l

= γP1(g0),
where γp

l

= β, is not a pth power by the assumptions on PS and that g0

is not a pth power. This implies that i = l and that P0(f0) = βP0(g0). By
construction the polynomial P0 satisfies the assumptions of the theorem, and
since f0 and g0 are not pth powers we conclude as before that β = 1 and
f0 ≡ g0, which, of course, implies that f ≡ g. This shows that PS is a strong
uniqueness polynomial for M∗(k). By property (P1) in the introduction
PS is also a strong uniqueness polynomial for A∗(k). Finally property (P3)
asserts that this is equivalent to the set S being a unique range set for
A∗(k).
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4. Application of the Truncated Second Main Theorem. In this
section, we will deal with polynomials of the form P (X) = Xn + aXm + b
where n is a power of p, m is prime to n and ab 6= 0 . This type of polynomial
was discussed by Boutabaa, Cherry and Escassut in [2]. However their results
do not cover all possible cases of (strong) uniqueness polynomials for A∗(k)
andM∗(k). The main tool for this is the Truncated Second Main Theorem
(see [3]):

Theorem (Second Main Theorem in positive characteristic). Let f =
f1/f2 where f1, f2 are entire functions without common zeros and assume
that f is not a pth power. Let c1, . . . , cq be q distinct elements in k. Then

(q − 2) max{Tf1(t), Tf2(t)} ≤
q∑

i=1

N1(f − ci, t)− log t+O(1)

where N1(f − ci, t) is the counting function of f − ci, with the number of
zeros counted without multiplicity.

For the case of function fields of positive characteristic the Second Main
Theorem for rational functions can be found in [9] and [10].

Lemma 3. Let P (X) = Xn+aXm+ b, with m < n = prs, r, s ≥ 1, p - s,
m prime to n and ab 6= 0. Then

(i) P (X) is a uniqueness polynomial for M∗(k) if

(n,m) 6∈ {(2pr, 1), (pr, 1)} ∪ {(pr, 2)} ∪ {(5, 3)} ∪ {(n, n− 1)},
(ii) P (X) is a uniqueness polynomial for A∗(k) if

s ≥ 2 or s = 1 and 3 ≤ m ≤ n− 2.

Proof. By Proposition 1, to show that P (X) is a uniqueness polynomial
for M∗(k) (resp. A∗(k)) it suffices to consider P (f) for rational functions
f (resp. polynomials). Suppose that f and g are two distinct non-constant
rational functions such that P (f) = P (g). As in the proof of Theorem 2
we may assume that neither f nor g is a pth power. Next we represent the
rational functions as

f =
hf1

f2
, g =

hg1

f2

where h, f1, g1, f2 are polynomials such that (1) f1 and g1 are relatively
prime (i.e., no common zeros) and (2) f2 is relatively prime to h. The con-
dition that P (f) = P (g) is equivalent to

hn−m(fs1 − gs1)p
r

= −afn−m2 (fm1 − gm1 ).

We now claim that f1/g1 is not a pth power. If it is, then both f1 and g1

have to be pth powers since f1 and g1 are relatively prime. Hence the above
identity shows that h/f2 is also a pth power. This implies that f = hf1/f2
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is also a pth power, which contradicts our assumption. Decomposing the
above identity into linear factors we get, as n = prs,

(4.1) hp
rs−m(f1 − g1)p

r−1
s−1∏

i=1

(f1 − µig1)p
r

= −afp
rs−m

2

m−1∏

i=1

(f1 − νig1)

where µi, i = 1, . . . , s − 1 (resp. νi, 1 ≤ i ≤ m − 1), are the distinct
(as s and m are relatively prime to p) roots of the polynomials Xs−1 +
Xs−2 + . . . + X + 1 (resp. Xm−1 + Xm−2 + . . . + X + 1). In fact the set
{1, µ1, . . . , µs−1, ν1, . . . , νm−1} consists of mutually distinct elements as m
is relatively prime to n = prs. If ξ is a root of f1 = g1, then since f1 and
g1 have no common zero, f1(ξ) = g1(ξ) 6= 0. This implies, as νi 6= 1, that
f1(ξ) 6= νig1(ξ) for i = 1, . . . ,m− 1. Conversely, a root of f1 − νig1 is not a
root of f1−g1 either. For the same reason, as µi and νj are distinct for all i, j,
f1−µi and f1− νjg1 have no common roots either. Lastly, by construction,
the polynomials f2 and h have no common zeros. Putting all these together
we conclude that

[hp
rs−m = 0] =

[m−1∏

i=1

(f1 − νig1) = 0
]
,

[
(f1 − g1)p

r−1
s−1∏

i=1

(f1 − µig1)p
r

= 0
]

= [fp
rs−m

2 = 0]

where the bracket indicates the divisors of zero counting multiplicity. Con-
sequently, we have

m−1∏

i=1

(f1 − νig1) = bhp
rs−m

for some constant b; in particular,
∏m−1
i=1 (f1 − νig1) is a (prs−m)th power.

As νi 6= νj for i 6= j, we conclude that f1 − νig1 is a (prs−m)th power for
each i and so

(4.2) N1

(
f1

g1
− νi

)
≤ 1
prs−m N

(
f1

g1
− νi

)
.

Analogously,

(4.3) (f1 − g1)p
r−1

s−1∏

i=1

(f1 − µig1)p
r

= c1f
prs−m
2

for some constant c1. Again, since f1 − g1 and f1 − µig1 have no common
roots we conclude that

(pr − 1) ordξ(f1 − g1) = (prs−m) ordξ f2
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if ξ is a root of f1 − g1. This implies that

(4.4) N1

(
f1

g1
− 1
)
≤ gcd(prs−m, pr − 1)

prs−m N

(
f1

g1
− 1
)

provided that prs−m > 0. Analogously we also have

pr ordξi(f1 − µig1) = (prs−m) ordξi f2

if ξi is a root of f1 − µig1. Since pr and prs − m are relatively prime,
ordξi(f1 − µig1) is a multiple of prs−m and so

(4.5) N1

(
f1

g1
− µi

)
≤ 1
prs−m N

(
f1

g1
− µi

)

provided that prs − m > 0. The Second Main Theorem, applied to f1/g1

and 1, µ1, . . . , µs−1, ν1, . . . , νm−1, yields (by (4.2) and (4.4) and (4.5))

(m+ s− 3) max{deg f1,deg g1}

≤ N1

(
f1

g1
− 1
)

+
s−1∑

i=1

N1

(
f1

g1
− µi

)
+
m−1∑

i=1

N1

(
f1

g1
− νi

)
− 1

≤ 1
prs−m

{
γN

(
f1

g1
− 1
)

+
s−1∑

i=1

N

(
f1

g1
− µi

)
+
m−1∑

i=1

N

(
f1

g1
− νi

)}
− 1

≤
(
γ +m+ s− 2
prs−m

)
max{deg f1,deg g1} − 1,

where γ = gcd(prs−m, pr−1) provided that prs−m > 0. This implies that

(4.6) (m+ s− 3)(prs−m− 1) < γ + 1 ≤ prs−m+ 1,

which in particular yields

(4.7) (m+ s− 4)(prs−m− 1) < 2.

Thus, for (n,m) in the cases:

(1) m = n− 2 = prs− 2, m+ s ≥ 6, (2) m ≤ n− 3 = prs− 3, m+ s ≥ 5,

we have (m+ s − 3)(prs −m − 1) ≥ 2 contradicting (4.7). In other words,
any (n,m) in cases (1) and (2) yields a uniqueness polynomial.

On the other hand, if n − m = prs − m = 1 then (4.6) is satisfied,
hence (n,m) = (n, n−1) must be excluded. Note that (4.6) is automatically
satisfied if m + s ≤ 3 (m ≥ 1, s ≥ 1), thus (n,m) = (2pr, 1), (pr, 1) and
(pr, 2) must also be excluded. To see which other cases should be excluded
we need only consider those (n,m) such that m ≤ n − 2 and m + s ≥ 4.
If m ≥ 5 then m + s ≥ 6 is automatically satisfied, thus these are not to
be excluded (by (1) and (2) above). If m = 4, then n 6= m + 2 since m
and n are relatively prime. Thus, m ≤ n − 3, and in this case, m + s ≥ 5
is automatically satisfied. These are not to be excluded by (2) above. It
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remains to consider the case m ≤ 3 and m + s = 4. Clearly we have either
m = 3, s = 1 or m = 1, s = 3 (the case m = s = 2 is eliminated by the
assumption that n,m are relatively prime). If m = 3, s = 1 it is easily seen
that γ = gcd(pr − 3, pr − 1) ≤ 2. In these cases (4.7) is not useful but we
deduce from (4.6) that 0 ≤ pr − 4 = prs − m − 1 < γ + 1 ≤ 3 and we
again arrive at a contradiction, except in the cases (n,m) = (4, 3), (5, 3).
Thus these two cases have to be excluded. If m = 1, s = 3 then the greatest
common divisor of (3pr − 1, pr − 1) is again at most 2, hence (4.6) implies
that 3pr−1 < 3, which is impossible. Thus none of these are excluded. This
completes the proof of (i).

If f 6= g are non-constant polynomials then f2 = 1, hence, by (4.3),
f1−g1, f1−µig1, 1 ≤ i ≤ s−1, are constants. If s ≥ 2, then this implies that
f1 and g1 are constants, contradicting our assumption. Therefore it suffices
to consider the case s = 1. In this case, f1 − g1 = c 6= 1 is still a constant,
and by applying the Second Main Theorem to f1/g1 and 1, ν1, . . . , νm−1 we
get

(m− 2) max{deg f1,deg g1} ≤ N1

(
f1

g1
− 1
)

+
m−1∑

i=1

N1

(
f1

g1
− νi

)
− 1

≤ 1
n−m

m−1∑

i=1

N

(
f1

g1
− νi

)
− 1

≤
(
m− 1
n−m

)
max{deg f1,deg g1} − 1.

This yields
(
m− 2− m− 1

n−m

)
max{deg f1,deg g1} ≤ −1.

Clearly, this is impossible if (m − 2)n ≥ m2 − m − 1. In other words, we
derive a contradiction when m ≥ 3 and

n ≥ m2 −m− 1
m− 2

= m+ 1 +
1

m− 2
≥ m+ 2.

This completes the proof of (ii).

Lemma 4. Let P (X) = Xn + aXm + b, with m < n = prs, r, s ≥ 1,
p - s,m prime to n and ab 6= 0. Then

(i) if s ≥ 3 and 1 ≤ m ≤ pr, then there exist no non-constant f, g ∈
M∗(k) such that P (f) = cP (g) for c 6= 0, 1;

(ii) if s ≥ 2 or s = 1 and m ≥ 3 then there exist no non-constant
f, g ∈ A∗(k) such that P (f) = cP (g) for some c 6= 0, 1.
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Proof. Suppose that there exist non-constant rational functions f and
g such that P (f) = cP (g), c 6= 0, 1. As in the preceding lemma, we may
assume that none of the functions f, g, f/g is a pth power. Write f = f1/f2

and g = g1/f2 where f1 and f2 (resp. g1 and f2) are polynomials with no
common zero. Then f1 and g1 have no common zero, for if f1(u) = g1(u) = 0
then b = P (0) = P (f(u)) = cP (g(a)) = cb, which is impossible since b 6= 0
and c 6= 1. It is also easy to see from the equation P (f) = cP (g) that
deg f1 = deg g1 ≥ deg f2. From the equation we also derive

(4.8) (fs1 − αgs1)p
r

+ b(1− c)fp
rs

2 = −a(fm1 − cgm1 )fp
rs−m

2

where αp
r

= c. Since the vanishing order of every zero of the function on the
LHS above is a multiple of pr, the identity above implies that the vanishing
order of every zero of the function fm1 − cgm1 , which is not a zero of f2,
is a multiple of pr. Suppose that u is a common zero of fm1 − cgm1 and
f2; then the preceding identity shows that it is also a zero of f s1 − αgs1.
Thus, as the roots of fm1 − cgm1 are distinct (m being prime to p), the
vanishing order of fm1 − cgm1 at u is also a multiple of pr. This implies that
{−a(fm1 − cgm1 )− b(1− c)fm2 }fp

r−m
2 is a prth power. Rewrite the equation

(4.8) as

(4.9) (fs1 − αgs1)p
r

= ({−a(fm1 − cgm1 )− b(1− c)fm2 }fp
r−m

2 )fp
r(s−1)

2 ;

this shows that N1(fs1 − αgs1) ≤ N1({−a(fm1 − cgm1 ) − b(1 − c)fm2 }fp
r−m

2 ).
Apply the Truncated Second Main Theorem to f1/g1 and s distinct values
α1, . . . , αs, where αi is a root of the equation Xs = α. We get

(s− 2) max{deg f1,deg g1}

≤
s∑

i=1

N1(f1/g1 − αi)− 1 =
s∑

i=1

N1(f1 − αig1)− 1

≤ 1
pr

((pr −m)N(f2) +N(−afm1 + acgm1 − b(1− c)fm2 ))− 1

≤ 1
pr

(pr −m+m) max{deg f1,deg g1} − 1

= max{deg f1,deg g1} − 1

which is impossible if s ≥ 3. This completes the proof of (i).
If f and g are polynomials then f2 = 1. In this case, we have

(4.10) (f s − αgs)pr = −afm + acgm − b(1− c).
Then −afm+acgm−b(1−c) and fm−cgm are prth powers. Apply the Trun-
cated Second Main Theorem to f1/g1 and s+m distinct values α1, . . . , αs,
β1, . . . , βm, where αi’s are the roots of the equation Xs = α and βj ’s are
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the roots of Xm = c. We have

(s+m− 2) max{deg f1,deg g1}

≤
s∑

i=1

N1(f/g − αi) +
m∑

i=1

N1(f/g − βj)− 1

= N1(−afm + acgm − b(1− c)) +N1(fm − cgm)− 1

≤ 1
pr

(N(−afm + acgm1 − b(1− c)) +N(fm − cgm))− 1

≤ 2m
pr

max{deg f1,deg g1} − 1.

This yields
(
s− 2 +m

(
1− 2

pr

))
max{deg f1,deg g1} ≤ −1.

Clearly, this is impossible if s ≥ 2. If s = 1 and m ≥ 3 then pr ≥ 4. Hence
the above inequality is also impossible in this case. This completes the proof
of (ii).

5. Proof of Theorem 3

Proposition 5. Suppose that P (X) = Xpr + aXm + b with r ≥ 1 and
a, b 6= 0. If m = 1, 2 or pr − 1 then P (X) is not a uniqueness polynomial
for A∗(k).

Proof. For m = 1 choose α such that αp
r−1 = −a. Then P (X + α) =

P (X), hence P (X) is not a uniqueness polynomial for A∗(k).
If m = 2 then F (X,Y ) = (X − Y )p

r−1 + a(X + Y ). The functions

f = −1
a

(
t

2

)pr−1

+
t

2
and g = −1

a

(
t

2

)pr−1

− t

2

clearly satisfy the equation F (f, g) = 0, hence P (X) is not a uniqueness
polynomial for A∗(k).

If m = pr − 1 let Q(X) = a−p
r

P (aX)− 1− ba−pr = Xpr + Xpr−1 + 1.
By Proposition 3, P (X) is a uniqueness polynomial for A∗(k) if and only if
Q(X) is. Since Q(X) = Q(X − 1) the polynomial Q cannot be a uniqueness
polynomial for A∗(k).

Proposition 6. Suppose that P (X) = Xn + aXm + b with a, b 6= 0. If
either n = 2pr, m = 1 and p 6= 2, or n = 5, m = 3 and p = 5, then P (X)
is not a uniqueness polynomial for M∗(k).
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Proof. If n = 2pr and m = 1 then F (X,Y ) = (X−Y )p
r−1(X+Y )p

r

+a.
The functions

f =
α

2

(
1

tpr−1 + tp
r

)
and g =

α

2

(
1

tpr−1 − t
pr
)
,

where α2pr−1 = −a, satisfy the equation F (f, g) = 0. Hence P (X) is not a
uniqueness polynomial for M∗(k).

For the second case where n = 5,m = 3, we take

f =
αt(ω2t2 − ω)

(ω − 1)(t2 + ω)2 and g =
αt(t2 − 1)

(ω − 1)(t2 + ω)2

where ω2 + ω + 1 = 0 and α2 = −a. By a direct calculation we get

f − g =
−αω2t

t2 + ω
, f − ωg =

−αωt3
(t2 + ω)2 , f − ω2g =

−αωt
(t2 + ω)2 .

Hence, (f − g)4 = −a(f2 + fg + g2) and this implies that P (X) is not a
uniqueness polynomial for M∗(k).

Proof of Theorem 3. By Proposition 3, we may assume that PS(X) =
Xn + aXm + b with a, b 6= 0. By Proposition 5, PS(X) is not a uniqueness
polynomial for A∗(k) if n = pr and m = 1 or m = 2 or m = n− 1. On the
other hand, Lemma 3, Lemma 4 and property (P3) in the introduction imply
that S is a unique range set for A∗(k) if either (a) n = pr and 3 ≤ m ≤ n−2
or (b) n = prs, s > 1, and m ≥ 1. This completes the proof of (1).

If m = n − 1 then F (X,Y,Z) = 0 has only one singular point (0, 0, 1)
which is ordinary and has multiplicity n−2. Thus the curve C = [F (X,Y,Z)
= 0] is irreducible and its genus is 0. Therefore P (X) is not a uniqueness
polynomial for M∗(k). If either n = 2pr, m = 1 and p 6= 2, or n = p = 5
and m = 3, then P (X) is not a uniqueness polynomial by Proposition 6.
Except in these cases, P (X) is a strong uniqueness polynomial for M∗(k)
by Lemmas 1, 3 and 4.
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