Unique range sets and uniqueness polynomials in positive characteristic

by

TA THI HOAI AN (Taipei), JULIE TZU-YUEH WANG (Taipei) and PIT-MANN WONG (Notre Dame, IN)

1. Introduction. Let \mathbf{k} be an algebraically closed field of characteristic $p \geq 0$, complete with respect to a non-archimedean absolute value. Let $\mathcal{M}^*(\mathbf{k})$ be the set of non-constant meromorphic functions defined on \mathbf{k} and \mathcal{F} be a non-empty subset of $\mathcal{M}^*(\mathbf{k})$. For $f \in \mathcal{F}$ and a set S in the range of f define

$$E(f,S) = \bigcup_{a \in S} \{(z,m) \in \mathbf{k} \times \mathbb{Z}^+ : f(z) = a \text{ with multiplicity } m\}.$$

Two functions f and g of \mathcal{F} are said to share S, counting multiplicity, if E(f,S) = E(g,S). A set S is called a *unique range set*, counting multiplicity, for \mathcal{F} , if the condition E(f,S) = E(g,S) for $f,g \in \mathcal{F}$ implies that $f \equiv g$. A polynomial P defined over \mathbf{k} is called a *uniqueness polynomial* for \mathcal{F} if the condition P(f) = P(g) for $f,g \in \mathcal{F}$ implies that $f \equiv g$; P is called a strong uniqueness polynomial if the condition P(f) = cP(g) for $f,g \in \mathcal{F}$ and some non-zero constant c implies that c = 1 and $f \equiv g$. The following properties are immediate consequences of the definitions:

(P1) If $\mathcal{F} \subset \mathcal{F}' \subset \mathcal{M}^*(\mathbf{k})$ then a finite set S in \mathbf{k} being a unique range set for \mathcal{F}' implies that it is also a unique range set for \mathcal{F} .

(P2) If $\mathcal{F} \subset \mathcal{F}' \subset \mathcal{M}^*(\mathbf{k})$ then a polynomial P being a (strong) uniqueness polynomial for \mathcal{F}' implies that it is also a (strong) uniqueness polynomial for \mathcal{F} .

In studying unique range sets for $\mathcal{A}^*(\mathbf{k}) =$ non-constant entire functions defined over \mathbf{k} , one is naturally led to the following polynomial:

(1.1)
$$P_S(X) = (X - s_1) \dots (X - s_n)$$

where $S = \{s_1, \ldots, s_n\}$ is a finite subset of **k**. Suppose that $f, g \in \mathcal{A}^*(\mathbf{k})$ are

²⁰⁰⁰ Mathematics Subject Classification: Primary 12E05; Secondary 11S80, 30D35.

two entire functions sharing S counting multiplicity. Then $P_S(f)$ and $P_S(g)$ are non-archimedean entire functions with exactly the same zeros counting multiplicity. This implies that $P_S(f)/P_S(g)$ is entire and non-vanishing, hence must be a constant. This shows that:

(P3) With respect to the family of non-constant entire functions $\mathcal{A}^*(\mathbf{k})$, a finite set S is a unique range set counting multiplicity if and only if its associated polynomial, defined by (1.1), is a strong uniqueness polynomial.

Let S be a subset of **k** of finite cardinality n. If p = 0, or if p > 0 and does not divide n, then S is a unique range set counting multiplicity for $\mathcal{A}^*(\mathbf{k})$ if and only if S is affine rigid, i.e. the only affine transformation preserving the set S is the identity. This result was first proved by Boutabaa, Escassut and Haddad [4] for the case of polynomials, extended by Cherry and Yang [7] to entire functions, in characteristic zero; and, in positive characteristic, by Voloch (cf. the appendix in [8]). If p > 0 divides n, this geometric characterization of finite unique range sets counting multiplicity for $\mathcal{A}^*(\mathbf{k})$ is no longer valid; counter-examples were provided in [2] and [7]. Let $S = \{s_1, \ldots, s_n\}$ with n divisible by p. In this paper we give a complete characterization for S to be a unique range set counting multiplicity for $\mathcal{A}^*(\mathbf{k})$ if the associated polynomial P_S satisfies one of the following two conditions:

(1) $P'_S(X) = \lambda (X - \alpha)^{m-1} \neq 0$ and the multiplicity of $P_S(X)$ at $X - \alpha$ is strictly less than *m* which is prime to *p*;

(2) $P_S(X)$ is of the form $(X - \alpha)^n + a(X - \alpha)^m + b$ where m is prime to p.

There are several reasons to study polynomials of these two types. First of all, we will see later that if $P'_S(X) = \lambda(X - \alpha)^{m-1}$, *m* relatively prime to *n*, then the set *S* is affine rigid. Secondly, in [8] the second named author has shown that when $p \mid n$, if (a) $P_S(X)$ is injective on the zeros of $P'_S(X) = \lambda(X - \alpha_1)^{m_1} \dots (X - \alpha_l)^{m_l}$, (b) the degree of $P'_S(X)$ is n - 2, and (c) the multiplicity of $X - \alpha_i$ in $P(X) - P(\alpha_i)$ is $m_i + 1$, for $1 \leq i \leq l$, then P_S is a strong uniqueness polynomial for $\mathcal{M}^*(\mathbf{k})$ if and only if $l \geq 2$ and *S* is affine rigid. Therefore, if one looks for a set which is affinely rigid, but not a unique range set, it is natural to start with those *S* with l = 1 (note that Example 2.2 of [2] satisfies the condition l = 1). Thirdly, when l = 1, the injective condition on the zero of $P'_S(X)$ always holds. Hence this is a good example to see the impact of the conditions (b) and (c).

The main results in this paper are as follows. We always assume that \mathbf{k} is an algebraically closed field of characteristic p > 0, complete with respect to a non-archimedean absolute value.

THEOREM 1. Let S be a finite set in **k** with associated polynomial P_S . Assume that #S = n is divisible by p and $P'_S(X) = \gamma(X - \alpha)^{m-1}, \alpha \in \mathbf{k}$, where $\gamma \neq 0$, $m \geq 2$ is relatively prime to n, and $P_S(\alpha) \neq 0$. Then S is affine rigid.

THEOREM 2. Let S be a finite subset of \mathbf{k} with associated polynomial P_S . Assume that (i) #S = n is divisible by p, (ii) $P'_S(X) = \gamma(X - \alpha)^{m-1}$ where $\gamma \neq 0$ and m is relatively prime to n, (iii) $P_S(\alpha) \neq 0$, and (iv) the multiplicity of $X - \alpha$ in $P_S(X) - P_S(\alpha)$ is strictly less than m. Then P_S is a strong uniqueness polynomial for $\mathcal{M}^*(\mathbf{k})$; in particular, S is a unique range set for $\mathcal{A}^*(\mathbf{k})$.

The polynomial P_S satisfies the conditions of Theorem 2 if and only if #S = n is divisible by p and P_S is of the form

(1.2)
$$P_S(X) = \sum_{0 \le i \le n} a_i (X - \alpha)^{n_i} + a (X - \alpha)^m + b, \quad ab \ne 0, \ a_i \ne 0, \ p \mid n_i,$$

where m, n are relatively prime and there exists n_i such that $n_i < m$. For example, if p = 2 then $X^4 + X^2 + X^3 + 1$ satisfies all the conditions of Theorem 2 but $X^4 + X^2 + X + 1$ does not. Some special examples satisfying the hypothesis of Theorem 2 were treated by various authors using the classical genus formula. We are able to arrive at this more general form by using a new technique which we call the Wronskian construction (see Section 3 for details).

THEOREM 3. Let S be a finite subset of \mathbf{k} with n elements and n divisible by p. Suppose that its associated polynomial is of the form

$$P_S(X) = (X - \alpha)^n + a(X - \alpha)^m + b$$

where m is relatively prime to n, $a \neq 0$, and $b \neq 0$. Then:

- (1) S is a unique range set for $\mathcal{A}^*(\mathbf{k})$ if and only if either
 - (a) $n = p^r s, p \nmid s, s \ge 2$ and $m \ge 1$, or
 - (b) $n = p^r \text{ and } 3 \le m \le n 2.$
- (2) P_S is a strong uniqueness polynomial for $\mathcal{M}^*(\mathbf{k})$ if and only if P_S is a uniqueness polynomial for $\mathcal{M}^*(\mathbf{k})$ if and only if either
 - (a) $n = p^r$ and $3 \le m \le n-2$ except m = 3 and n = 5, or
 - (b) $n = p^r s$, $p \nmid s$, $s \ge 2$ and $1 \le m \le n-2$ except m = 1 and s = 2.

Note that the polynomial in Theorem 3 satisfies all the hypothesis of Theorem 2 but (iv).

2. Proof of Theorem 1 and some basic reductions. We have seen that S is a unique range set counting multiplicity for $\mathcal{A}^*(\mathbf{k})$ if and only if its associated polynomial P_S is a strong uniqueness polynomial. Let P(X) be a monic polynomial of degree n in $\mathbf{k}[X]$; we introduce the following functions:

(2.1)
$$\begin{cases} F(X,Y) = (P(X) - P(Y))/(X - Y), \\ F_c(X,Y) = P(X) - cP(Y), \quad c \neq 0, 1 \text{ is a constant.} \end{cases}$$

Denote by F(X, Y, Z) and $F_c(X, Y, Z)$ respectively, the homogenizations of F(X, Y) and $F_c(X, Y)$.

The following fact was observed by Cherry and Yang in [7]. For the convenience of the reader, we include their proof.

PROPOSITION 1. (1) A polynomial $P \in \mathbf{k}[X]$ is a (strong) uniqueness polynomial for $\mathcal{M}^*(\mathbf{k})$ if and only if it is a (strong) uniqueness polynomial for the family of non-constant rational functions in $\mathbf{k}(t)$.

(2) A polynomial $P \in \mathbf{k}[X]$ is a (strong) uniqueness polynomial for $\mathcal{A}^*(\mathbf{k})$ if and only if it is a (strong) uniqueness polynomial for the family of nonconstant polynomials $\mathbf{k}[t]$.

Proof. Suppose that P is not a uniqueness polynomial for $\mathcal{M}^*(\mathbf{k})$. Then F(f,g) = 0 for some $f, g \in \mathcal{M}^*(\mathbf{k})$. Therefore there is an irreducible factor $F_0(X,Y)$ of F(X,Y) with $F_0(f,g) = 0$. Then by Berkovich's non-archimedean Picard Theorem (cf. [1] and also [6] for a more elementary proof), $F_0(X,Y) = 0$ is a rational curve, and it can be rationally parametrized since \mathbf{k} is algebraically closed. In other words, there exist rational functions r(t), s(t), and R(X,Y) such that t = R(X,Y), and $F_0(r(t),s(t)) = 0$. This shows that P(X) is not a uniqueness polynomial for the family of non-constant polynomials $\mathbf{k}[t]$. The converse is clear.

For (2), we assume that $f, g \in \mathcal{A}^*(\mathbf{k})$. From the previous deduction, we let h = R(f, g), so that f = r(h), and g = s(h). Since f and g are entire, the non-archimedean meromorphic function h must omit the poles of r(t) and the poles of s(t). However, a non-constant non-archimedean meromorphic function can omit at most one point in $\mathbf{k} \cup \{\infty\}$. Thus the r(t) has only one pole which is also the unique pole of s(t). Therefore, after making a projective linear change in coordinates, we can assume that this pole is ∞ . Therefore, r(t) and s(t) are polynomials. Moreover, h is entire since it omits the pole of r(t). This shows that if P is not a uniqueness polynomial for $\mathcal{A}^*(\mathbf{k})$, then it is not a uniqueness polynomial for the family of non-constant polynomials $\mathbf{k}[t]$. The converse is clear.

The proof for strong uniqueness is similar.

To prove that a polynomial is a strong uniqueness polynomial for $\mathcal{M}^*(\mathbf{k})$, it suffices to show that the curves F(X, Y, Z) = 0 and $F_c(X, Y, Z) = 0$ have no irreducible component of genus 0. It was also observed by Cherry and Yang in [7] that a (strong) uniqueness polynomial for the family of polynomials over \mathbf{k} is also a (strong) uniqueness polynomial for $\mathcal{A}^*(\mathbf{k})$.

We refer to [8] for a proof of the following result:

PROPOSITION 2. Let S be a finite set in **k** and assume that $P'_S(X)$ is not identically zero. Then S is affine rigid if and only if neither F(X,Y)nor $F_c(X,Y)$, $c \neq 0, 1$, has a linear factor.

PROPOSITION 3. Let \mathcal{F} be a subset of $\mathcal{M}^*(\mathbf{k})$ and P(X) a polynomial. Then

(1) if S is a finite set of \mathbf{k} , then the zero set of $P_S(X)$ is affine rigid if and only if the zero set of $P_S(aX + b)$, where $a, b \in \mathbf{k}$ and $a \neq 0$, is affine rigid;

(2) P(X) is a uniqueness polynomial for \mathcal{F} if and only if aP(X) + b, where $a, b \in \mathbf{k}$ and $a \neq 0$, is a uniqueness polynomial for \mathcal{F} ;

(3) if the family \mathcal{F} satisfies the condition that $f \in \mathcal{F}$ implies that $af+b \in \mathcal{F}$ for any $a, b \in \mathbf{k}, a \neq 0$, then P(X) is a strong uniqueness polynomial for \mathcal{F} if and only if Q(X) = P(aX + b) is a strong uniqueness polynomial for \mathcal{F} where $a, b \in \mathbf{k}$ and $a \neq 0$.

Proof. Assertion (2) is clear. For (1), let $S = \{s_1, \ldots, s_n\}$. Then

$$P_S(aX+b) = (aX+b-s_1)\dots(aX+b-s_n)$$
$$= a^n \left(X + \frac{b-s_1}{a}\right)\dots\left(X + \frac{b-s_n}{a}\right).$$

Assertion (1) follows from this and the fact that S is affine rigid if and only if $a^{-1}(S-b)$ is affine rigid. For (3) it suffices to show that if P(X)is not a strong uniqueness polynomial then neither is Q(X) = P(aX + b). Suppose that $P(f) = cP(g), c \neq 0 \in \mathbf{k}$, for a pair of distinct functions in \mathcal{F} . Let $f_0 = a^{-1}(f-b)$ and $g_0 = a^{-1}(g-b)$. Then $f_0, g_0 \in \mathcal{F}, f_0 \neq g_0$, and $Q(f_0) = Q(g_0)$.

PROPOSITION 4. Let P(X) be a polynomial of degree n divisible by pand $P(0) \neq 0$. Suppose that $P'(X) = \gamma X^{m-1}$ for some $m \geq 2$ relatively prime to n where γ is a non-zero constant. Then the polynomials F(X,Y)and $F_c(X,Y)$, $c \neq 0, 1$, have no linear factors. Equivalently, the zero set of P(X) is affine rigid.

Proof. We first claim that if F(X, Y) or $F_c(X, Y)$ has a linear factor X - aY - b with $a \neq 0$, then $P(aY + b) = \alpha P(Y)$ where $\alpha = 1$ if X - aY - b is a linear factor of F(X, Y); and $\alpha = c$ if X - aY - b is a linear factor of $F_c(X, Y)$. Indeed, F(X, Y) = (X - aY - b)Q(X, Y) for a polynomial Q(X, Y) if and only if P(X) - P(Y) = (X - Y)(X - aY - b)Q(X, Y). For X = aY + b the right hand side is zero and we have P(aY + b) = P(Y) (so $\alpha = 1$). Similarly $F_c(X, Y) = (X - aY - b)R(X, Y)$ for a polynomial R(X, Y) if and only if P(X) - cP(Y) = (X - aY - b)R(X, Y). For X = aY + b the right hand side is zero and we have P(aY + b) = cP(Y) (so $\alpha = c$, recall that $c \neq 0, 1$).

On the other hand, differentiation of $P(aY + b) = \alpha P(Y)$ shows that $a(aY + b)^{m-1} = \alpha Y^{m-1}$, hence b = 0 (by the assumption that $m \ge 2$) and $a^m = \alpha$, i.e., $P(aY) = \alpha P(Y)$. Comparing the leading coefficients and the constant terms of P(aY) and $\alpha P(Y)$, we see that $a^n = \alpha$, and $\alpha = 1$ since $P(0) \ne 0$. Thus $a^n = a^m = \alpha = 1$. But in the case of $F_c(X, Y)$ we have $\alpha = c \ne 1$, thus $F_c(X, Y)$ with $c \ne 1$ cannot have a linear factor X - aY - b. Since m and n are relatively prime, the condition that $a^n = a^m = \alpha = 1$ implies that a = 1. Thus

$$\frac{P(X) - P(Y)}{X - Y} = F(X, Y) = (X - aY - b)Q(X, Y) = (X - Y)Q(X, Y)$$

which implies that $P'(X) = F(X, X) \equiv 0$, contradicting our assumption on P'(X). Thus F(X, Y) cannot have a linear factor either.

Proof of Theorem 1. Let $Q(X) = P_S(X + \alpha)$. Then $Q(0) \neq 0$ and $Q'(X) = P'_S(X + \alpha) = \gamma X^{m-1}$. Thus the polynomial Q satisfies the hypothesis of Proposition 4, hence the zero set of Q(X) is affine rigid. By part (1) of Proposition 3 the zero set of $P_S(X)$ is also affine rigid.

3. 1-forms of Wronskian type and the proof of Theorem 2. Consider the problem of computing the genus of a curve in $\mathbf{P}^2(\mathbf{k})$. The case of a smooth curve is easily computed via the genus formula g = (q-1)(q-2)/2 where q is the degree of the smooth curve. Note that (q-1)(q-2)/2 is the number of distinct monomials of degree q in z_0, z_1 and z_2 . There is also a genus formula for irreducible singular curves in terms of the Milnor number of an isolated singularity and the number of local branches at the singular point. It is usually quite a chore to compute these invariants, and worst of all is the condition that the curve be irreducible. For this reason we develop a procedure of computing the genus without a priori knowledge of irreducibility. The main idea is based on modifying the rational 1-forms

$$\frac{\begin{vmatrix} z_i & z_j \\ dz_i & dz_j \end{vmatrix}}{z_j^2} = \frac{z_i}{z_j} \begin{vmatrix} 1 & 1 \\ \frac{dz_i}{z_i} & \frac{dz_j}{z_j} \end{vmatrix} = d\left(\frac{z_i}{z_j}\right), \quad i \neq j$$

ī

ī

(where $[z_0, z_1, z_2]$ are the homogeneous coordinates of $\mathbf{P}^2(\mathbf{k})$), or more generally rational 1-forms of the type

$$\beta d\left(\frac{z_j}{z_k}\right) - \alpha d\left(\frac{z_i}{z_k}\right) = \begin{vmatrix} 1 & 1\\ \alpha d\left(\frac{z_i}{z_k}\right) & \beta d\left(\frac{z_j}{z_k}\right) \end{vmatrix}, \quad 0 \le i, j, k \le 2, \ \alpha, \beta \in \mathbf{k}.$$

Any rational 1-form on $\mathbf{P}^2(\mathbf{k})$ is a linear combination of these forms (over the rational function field). We introduce formally the notion of 1-forms of Wronskian type: DEFINITION 1. Let C be a curve in $\mathbf{P}^2(\mathbf{k})$. A differential 1-form ω on C is said to be a 1-form of Wronskian type if $\omega = (fdg - gdf)h$ for some f, g, and h in the function field of C.

We look for polynomials P such that the curves defined by F(X, Y, Z) = 0 (resp. $F_c(X, Y, Z) = 0, c \neq 0, 1$) have no linear component. Then we construct, on each of these curves, a 1-form ω of Wronskian type whose restriction to the curve is regular. If C has a rational irreducible component L then the pull-back of ω to L must be identically zero, as there are no non-trivial regular 1-forms on a rational curve. The Wronskian condition implies that if f and g are rational functions such that the image of the map ϕ defined by (f, g, 1) is contained in C = F(X, Y, 1) then either f and g are pth powers or the image of ϕ is contained in a line (see the proof of Lemmas 1 and 2 below).

Let Q(X, Y, Z) be a non-trivial homogeneous polynomial in X, Y, Z and C = [Q = 0] be the curve defined by Q. By Euler's Theorem the condition Q = 0 is equivalent to

(3.1)
$$X \frac{\partial Q}{\partial X}(X,Y,Z) + Y \frac{\partial Q}{\partial Y}(X,Y,Z) + Z \frac{\partial Q}{\partial Z}(X,Y,Z) = 0.$$

The (Zariski) tangent space of C is defined by the equations Q = 0 and

(3.2)
$$\frac{\partial Q}{\partial X}(X,Y,Z)dX + \frac{\partial Q}{\partial Y}(X,Y,Z)dY + \frac{\partial Q}{\partial Z}(X,Y,Z)dZ = 0.$$

If $\frac{\partial Q}{\partial X}(X, Y, Z) \neq 0$, $\frac{\partial Q}{\partial Y}(X, Y, Z) \neq 0$, $\frac{\partial Q}{\partial Z}(X, Y, Z) \neq 0$, then, by Cramer's rule,

(3.3)
$$\frac{\begin{vmatrix} X & Y \\ dX & dY \end{vmatrix}}{\frac{\partial Q}{\partial Z}(X, Y, Z)} \equiv \frac{\begin{vmatrix} Y & Z \\ dY & dZ \end{vmatrix}}{\frac{\partial Q}{\partial X}(X, Y, Z)} \equiv \frac{\begin{vmatrix} Z & X \\ dZ & dX \end{vmatrix}}{\frac{\partial Q}{\partial Y}(X, Y, Z)}$$

.

defines a rational 1-form of Wronskian type on $\pi^{-1}(C)$ where $\pi : \mathbf{k}^3 \setminus \{0\} \to \mathbf{P}^2(\mathbf{k})$ is the projection map. More precisely, each of the rational 1-forms

$$\frac{\begin{vmatrix} X & Y \\ dX & dY \end{vmatrix}}{\frac{\partial Q}{\partial Z}(X, Y, Z)}, \qquad \frac{\begin{vmatrix} Y & Z \\ dY & dZ \end{vmatrix}}{\frac{\partial Q}{\partial X}(X, Y, Z)}, \qquad \frac{\begin{vmatrix} Z & X \\ dZ & dX \end{vmatrix}}{\frac{\partial Q}{\partial Y}(X, Y, Z)}$$

is well defined on $\mathbf{k}^3 \setminus \{0\}$ and the identity (3.3) says that the pull-backs of these 1-forms to $\pi^{-1}(C)$ are identical. To realize these forms defined on $\mathbf{k}^3 \setminus \{0\}$ as forms on $\mathbf{P}^2(\mathbf{k})$ we replace the homogeneous coordinates by inhomogeneous ones. For example,

$$\frac{\begin{vmatrix} X & Y \\ dX & dY \end{vmatrix}}{\frac{\partial Q}{\partial Z}(X, Y, Z)} = \frac{XdY - YdX}{\frac{\partial Q}{\partial Z}(X, Y, Z)} = -\frac{X^2}{\frac{\partial Q}{\partial Z}(X, Y, Z)} d\left(\frac{Y}{X}\right)$$

where d(Y/X) is a well defined rational 1-form on $\mathbf{P}^2(\mathbf{k})$ because Y/X is a well defined rational function on $\mathbf{P}^2(\mathbf{k})$. Suppose that deg $Q = q \ge 3$. Then, for any homogeneous polynomial R of degree q - 3, $X^2 R/(\partial Q/\partial Z)$ is a well defined rational function on $\mathbf{P}^2(\mathbf{k})$, hence

$$R(X,Y,Z)\frac{\begin{vmatrix} X & Y \\ dX & dY \end{vmatrix}}{\frac{\partial Q}{\partial Z}(X,Y,Z)} = -\frac{X^2 R(X,Y,Z)}{\frac{\partial Q}{\partial Z}(X,Y,Z)} d\left(\frac{Y}{X}\right)$$

is a well defined rational 1-form of Wronskian type on $\mathbf{P}^2(\mathbf{k})$. If deg $Q \leq 3$ then for any homogeneous polynomial R of degree 3 - q,

$$\frac{1}{R(X,Y,Z)} \frac{\begin{vmatrix} X & Y \\ dX & dY \end{vmatrix}}{\frac{\partial Q}{\partial Z}(X,Y,Z)} = -\frac{X^2}{R(X,Y,Z)\frac{\partial Q}{\partial Z}(X,Y,Z)} d\left(\frac{Y}{X}\right)$$

is a well defined rational 1-form of Wronskian type on $\mathbf{P}^2(\mathbf{k})$. Suppose that $f_i, 0 \leq i \leq 2$ (at least one of them not identically zero), are non-archimedean entire functions such that $Q(f_0, f_1, f_2) \equiv 0$, i.e., the image of the map $f = [f_0, f_1, f_2] : \mathbf{k} \to \mathbf{P}^2(\mathbf{k})$ is contained in C. Then we have

$$f_0 \frac{\partial Q}{\partial X}(f_0, f_1, f_2) + f_1 \frac{\partial Q}{\partial Y}(f_0, f_1, f_2) + f_2 \frac{\partial Q}{\partial Z}(f_0, f_1, f_2) = 0,$$

$$f'_0 \frac{\partial Q}{\partial X}(f_0, f_1, f_2) + f'_1 \frac{\partial Q}{\partial Y}(f_0, f_1, f_2) + f'_2 \frac{\partial Q}{\partial Z}(f_0, f_1, f_2) = 0.$$

If all three partial derivatives $\frac{\partial Q}{\partial X}(f_0, f_1, f_2)$, $\frac{\partial Q}{\partial Y}(f_0, f_1, f_2)$, $\frac{\partial Q}{\partial Z}(f_0, f_1, f_2)$ are not identically zero, then by Cramer's rule, we have

(3.4)
$$\frac{W(f_0, f_1)}{\frac{\partial Q}{\partial Z}(f_0, f_1, f_2)} \equiv \frac{W(f_1, f_2)}{\frac{\partial Q}{\partial X}(f_0, f_1, f_2)} \equiv \frac{W(f_2, f_0)}{\frac{\partial Q}{\partial Y}(f_0, f_1, f_2)}$$

where

$$W(f_i, f_j) := \begin{vmatrix} f_i & f_j \\ f'_i & f'_j \end{vmatrix} = f_i f'_j - f_j f'_i$$

is the Wronskian of f_i and f_j . The method of constructing a 1-form of Wronskian type is particularly useful in the following situation. An entire function is said to be a *pth power* if it can be represented as a convergent power series of the form $\sum_i a_i X^{pi}$, and a meromorphic function is said to be a *pth* power if it is the quotient of two entire functions of *pth* power.

LEMMA 1. Let P(X) be a polynomial of degree n divisible by p and $P(0) \neq 0$. Suppose that $P'(X) = m\gamma X^{m-1}$ with $\gamma \neq 0$ and $m \geq 3$ is a positive integer relatively prime to p. Then for each $c \neq 0, 1, P(f) \neq cP(g)$, for all meromorphic functions f and g which are not pth powers.

Proof. From the given properties of P(X), we have $P(X) = Q(X) + \gamma X^m$ where Q is a pth power polynomial with deg Q = n. Let $F_c(X, Y, Z)$ be the homogenization of the polynomial $F_c(X, Y, 1) = P(X) - cP(Y)$:

$$F_c(X, Y, Z) = Q(X, Z) - cQ(Y, Z) + \gamma X^m Z^{n-m} - c\gamma Y^m Z^{n-m}$$

where Q(X, Z) denotes the homogenization of Q(X). Hence

$$\begin{aligned} &\frac{\partial F_c}{\partial X}(X,Y,Z) = m\gamma X^{m-1}Z^{n-m},\\ &\frac{\partial F_c}{\partial Y}(X,Y,Z) = -m\gamma Y^{m-1}Z^{n-m},\\ &\frac{\partial F_c}{\partial Z}(X,Y,Z) = (n-m)\gamma Z^{n-m-1}(X^m - cY^m). \end{aligned}$$

The common zeros of the preceding equations are all points with Z = 0and also the point (0,0,1). However the point (0,0,1) is not on the curve $C_c = \{F_c(X,Y,Z) = 0\} \subset \mathbf{P}^2(\mathbf{k}), c \neq 1$, for if P(0) - cP(0) = 0 and $P(0) \neq 0$ then c = 1. We now consider the following rational 1-form, well defined on $\mathbf{P}^2(\mathbf{k})$:

$$\omega := \begin{vmatrix} Y/X & Z/X \\ d(Y/X) & d(Z/X) \end{vmatrix} = \frac{\begin{vmatrix} Y & Z \\ dY & dZ \end{vmatrix}}{X^2}.$$

Rewrite ω as

(3.5)
$$\omega = X^{m-3}\eta, \quad \eta = \frac{\begin{vmatrix} Y & Z \\ dY & dZ \end{vmatrix}}{X^{m-1}}.$$

Note that η is not well defined on $\mathbf{P}^2(\mathbf{k})$ but is a well defined rational 1-form on $\mathbf{k}^3 \setminus \{0\}$. From (3.4) and the expressions above for $\partial F_c / \partial X$, $\partial F_c / \partial Y$, we see that, on the curve $\pi^{-1}(C_c) \subset \mathbf{k}^3 \setminus \{0\}$ (where $\pi : \mathbf{k}^3 \setminus \{0\} \to \mathbf{P}^2(\mathbf{k})$ is the standard projection):

(3.6)
$$\eta = \frac{\begin{vmatrix} Y & Z \\ dY & dZ \end{vmatrix}}{X^{m-1}} \equiv -\frac{\begin{vmatrix} Z & X \\ dZ & dX \end{vmatrix}}{Y^{m-1}}.$$

The LHS of (3.6) is regular except possibly when X = 0 (note that the numerator may vanish when X = 0); on the other hand the RHS is regular except possibly when Y = 0; hence it is regular with the possible exception at X = Y = 0. By (3.5), when $m \ge 3$, the same is true for ω . However, as observed earlier, the point (0, 0, 1) is not in $C_c = \{F_c(X, Y, Z) = 0\}, c \ne 1$. Suppose that there exists a non-constant holomorphic map $\phi = [f_0, f_1, f_2]$: $\mathbf{k} \to C_c \subset \mathbf{P}^2(\mathbf{k})$. Since $f_2 \not\equiv 0$ (otherwise the map is constant) we may represent the map as $\phi = [f = f_0/f_2, g = f_1/f_2, 1]$. The condition $\phi(\mathbf{k}) \subset C_c$ implies that $P(f) - cP(g) \equiv 0$ and $\phi^* \omega \equiv 0$. By the definition of ω this implies that (using the expression on the LHS of (3.6)) $-g' = W(g, 1) \equiv 0$, i.e., g is a pth power. Analogously, using the expression on the RHS of (3.6) yields $f' = W(1, f) \equiv 0$, i.e., f is a pth power.

Note that in the preceding lemma, if n = m+1 then the curve $F_c(X, Y) = P(X) - cP(Y), c \neq 0, 1$, is non-singular, and the preceding proof can be simplified by using the classical genus formula. However, for n > m+1 the curve is singular and the classical genus formula cannot be applied unless we know that the curve is irreducible. Irreducibility is a condition that is usually very difficult to verify. The Wronskian construction bypasses this difficulty. Next we deal with the curve F(X,Y) = (P(X) - P(Y))/(X - Y) = 0. The case of F(X,Y) is more complicated. In the present situation the curve F(X,Y) = 0 turns out to be always singular for the class of polynomials P under consideration. As we shall see the Wronskian construction still works provided that we impose one (fairly minor) additional condition (see condition (C3) below) on the polynomial P, as counter-examples for uniqueness exist without this condition (see Section 5). The conditions on P in Lemma 1 may be equivalently stated as follows:

(C1)
$$P(X) = Q(X) + \gamma X^m + b, \quad \gamma \neq 0, \ b \neq 0, \ 1 \le m < n,$$

m and n are relatively prime where Q(X) is a pth power polynomial:

(C2)
$$Q(X) = \sum_{l=0}^{q} a_l X^{n_l}, \quad n_l = p^{\alpha_l} \beta_l,$$

 $0 < n_0 < n_1 < \ldots < n_q = n$. Thus the polynomial F(X, Y) is of the form

(3.7)
$$F(X,Y) = \sum_{l=0}^{q} Q_l(X,Y) + \gamma \left(\sum_{i=0}^{m-1} X^{m-i-1} Y^i\right)$$

where

$$Q_{l}(X,Y) = a_{l}(X-Y)^{p^{\alpha_{l}}-1} \Big(\sum_{i=0}^{\beta_{l}-1} X^{\beta_{l}-i-1}Y^{i}\Big)^{p^{\alpha_{l}}}$$

We shall impose an additional condition on the lowest degree term of Q(X):

$$(C3) p^{\alpha_0}\beta_0 = n_0 < m.$$

In other words, γX^m is not the term of the lowest degree of the polynomial P(X) - P(0) = P(X) - b. Note that the condition (C3) implies that $m \ge 3$.

LEMMA 2. Let $P(X) = Q(X) + \gamma X^m + b$ be a polynomial of degree n satisfying the conditions of Lemma 1, and assume in addition that m is not the lowest degree term of P(X) - b. Then $F(f,g) \neq 0$ for all $f, g \in \mathcal{M}^*(\mathbf{k})$ which are not pth powers.

Proof. As remarked prior to the lemma, the conditions on P are equivalent to the conditions (C1), (C2) and (C3). Let F(X, Y, Z) be the homog-

enization of the polynomial F(X, Y, 1) = F(X, Y) (see (3.7)):

$$F(X, Y, Z) = \sum_{l=0}^{q} a_l (X - Y)^{p^{\alpha_l} - 1} \left(\sum_{i=0}^{\beta_l - 1} X^{\beta_l - i - 1} Y^i\right)^{p^{\alpha_l}} + \gamma Z^{n - m} \sum_{i=0}^{m-1} X^{m - i - 1} Y^i$$

with the gradient

$$\frac{\partial F}{\partial X}(X,Y,Z) = \frac{m\gamma(X-Y)X^{m-1}Z^{n-m} - F(X,Y,Z)}{(X-Y)^2},$$
$$\frac{\partial F}{\partial Y}(X,Y,Z) = \frac{-m\gamma(X-Y)Y^{m-1}Z^{n-m} + F(X,Y,Z)}{(X-Y)^2},$$
$$\frac{\partial F}{\partial Z}(X,Y,Z) = -(n-m)\gamma Z^{n-m-1}\sum_{i=0}^{m-1} X^{m-i-1}Y^i.$$

On the curve $C = \{F(X, Y, Z) = 0\}$ these reduce to

$$\begin{split} &\frac{\partial F}{\partial X}(X,Y,Z) = \frac{m\gamma X^{m-1}Z^{n-m}}{X-Y},\\ &\frac{\partial F}{\partial Y}(X,Y,Z) = \frac{-m\gamma Y^{m-1}Z^{n-m}}{X-Y},\\ &\frac{\partial F}{\partial Z}(X,Y,Z) = m\gamma Z^{n-m-1}\sum_{i=0}^{m-1}X^{m-i-1}Y^i. \end{split}$$

Consider the 1-form

$$\eta := \frac{(X - Y)}{ZX^{m-1}} \begin{vmatrix} Y & Z \\ dY & dZ \end{vmatrix}.$$

Note that η is well defined only on $\mathbf{k}^3 \setminus \{0\}$. By (3.4) the restriction of η to the curve $\pi^{-1}(C)$ where $C = \{F(X, Y, Z) = 0\} \subset \mathbf{P}^2(\mathbf{k})$ may also be expressed as

(3.8)
$$\eta := \frac{(X-Y) \begin{vmatrix} Y & Z \\ dY & dZ \end{vmatrix}}{ZX^{m-1}}$$
$$\equiv -\frac{(X-Y) \begin{vmatrix} Z & X \\ dZ & dX \end{vmatrix}}{ZY^{m-1}} \equiv -\frac{\begin{vmatrix} X & Y \\ dX & dY \end{vmatrix}}{\sum_{i=0}^{m-1} X^{m-i-1}Y^{i}}.$$

The 1-form is well defined only on $\mathbf{k}^3 \setminus \{0\}$. As remarked earlier, for any

homogeneous polynomial B of degree 2,

$$\varrho = \frac{1}{B} \begin{vmatrix} Y & Z \\ dY & dZ \end{vmatrix}$$

is a well defined rational 1-form on the projective space, hence we may multiply ρ by any rational function (i.e., quotient of two homogeneous polynomial of the same degree) on the projective space to get a well defined rational 1-form. This means that we need to multiply η by a homogeneous polynomial of degree $m-3 \ge 0$ to get a well defined 1-form on the projective space. With this in mind we introduce the following rational 1-form ω well defined on $\mathbf{P}^2(\mathbf{k})$:

$$\omega := (X^{\beta_0 - 1} + X^{\beta_0 - 2}Y + \dots + Y^{\beta_0 - 1})^{p^{\alpha_0}} (X - Y)^{m - 3 - (\beta_0 - 1)p^{\alpha_0}} \eta$$

=
$$\frac{(X^{\beta_0 - 1} + X^{\beta_0 - 2}Y + \dots + Y^{\beta_0 - 1})^{p^{\alpha_0}} (X - Y)^{m - 2 - (\beta_0 - 1)p^{\alpha_0}}}{ZX^{m - 1}} \begin{vmatrix} Y & Z \\ dY & dZ \end{vmatrix}.$$

From (3.8), we see that η , hence also ω , has no poles except possibly at (0, 0, 1). Indeed, from the identity

$$\frac{(X-Y)\begin{vmatrix} Y & Z \\ dY & dZ \end{vmatrix}}{ZX^{m-1}} \equiv -\frac{\begin{vmatrix} X & Y \\ dX & dY \end{vmatrix}}{\sum_{i=0}^{m-1} X^{m-i-1}Y^{i}}$$

we infer that there is no pole along Z = 0, since the points of the curve C at infinity are of the form $\{(1, \nu, 0) \mid \nu^n = 1\}$ and the denominator of the LHS does not vanish at such points because m is relatively prime to n.

We now check that ω is regular at (0,0,1). Let $D(0;\varepsilon) := \{u \in \mathbf{k} \mid |u|_v < \varepsilon\}$ be an open disc centered at the origin with radius $\varepsilon > 0$. Let $\psi = (x, y, 1)$ be any local analytic map from $D(0;\varepsilon)$ to the curve C such that $\psi(0) = (0,0,1)$. It suffices to show that $\operatorname{ord}_0 \omega(x, y, 1) \ge 0$. By symmetry it is clear that $\operatorname{ord}_0(x) = \operatorname{ord}_0(y) := \mu$. This implies that $\operatorname{ord}_0(x-y) \ge \mu$ and $\operatorname{ord}_0(x^i) = \operatorname{ord}_0(y^i)$ for all i, hence

$$\operatorname{ord}_{0}(Q_{l}(x,y)) = \operatorname{ord}_{0}\left((x-y)^{p^{\alpha_{l}}-1} \left(\sum_{i=0}^{\beta_{l}-1} x^{\beta_{l}-1-i} y^{i}\right)^{p^{\alpha_{l}}}\right) \ge (p^{\alpha_{l}}\beta_{l}-1)\mu$$

for all l and

$$\operatorname{ord}_0\left(\sum_{i=0}^{m-1} x^{m-1-i} y^i\right) \ge (m-1)\mu.$$

Since $p^{\alpha_0}\beta_0$ is the lowest degree of the non-constant monomials in the polynomial P(X), we infer that

$$\{(m-1)\mu, \min_{1 \le l \le q} \{(p^{\alpha_l}\beta_l - 1)\mu\}\} > (p^{\alpha_0}\beta_0 - 1)\mu.$$

On the curve $C = \{F(X, Y, Z) = 0\},\$

$$Q_0(X,Y) = -\sum_{1 \le l \le q} Q_l(X,Y) - \gamma \sum_{i=0}^{m-1} X^{m-1-i} Y^i,$$

hence

$$\operatorname{ord}_{0}(Q_{0}(x,y)) \ge \min \bigg\{ \min_{1 \le l \le q} \{ \operatorname{ord}_{0}(Q_{l}(x,y)) \}, \operatorname{ord}_{0} \bigg(\sum_{i=0}^{m-1} x^{m-1-i} y^{i} \bigg) \bigg\},$$

which is equivalent to

ord₀
$$\left((x-y)^{p^{\alpha_0}-1} \left(\sum_{i=0}^{\beta_0-1} x^{\beta_0-1-i} y^i \right)^{p^{\alpha_0}} \right) > (p^{\alpha_0}\beta_0 - 1)\mu.$$

This last inequality implies that

$$(3.9) ord_0(x-y) > \mu$$

or

(3.10)
$$\operatorname{ord}_{0}\left(\sum_{i=0}^{\beta_{0}-1} x^{\beta_{0}-1-i} y^{i}\right) > (\beta_{0}-1)\mu.$$

To estimate the order of ω at 0 note that $\operatorname{ord}_0 x' = \operatorname{ord}_0 x - 1 = \mu - 1$, hence

$$\operatorname{ord}_0 \begin{vmatrix} y & 1 \\ y' & 0 \end{vmatrix} \ge \mu - 1.$$

If (3.9) holds the order of $\omega(x, y, 1)$ at 0 is at least

$$p^{\alpha_0}(\beta_0 - 1)\mu + (m - 2 - p^{\alpha_0}(\beta_0 - 1))(\mu + 1) + \mu - 1 - (m - 1)\mu$$

= $m - \beta_0 p^{\alpha_0} + p^{\alpha_0} - 3 \ge p^{\alpha_0} - 2 \ge 0.$

If (3.10) holds then this order is at least

$$p^{\alpha_0}((\beta_0 - 1)\mu + 1) + (m - 2 - p^{\alpha_0}(\beta_0 - 1))\mu + \mu - 1 - (m - 1)\mu$$

= $p^{\alpha_0} - 1 > 0.$

This shows that ω is regular at (0,0,1). Therefore ω is regular on $C = \{F(X,Y,Z) = 0\}.$

Suppose that the curve has a component, C', of genus zero; then the restriction of ω to C', being a regular 1-form, must be identically zero. Since the genus of C' is zero there exists a non-trivial holomorphic map $\phi = [f_0, f_1, f_2] : \mathbf{k} \to C' \subset \mathbf{P}^2(\mathbf{k})$. Since $f_2 \not\equiv 0$ (otherwise the map is constant) we may represent the map as $\phi = [f = f_0/f_2, g = f_1/f_2, 1]$. The condition that $\phi(\mathbf{k}) \subset C'$ implies that $(P(f) - P(g))/(f - g) \equiv 0$ and $\phi^* \omega \equiv 0$. By the definition of ω this means that either $\phi^* \eta \equiv 0$ or $(f^{\beta_0-1} + f^{\beta_0-2}g + \ldots + g^{\beta_0-1})^{p^{\alpha_0}}(f - g)^{m-3-(\beta_0-1)p^{\alpha_0}} \equiv 0$. The second alternative is eliminated, since F(X, Y) has no linear factor by Proposition 4 and $(X^{\beta_0-1} + X^{\beta_0-2}Y + \ldots + Y^{\beta_0-1})^{p^{\alpha_0}}$ decomposes into linear factors as the field is algebraically closed. The first alternative is eliminated because $\phi^*\eta \equiv 0$ implies that $-g' = W(g,1) \equiv 0$, and $f' = W(1,f) \equiv 0$, i.e., f and g are pth powers contrary to the assumption that f is not a pth power.

Proof of Theorem 2. By Proposition 3 there is no loss of generality in assuming that $\alpha = 0$. Suppose that f and g are two non-constant meromorphic functions such that $P(f) = \beta P(g)$ for some constant $\beta \neq 0$. If f and g are not pth powers then Lemmas 1 and 2 imply that $\beta = 1$ and $f \equiv g$. It remains to deal with the case where f is a pth power. Suppose that $f = f_0^{p^i}$, $i \geq 1$, where f_0 is not a pth power. We claim that g is also a pth power. Differentiating the identity $P(f) = \beta P(g)$, using the assumption on P, yields

$$\beta g^{m-1}g' = \gamma f^{m-1}f' \equiv 0,$$

which implies that g is also a pth power so $g = g_0^{p^l}$ for some $l \ge 1$ and g_0 is not a pth power. Indeed, g is also a p^i th power (i.e., i = l). This can be seen by using the expression (1.2) in the introduction:

$$P_S(X) = \sum_{0 \le j \le n, \ p|j} a_j X^j + a X^m + b.$$

Let \hat{a} , \hat{b} , \hat{a}_j be chosen such that $\hat{a}^{p^i} = a$, $\hat{b}^{p^i} = b$, $\hat{a}_j^{p^i} = a_j$ and define a polynomial

$$P_0(X) = \sum_{0 \le j \le n, \ p|j} \widehat{a}_j X^j + \widehat{a} X^m + \widehat{b};$$

then $P_S(f) = P_0(f_0)^{p^i}$. Similarly, $P_S(g) = P_1(g_0)^{p^l}$ where

$$P_1(X) = \sum_{0 \le j \le n, \, p \mid j} \widetilde{a}_j X^j + \widetilde{a} X^m + \widetilde{b},$$

and \tilde{a} , \tilde{b} , \tilde{a}_j are chosen such that $\tilde{a}^{p^l} = a$, $\tilde{b}^{p^l} = b$, $\tilde{a}^{p^l}_j = a_j$. Thus $P(f) = \beta P(g)$ implies that $P_0(f_0)^{p^i} = \beta P_1(g_0)^{p^l}$. If $l \leq i$ then $P_0(f_0)^{p^{i-l}} = \gamma P_1(g_0)$, where $\gamma^{p^l} = \beta$, is not a *p*th power by the assumptions on P_S and that g_0 is not a *p*th power. This implies that i = l and that $P_0(f_0) = \beta P_0(g_0)$. By construction the polynomial P_0 satisfies the assumptions of the theorem, and since f_0 and g_0 are not *p*th powers we conclude as before that $\beta = 1$ and $f_0 \equiv g_0$, which, of course, implies that $f \equiv g$. This shows that P_S is a strong uniqueness polynomial for $\mathcal{M}^*(\mathbf{k})$. By property (P1) in the introduction P_S is also a strong uniqueness polynomial for $\mathcal{A}^*(\mathbf{k})$. Finally property (P3) asserts that this is equivalent to the set S being a unique range set for $\mathcal{A}^*(\mathbf{k})$.

4. Application of the Truncated Second Main Theorem. In this section, we will deal with polynomials of the form $P(X) = X^n + aX^m + b$ where *n* is a power of *p*, *m* is prime to *n* and $ab \neq 0$. This type of polynomial was discussed by Boutabaa, Cherry and Escassut in [2]. However their results do not cover all possible cases of (strong) uniqueness polynomials for $\mathcal{A}^*(\mathbf{k})$ and $\mathcal{M}^*(\mathbf{k})$. The main tool for this is the Truncated Second Main Theorem (see [3]):

THEOREM (Second Main Theorem in positive characteristic). Let $f = f_1/f_2$ where f_1, f_2 are entire functions without common zeros and assume that f is not a pth power. Let c_1, \ldots, c_q be q distinct elements in \mathbf{k} . Then

$$(q-2)\max\{T_{f_1}(t), T_{f_2}(t)\} \le \sum_{i=1}^q N_1(f-c_i, t) - \log t + O(1)$$

where $N_1(f - c_i, t)$ is the counting function of $f - c_i$, with the number of zeros counted without multiplicity.

For the case of function fields of positive characteristic the Second Main Theorem for rational functions can be found in [9] and [10].

LEMMA 3. Let $P(X) = X^n + aX^m + b$, with $m < n = p^r s$, $r, s \ge 1$, $p \nmid s$, m prime to n and $ab \ne 0$. Then

(i) P(X) is a uniqueness polynomial for $\mathcal{M}^*(\mathbf{k})$ if

$$(n,m) \notin \{(2p^r,1), (p^r,1)\} \cup \{(p^r,2)\} \cup \{(5,3)\} \cup \{(n,n-1)\},\$$

(ii) P(X) is a uniqueness polynomial for $\mathcal{A}^*(\mathbf{k})$ if

$$s \ge 2$$
 or $s = 1$ and $3 \le m \le n - 2$.

Proof. By Proposition 1, to show that P(X) is a uniqueness polynomial for $\mathcal{M}^*(\mathbf{k})$ (resp. $\mathcal{A}^*(\mathbf{k})$) it suffices to consider P(f) for rational functions f (resp. polynomials). Suppose that f and g are two distinct non-constant rational functions such that P(f) = P(g). As in the proof of Theorem 2 we may assume that neither f nor g is a pth power. Next we represent the rational functions as

$$f = \frac{hf_1}{f_2}, \quad g = \frac{hg_1}{f_2}$$

where h, f_1, g_1, f_2 are polynomials such that (1) f_1 and g_1 are relatively prime (i.e., no common zeros) and (2) f_2 is relatively prime to h. The condition that P(f) = P(g) is equivalent to

$$h^{n-m}(f_1^s - g_1^s)^{p^r} = -af_2^{n-m}(f_1^m - g_1^m).$$

We now claim that f_1/g_1 is not a *p*th power. If it is, then both f_1 and g_1 have to be *p*th powers since f_1 and g_1 are relatively prime. Hence the above identity shows that h/f_2 is also a *p*th power. This implies that $f = hf_1/f_2$

is also a *p*th power, which contradicts our assumption. Decomposing the above identity into linear factors we get, as $n = p^r s$,

(4.1)
$$h^{p^r s - m} (f_1 - g_1)^{p^r - 1} \prod_{i=1}^{s-1} (f_1 - \mu_i g_1)^{p^r} = -a f_2^{p^r s - m} \prod_{i=1}^{m-1} (f_1 - \nu_i g_1)$$

where $\mu_i, i = 1, \ldots, s - 1$ (resp. $\nu_i, 1 \leq i \leq m - 1$), are the distinct (as s and m are relatively prime to p) roots of the polynomials $X^{s-1} + X^{s-2} + \ldots + X + 1$ (resp. $X^{m-1} + X^{m-2} + \ldots + X + 1$). In fact the set $\{1, \mu_1, \ldots, \mu_{s-1}, \nu_1, \ldots, \nu_{m-1}\}$ consists of mutually distinct elements as m is relatively prime to $n = p^r s$. If ξ is a root of $f_1 = g_1$, then since f_1 and g_1 have no common zero, $f_1(\xi) = g_1(\xi) \neq 0$. This implies, as $\nu_i \neq 1$, that $f_1(\xi) \neq \nu_i g_1(\xi)$ for $i = 1, \ldots, m - 1$. Conversely, a root of $f_1 - \nu_i g_1$ is not a root of $f_1 - g_1$ either. For the same reason, as μ_i and ν_j are distinct for all i, j, $f_1 - \mu_i$ and $f_1 - \nu_j g_1$ have no common zeros. Putting all these together we conclude that

$$[h^{p^r s - m} = 0] = \left[\prod_{i=1}^{m-1} (f_1 - \nu_i g_1) = 0\right],$$
$$\left[(f_1 - g_1)^{p^r - 1} \prod_{i=1}^{s-1} (f_1 - \mu_i g_1)^{p^r} = 0\right] = [f_2^{p^r s - m} = 0]$$

where the bracket indicates the divisors of zero counting multiplicity. Consequently, we have

$$\prod_{i=1}^{m-1} (f_1 - \nu_i g_1) = bh^{p^r s - m}$$

for some constant b; in particular, $\prod_{i=1}^{m-1} (f_1 - \nu_i g_1)$ is a $(p^r s - m)$ th power. As $\nu_i \neq \nu_j$ for $i \neq j$, we conclude that $f_1 - \nu_i g_1$ is a $(p^r s - m)$ th power for each i and so

(4.2)
$$N_1\left(\frac{f_1}{g_1} - \nu_i\right) \le \frac{1}{p^r s - m} N\left(\frac{f_1}{g_1} - \nu_i\right).$$

Analogously,

(4.3)
$$(f_1 - g_1)^{p^r - 1} \prod_{i=1}^{s-1} (f_1 - \mu_i g_1)^{p^r} = c_1 f_2^{p^r s - m}$$

for some constant c_1 . Again, since $f_1 - g_1$ and $f_1 - \mu_i g_1$ have no common roots we conclude that

$$(p^r - 1) \operatorname{ord}_{\xi}(f_1 - g_1) = (p^r s - m) \operatorname{ord}_{\xi} f_2$$

if ξ is a root of $f_1 - g_1$. This implies that

(4.4)
$$N_1\left(\frac{f_1}{g_1}-1\right) \le \frac{\gcd(p^r s - m, p^r - 1)}{p^r s - m} N\left(\frac{f_1}{g_1}-1\right)$$

provided that $p^r s - m > 0$. Analogously we also have

$$p^r \operatorname{ord}_{\xi_i}(f_1 - \mu_i g_1) = (p^r s - m) \operatorname{ord}_{\xi_i} f_2$$

if ξ_i is a root of $f_1 - \mu_i g_1$. Since p^r and $p^r s - m$ are relatively prime, $\operatorname{ord}_{\xi_i}(f_1 - \mu_i g_1)$ is a multiple of $p^r s - m$ and so

(4.5)
$$N_1\left(\frac{f_1}{g_1} - \mu_i\right) \le \frac{1}{p^r s - m} N\left(\frac{f_1}{g_1} - \mu_i\right)$$

provided that $p^r s - m > 0$. The Second Main Theorem, applied to f_1/g_1 and $1, \mu_1, \ldots, \mu_{s-1}, \nu_1, \ldots, \nu_{m-1}$, yields (by (4.2) and (4.4) and (4.5)) $(m+s-3) \max\{\deg f_1, \deg g_1\}$

$$\leq N_1 \left(\frac{f_1}{g_1} - 1\right) + \sum_{i=1}^{s-1} N_1 \left(\frac{f_1}{g_1} - \mu_i\right) + \sum_{i=1}^{m-1} N_1 \left(\frac{f_1}{g_1} - \nu_i\right) - 1$$

$$\leq \frac{1}{p^r s - m} \left\{ \gamma N \left(\frac{f_1}{g_1} - 1\right) + \sum_{i=1}^{s-1} N \left(\frac{f_1}{g_1} - \mu_i\right) + \sum_{i=1}^{m-1} N \left(\frac{f_1}{g_1} - \nu_i\right) \right\} - 1$$

$$\leq \left(\frac{\gamma + m + s - 2}{p^r s - m}\right) \max\{\deg f_1, \deg g_1\} - 1,$$

where $\gamma = \gcd(p^r s - m, p^r - 1)$ provided that $p^r s - m > 0$. This implies that (4.6) $(m + s - 3)(p^r s - m - 1) < \gamma + 1 \le p^r s - m + 1$,

which in particular yields

(4.7)
$$(m+s-4)(p^rs-m-1) < 2.$$

Thus, for (n, m) in the cases:

(1) $m = n - 2 = p^r s - 2$, $m + s \ge 6$, (2) $m \le n - 3 = p^r s - 3$, $m + s \ge 5$, we have $(m + s - 3)(p^r s - m - 1) \ge 2$ contradicting (4.7). In other words, any (n, m) in cases (1) and (2) yields a uniqueness polynomial.

On the other hand, if $n - m = p^r s - m = 1$ then (4.6) is satisfied, hence (n,m) = (n,n-1) must be excluded. Note that (4.6) is automatically satisfied if $m + s \leq 3$ ($m \geq 1, s \geq 1$), thus $(n,m) = (2p^r,1), (p^r,1)$ and $(p^r,2)$ must also be excluded. To see which other cases should be excluded we need only consider those (n,m) such that $m \leq n-2$ and $m + s \geq 4$. If $m \geq 5$ then $m + s \geq 6$ is automatically satisfied, thus these are not to be excluded (by (1) and (2) above). If m = 4, then $n \neq m+2$ since mand n are relatively prime. Thus, $m \leq n-3$, and in this case, $m + s \geq 5$ is automatically satisfied. These are not to be excluded by (2) above. It remains to consider the case $m \leq 3$ and m + s = 4. Clearly we have either m = 3, s = 1 or m = 1, s = 3 (the case m = s = 2 is eliminated by the assumption that n, m are relatively prime). If m = 3, s = 1 it is easily seen that $\gamma = \gcd(p^r - 3, p^r - 1) \leq 2$. In these cases (4.7) is not useful but we deduce from (4.6) that $0 \leq p^r - 4 = p^r s - m - 1 < \gamma + 1 \leq 3$ and we again arrive at a contradiction, except in the cases (n, m) = (4, 3), (5, 3). Thus these two cases have to be excluded. If m = 1, s = 3 then the greatest common divisor of $(3p^r - 1, p^r - 1)$ is again at most 2, hence (4.6) implies that $3p^r - 1 < 3$, which is impossible. Thus none of these are excluded. This completes the proof of (i).

If $f \neq g$ are non-constant polynomials then $f_2 = 1$, hence, by (4.3), $f_1-g_1, f_1-\mu_i g_1, 1 \leq i \leq s-1$, are constants. If $s \geq 2$, then this implies that f_1 and g_1 are constants, contradicting our assumption. Therefore it suffices to consider the case s = 1. In this case, $f_1 - g_1 = c \neq 1$ is still a constant, and by applying the Second Main Theorem to f_1/g_1 and $1, \nu_1, \ldots, \nu_{m-1}$ we get

$$(m-2)\max\{\deg f_1, \deg g_1\} \le N_1\left(\frac{f_1}{g_1} - 1\right) + \sum_{i=1}^{m-1} N_1\left(\frac{f_1}{g_1} - \nu_i\right) - 1$$
$$\le \frac{1}{n-m} \sum_{i=1}^{m-1} N\left(\frac{f_1}{g_1} - \nu_i\right) - 1$$
$$\le \left(\frac{m-1}{n-m}\right) \max\{\deg f_1, \deg g_1\} - 1.$$

This yields

$$\left(m-2-\frac{m-1}{n-m}\right)\max\{\deg f_1, \deg g_1\} \le -1.$$

Clearly, this is impossible if $(m-2)n \ge m^2 - m - 1$. In other words, we derive a contradiction when $m \ge 3$ and

$$n \ge \frac{m^2 - m - 1}{m - 2} = m + 1 + \frac{1}{m - 2} \ge m + 2.$$

This completes the proof of (ii). ■

LEMMA 4. Let $P(X) = X^n + aX^m + b$, with $m < n = p^r s$, $r, s \ge 1$, $p \nmid s, m$ prime to n and $ab \ne 0$. Then

(i) if $s \geq 3$ and $1 \leq m \leq p^r$, then there exist no non-constant $f, g \in \mathcal{M}^*(\mathbf{k})$ such that P(f) = cP(g) for $c \neq 0, 1$;

(ii) if $s \ge 2$ or s = 1 and $m \ge 3$ then there exist no non-constant $f, g \in \mathcal{A}^*(\mathbf{k})$ such that P(f) = cP(g) for some $c \ne 0, 1$.

Proof. Suppose that there exist non-constant rational functions f and g such that P(f) = cP(g), $c \neq 0, 1$. As in the preceding lemma, we may assume that none of the functions f, g, f/g is a pth power. Write $f = f_1/f_2$ and $g = g_1/f_2$ where f_1 and f_2 (resp. g_1 and f_2) are polynomials with no common zero. Then f_1 and g_1 have no common zero, for if $f_1(u) = g_1(u) = 0$ then b = P(0) = P(f(u)) = cP(g(a)) = cb, which is impossible since $b \neq 0$ and $c \neq 1$. It is also easy to see from the equation P(f) = cP(g) that deg $f_1 = \deg g_1 \ge \deg f_2$. From the equation we also derive

(4.8)
$$(f_1^s - \alpha g_1^s)^{p^r} + b(1-c)f_2^{p^r s} = -a(f_1^m - cg_1^m)f_2^{p^r s - m}$$

where $\alpha^{p^r} = c$. Since the vanishing order of every zero of the function on the LHS above is a multiple of p^r , the identity above implies that the vanishing order of every zero of the function $f_1^m - cg_1^m$, which is not a zero of f_2 , is a multiple of p^r . Suppose that u is a common zero of $f_1^m - cg_1^m$ and f_2 ; then the preceding identity shows that it is also a zero of $f_1^s - \alpha g_1^s$. Thus, as the roots of $f_1^m - cg_1^m$ are distinct (m being prime to p), the vanishing order of $f_1^m - cg_1^m$ at u is also a multiple of p^r . This implies that $\{-a(f_1^m - cg_1^m) - b(1-c)f_2^m\}f_2^{p^r-m}$ is a p^r th power. Rewrite the equation (4.8) as

(4.9)
$$(f_1^s - \alpha g_1^s)^{p^r} = (\{-a(f_1^m - cg_1^m) - b(1-c)f_2^m\}f_2^{p^r-m})f_2^{p^r(s-1)};$$

this shows that $N_1(f_1^s - \alpha g_1^s) \leq N_1(\{-a(f_1^m - cg_1^m) - b(1 - c)f_2^m\}f_2^{p^r-m})$. Apply the Truncated Second Main Theorem to f_1/g_1 and s distinct values $\alpha_1, \ldots, \alpha_s$, where α_i is a root of the equation $X^s = \alpha$. We get

$$(s-2) \max\{\deg f_1, \deg g_1\}$$

$$\leq \sum_{i=1}^s N_1(f_1/g_1 - \alpha_i) - 1 = \sum_{i=1}^s N_1(f_1 - \alpha_i g_1) - 1$$

$$\leq \frac{1}{p^r}((p^r - m)N(f_2) + N(-af_1^m + acg_1^m - b(1-c)f_2^m)) - 1$$

$$\leq \frac{1}{p^r}(p^r - m + m) \max\{\deg f_1, \deg g_1\} - 1$$

$$= \max\{\deg f_1, \deg g_1\} - 1$$

which is impossible if $s \ge 3$. This completes the proof of (i).

If f and g are polynomials then $f_2 = 1$. In this case, we have

(4.10)
$$(f^s - \alpha g^s)^{p^r} = -af^m + acg^m - b(1-c).$$

Then $-af^m + acg^m - b(1-c)$ and $f^m - cg^m$ are p^r th powers. Apply the Truncated Second Main Theorem to f_1/g_1 and s + m distinct values $\alpha_1, \ldots, \alpha_s$, β_1, \ldots, β_m , where α_i 's are the roots of the equation $X^s = \alpha$ and β_j 's are

the roots of $X^m = c$. We have

$$(s+m-2) \max\{\deg f_1, \deg g_1\} \\ \leq \sum_{i=1}^s N_1(f/g - \alpha_i) + \sum_{i=1}^m N_1(f/g - \beta_j) - 1 \\ = N_1(-af^m + acg^m - b(1-c)) + N_1(f^m - cg^m) - 1 \\ \leq \frac{1}{p^r}(N(-af^m + acg_1^m - b(1-c)) + N(f^m - cg^m)) - 1 \\ \leq \frac{2m}{p^r} \max\{\deg f_1, \deg g_1\} - 1.$$

This yields

$$\left(s-2+m\left(1-\frac{2}{p^r}\right)\right)\max\{\deg f_1, \deg g_1\} \le -1.$$

Clearly, this is impossible if $s \ge 2$. If s = 1 and $m \ge 3$ then $p^r \ge 4$. Hence the above inequality is also impossible in this case. This completes the proof of (ii).

5. Proof of Theorem 3

PROPOSITION 5. Suppose that $P(X) = X^{p^r} + aX^m + b$ with $r \ge 1$ and $a, b \ne 0$. If m = 1, 2 or $p^r - 1$ then P(X) is not a uniqueness polynomial for $\mathcal{A}^*(\mathbf{k})$.

Proof. For m = 1 choose α such that $\alpha^{p^r-1} = -a$. Then $P(X + \alpha) = P(X)$, hence P(X) is not a uniqueness polynomial for $\mathcal{A}^*(\mathbf{k})$.

If m = 2 then $F(X, Y) = (X - Y)^{p^r - 1} + a(X + Y)$. The functions

$$f = -\frac{1}{a} \left(\frac{t}{2}\right)^{p^r-1} + \frac{t}{2}$$
 and $g = -\frac{1}{a} \left(\frac{t}{2}\right)^{p^r-1} - \frac{t}{2}$

clearly satisfy the equation F(f,g) = 0, hence P(X) is not a uniqueness polynomial for $\mathcal{A}^*(\mathbf{k})$.

If $m = p^r - 1$ let $Q(X) = a^{-p^r} P(aX) - 1 - ba^{-p^r} = X^{p^r} + X^{p^r-1} + 1$. By Proposition 3, P(X) is a uniqueness polynomial for $\mathcal{A}^*(\mathbf{k})$ if and only if Q(X) is. Since Q(X) = Q(X-1) the polynomial Q cannot be a uniqueness polynomial for $\mathcal{A}^*(\mathbf{k})$.

PROPOSITION 6. Suppose that $P(X) = X^n + aX^m + b$ with $a, b \neq 0$. If either $n = 2p^r$, m = 1 and $p \neq 2$, or n = 5, m = 3 and p = 5, then P(X)is not a uniqueness polynomial for $\mathcal{M}^*(\mathbf{k})$. *Proof.* If $n = 2p^r$ and m = 1 then $F(X, Y) = (X - Y)^{p^r - 1} (X + Y)^{p^r} + a$. The functions

$$f = \frac{\alpha}{2} \left(\frac{1}{t^{p^r - 1}} + t^{p^r} \right)$$
 and $g = \frac{\alpha}{2} \left(\frac{1}{t^{p^r - 1}} - t^{p^r} \right)$,

where $\alpha^{2p^r-1} = -a$, satisfy the equation F(f,g) = 0. Hence P(X) is not a uniqueness polynomial for $\mathcal{M}^*(\mathbf{k})$.

For the second case where n = 5, m = 3, we take

$$f = \frac{\alpha t (\omega^2 t^2 - \omega)}{(\omega - 1)(t^2 + \omega)^2} \quad \text{and} \quad g = \frac{\alpha t (t^2 - 1)}{(\omega - 1)(t^2 + \omega)^2}$$

where $\omega^2 + \omega + 1 = 0$ and $\alpha^2 = -a$. By a direct calculation we get

$$f - g = \frac{-\alpha\omega^2 t}{t^2 + \omega}, \quad f - \omega g = \frac{-\alpha\omega t^3}{(t^2 + \omega)^2}, \quad f - \omega^2 g = \frac{-\alpha\omega t}{(t^2 + \omega)^2}.$$

Hence, $(f-g)^4 = -a(f^2 + fg + g^2)$ and this implies that P(X) is not a uniqueness polynomial for $\mathcal{M}^*(\mathbf{k})$.

Proof of Theorem 3. By Proposition 3, we may assume that $P_S(X) = X^n + aX^m + b$ with $a, b \neq 0$. By Proposition 5, $P_S(X)$ is not a uniqueness polynomial for $\mathcal{A}^*(\mathbf{k})$ if $n = p^r$ and m = 1 or m = 2 or m = n - 1. On the other hand, Lemma 3, Lemma 4 and property (P3) in the introduction imply that S is a unique range set for $\mathcal{A}^*(\mathbf{k})$ if either (a) $n = p^r$ and $3 \leq m \leq n-2$ or (b) $n = p^r s$, s > 1, and $m \geq 1$. This completes the proof of (1).

If m = n - 1 then F(X, Y, Z) = 0 has only one singular point (0, 0, 1)which is ordinary and has multiplicity n-2. Thus the curve C = [F(X, Y, Z) = 0] is irreducible and its genus is 0. Therefore P(X) is not a uniqueness polynomial for $\mathcal{M}^*(\mathbf{k})$. If either $n = 2p^r$, m = 1 and $p \neq 2$, or n = p = 5and m = 3, then P(X) is not a uniqueness polynomial by Proposition 6. Except in these cases, P(X) is a strong uniqueness polynomial for $\mathcal{M}^*(\mathbf{k})$ by Lemmas 1, 3 and 4.

References

- V. Berkovich, Spectral Theory and Analytic Geometry over Non-Archimedean Fields, Math. Surveys Monographs 33, Amer. Math. Soc., Providence, RI, 1990.
- [2] A. Boutabaa, W. Cherry and A. Escassut, Unique range sets in positive characteristic, Acta Arith. 103 (2002), 169–189.
- [3] A. Boutabaa and A. Escassut, Nevanlinna theory in characteristic p and applications, preprint.
- [4] A. Boutabaa, A. Escassut and L. Haddad, On uniqueness of p-adic entire functions, Indag. Math. 8 (1997), 145–155.
- [5] W. Cherry and J. T.-Y. Wang, Uniqueness polynomials for entire functions, Internat. J. Math. 13 (2002), 323–332.

- [6] W. Cherry and J. T.-Y. Wang, Non-Archimedean analytic maps to algebraic curves, in: Value Distribution Theory and Complex Dynamics, W. Cherry and C.-C. Yang (eds.), Contemp. Math. 303, Amer. Math. Soc., 2002, 7–36.
- [7] W. Cherry and C.-C. Yang, Uniqueness of non-Archimedean entire functions sharing sets of values counting multiplicity, Proc. Amer. Math. Soc. 127 (1999), 967–971.
- [8] J. T.-Y. Wang, Uniqueness polynomials and bi-unique range sets for rational functions and non-Archimedean meromorphic functions, Acta Arith. 104 (2002), 183– 200.
- [9] —, The truncated second main theorem of function fields, J. Number Theory 58 (1996), 139–157.
- [10] —, A note on Wronskians and ABC theorem in function fields of prime characteristic, Manuscripta Math. 98 (1999), 255–264.

Institute of Mathematics Academia Sinica Nankang, Taipei 11529, Taiwan, R.O.C. E-mail: tthan@math.sinica.edu.tw jwang@math.sinica.edu.tw Department of Mathematics University of Notre Dame Notre Dame, IN 46556, U.S.A. E-mail: wong.2@nd.edu

Received on 6.5.2002 and in revised form on 6.8.2002

(4282)