ACTA ARITHMETICA
109.3 (2003)

Unique range sets and uniqueness polynomials
in positive characteristic

by

Ta THi Hoar AN (Taipei), JULIE TZU-YUEH WANG (Taipei)
and P1T-MANN WONG (Notre Dame, IN)

1. Introduction. Let k be an algebraically closed field of characteristic
p > 0, complete with respect to a non-archimedean absolute value. Let
M*(k) be the set of non-constant meromorphic functions defined on k and
F be a non-empty subset of M*(k). For f € F and a set S in the range of
f define

E(f,S) = U {(z,m) € k x Z* : f(2) = a with multiplicity m}.
a€S

Two functions f and g of F are said to share S, counting multiplicity, if
E(f,S) = E(g,95). A set S is called a unique range set, counting multiplicity,
for F, if the condition E(f,S) = E(g,S) for f,g € F implies that f = g.
A polynomial P defined over k is called a uniqueness polynomial for F if
the condition P(f) = P(g) for f,g € F implies that f = g; P is called a
strong uniqueness polynomial if the condition P(f) = c¢P(g) for f,g € F
and some non-zero constant ¢ implies that ¢ = 1 and f = g. The following
properties are immediate consequences of the definitions:

(P1) If F ¢ F' € M*(k) then a finite set S in k being a unique range
set for F' implies that it is also a unique range set for F.

(P2) If F ¢ F' € M*(k) then a polynomial P being a (strong) unique-
ness polynomial for F' implies that it is also a (strong) uniqueness polyno-
mial for F.

In studying unique range sets for A*(k) = non-constant entire functions
defined over k, one is naturally led to the following polynomial:

(1.1) Ps(X)=(X —s51)...(X —sp)
where S = {s1,...,s,} is a finite subset of k. Suppose that f, g € A*(k) are
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two entire functions sharing S counting multiplicity. Then Pg(f) and Ps(g)
are non-archimedean entire functions with exactly the same zeros count-
ing multiplicity. This implies that Ps(f)/Ps(g) is entire and non-vanishing,
hence must be a constant. This shows that:

(P3) With respect to the family of non-constant entire functions A*(k),
a finite set S is a unique range set counting multiplicity if and only if its
associated polynomial, defined by (1.1), is a strong uniqueness polynomial.

Let S be a subset of k of finite cardinality n. If p = 0, or if p > 0 and does
not divide n, then S is a unique range set counting multiplicity for A4* (k) if
and only if S is affine rigid, i.e. the only affine transformation preserving the
set S is the identity. This result was first proved by Boutabaa, Escassut and
Haddad [4] for the case of polynomials, extended by Cherry and Yang [7]
to entire functions, in characteristic zero; and, in positive characteristic, by
Voloch (cf. the appendix in [8]). If p > 0 divides n, this geometric characteri-
zation of finite unique range sets counting multiplicity for A*(k) is no longer
valid; counter-examples were provided in [2] and [7]. Let S = {s1,...,8n}
with n divisible by p. In this paper we give a complete characterization for
S to be a unique range set counting multiplicity for A* (k) if the associated
polynomial Pg satisfies one of the following two conditions:

(1) PL(X) = AMX — a)™ ! #£ 0 and the multiplicity of Pg(X) at X — «
is strictly less than m which is prime to p;

(2) Ps(X) is of the form (X — a)” + a(X — a)™ + b where m is prime
to p.

There are several reasons to study polynomials of these two types. First
of all, we will see later that if P{(X) = A(X —a)™ !, m relatively prime to
n, then the set S is affine rigid. Secondly, in [8] the second named author
has shown that when p | n, if (a) Pg(X) is injective on the zeros of P¢(X) =
AMX —ap)™ .. (X —aq)™, (b) the degree of P§(X) is n — 2, and (c) the
multiplicity of X — a; in P(X) — P(a;) is m; + 1, for 1 < i < [, then Pg
is a strong uniqueness polynomial for M*(k) if and only if [ > 2 and S is
affine rigid. Therefore, if one looks for a set which is affinely rigid, but not
a unique range set, it is natural to start with those S with [ =1 (note that
Example 2.2 of [2] satisfies the condition [ = 1). Thirdly, when [ = 1, the
injective condition on the zero of P{(X) always holds. Hence this is a good
example to see the impact of the conditions (b) and (c).

The main results in this paper are as follows. We always assume that k
is an algebraically closed field of characteristic p > 0, complete with respect
to a non-archimedean absolute value.

THEOREM 1. Let S be a finite set in k with associated polynomial Ps.
Assume that #S = n is divisible by p and PL(X) = y(X — )™}, a € k,
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where v # 0, m > 2 is relatively prime to n, and Ps(a) # 0. Then S is
affine rigid.

THEOREM 2. Let S be a finite subset of k with associated polynomial
Ps. Assume that (i) #S = n is divisible by p, (ii) P{(X) = (X — )™ !
where v # 0 and m is relatively prime to n, (iii) Ps(a) # 0, and (iv) the
multiplicity of X — « in Ps(X) — Ps(«) is strictly less than m. Then Ps
is a strong uniqueness polynomial for M*(K); in particular, S is a unique
range set for A*(k).

The polynomial Pg satisfies the conditions of Theorem 2 if and only if
#S = n is divisible by p and Pg is of the form

(1.2) Ps(X) = Z a;(X—a)""+a(X—a)™+b, ab#0, a; #0, p|n,

0<i<n

where m,n are relatively prime and there exists n; such that n; < m. For
example, if p = 2 then X* + X2 + X3 + 1 satisfies all the conditions of
Theorem 2 but X* 4 X2 + X +1 does not. Some special examples satisfying
the hypothesis of Theorem 2 were treated by various authors using the
classical genus formula. We are able to arrive at this more general form
by using a new technique which we call the Wronskian construction (see
Section 3 for details).

THEOREM 3. Let S be a finite subset of k with n elements and n divis-
ible by p. Suppose that its associated polynomial is of the form

Ps(X)=(X—-a)"+a(X —a)™+b
where m is relatively prime to n, a # 0, and b # 0. Then:
(1) S is a unique range set for A*(k) if and only if either

(a) n=7p"s, pts, s >2 and m > 1, or
(b)n=p" and 3<m <n-—2.

(2) Ps is a strong uniqueness polynomial for M* (k) if and only if Ps is
a uniqueness polynomial for M* (k) if and only if either
(a) n=p" and 3<m <n—2 except m =3 and n =5, or
(b)n=p"s, pts,s>2and 1 <m <n—2 except m=1 and s = 2.

Note that the polynomial in Theorem 3 satisfies all the hypothesis of
Theorem 2 but (iv).

2. Proof of Theorem 1 and some basic reductions. We have seen
that S is a unique range set counting multiplicity for A*(k) if and only if its
associated polynomial Pg is a strong uniqueness polynomial. Let P(X) be a
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monic polynomial of degree n in k[X]; we introduce the following functions:
F(X,Y) = (P(X)-P(Y))/(X-Y),
F.(X,)Y)=P(X)—cP(Y), c¢#0,1isa constant.
Denote by F(X,Y,Z) and F.(X,Y, Z) respectively, the homogenizations of
F(X,Y) and F.(X,Y).
The following fact was observed by Cherry and Yang in [7]. For the
convenience of the reader, we include their proof.

(2.1)

PROPOSITION 1. (1) A polynomial P € k[X] is a (strong) uniqueness
polynomial for M*(K) if and only if it is a (strong) uniqueness polynomial
for the family of non-constant rational functions in k(t).

(2) A polynomial P € k[X] is a (strong) uniqueness polynomial for A*(k)
if and only if it is a (strong) uniqueness polynomial for the family of non-
constant polynomials klt].

Proof. Suppose that P is not a uniqueness polynomial for M* (k). Then
F(f,g) = 0 for some f,g € M*(k). Therefore there is an irreducible fac-
tor Fo(X,Y) of F(X,Y) with Fo(f,g9) = 0. Then by Berkovich’s non-
archimedean Picard Theorem (cf. [1] and also [6] for a more elementary
proof), Fy(X,Y) = 0 is a rational curve, and it can be rationally paramet-
rized since k is algebraically closed. In other words, there exist rational func-
tions r(t), s(t), and R(X,Y) such that t = R(X,Y"), and Fy(r(t),s(t)) = 0.
This shows that P(X) is not a uniqueness polynomial for the family of
non-constant polynomials k[t]. The converse is clear.

For (2), we assume that f,g € A*(k). From the previous deduction, we
let h = R(f,qg), sothat f =r(h), and g = s(h). Since f and g are entire, the
non-archimedean meromorphic function A must omit the poles of r(t) and
the poles of s(t). However, a non-constant non-archimedean meromorphic
function can omit at most one point in k U {oco}. Thus the r(¢) has only
one pole which is also the unique pole of s(t). Therefore, after making a
projective linear change in coordinates, we can assume that this pole is occ.
Therefore, r(t) and s(t) are polynomials. Moreover, h is entire since it omits
the pole of r(¢). This shows that if P is not a uniqueness polynomial for
A*(k), then it is not a uniqueness polynomial for the family of non-constant
polynomials k[t]. The converse is clear.

The proof for strong uniqueness is similar. m

To prove that a polynomial is a strong uniqueness polynomial for M*(k),
it suffices to show that the curves F(X,Y,Z) = 0 and F.(X,Y,Z) = 0
have no irreducible component of genus 0. It was also observed by Cherry
and Yang in [7] that a (strong) uniqueness polynomial for the family of
polynomials over k is also a (strong) uniqueness polynomial for A* (k).

We refer to [8] for a proof of the following result:
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PROPOSITION 2. Let S be a finite set in k and assume that P{(X) is
not identically zero. Then S is affine rigid if and only if neither F(X,Y)
nor Fo.(X,Y), ¢ # 0,1, has a linear factor.

PROPOSITION 3. Let F be a subset of M*(k) and P(X) a polynomial.
Then

(1) if S is a finite set of k, then the zero set of Ps(X) is affine rigid if
and only if the zero set of Ps(aX + b), where a,b € k and a # 0, is affine
rigid;

(2) P(X) is a uniqueness polynomial for F if and only if aP(X) + b,
where a,b € k and a # 0, is a uniqueness polynomial for F;

(3) if the family F satisfies the condition that f € F implies that af+b €
F for any a,b € k, a # 0, then P(X) is a strong uniqueness polynomial for
F if and only if Q(X) = P(aX +b) is a strong uniqueness polynomial for
F where a,b € k and a # 0.

Proof. Assertion (2) is clear. For (1), let S = {s1,...,s,}. Then
Ps(aX +b)=(aX +b—s1)...(aX +b—syp)

() (x e ),
a a

Assertion (1) follows from this and the fact that S is affine rigid if and
only if a=1(S — b) is affine rigid. For (3) it suffices to show that if P(X)
is not a strong uniqueness polynomial then neither is Q(X) = P(aX + b).
Suppose that P(f) = cP(g), ¢ # 0 € k, for a pair of distinct functions in
F.Let fo=a"(f —b) and go = a (g — b). Then fy,g0 € F, fo # go, and
Q(fo) = Q(go). =

PROPOSITION 4. Let P(X) be a polynomial of degree n divisible by p
and P(0) # 0. Suppose that P'(X) = vX™ 1 for some m > 2 relatively
prime to n where vy is a non-zero constant. Then the polynomials F(X,Y)
and F.(X,Y), c# 0,1, have no linear factors. Equivalently, the zero set of
P(X) is affine rigid.

Proof. We first claim that if FI(X,Y) or F.(X,Y) has a linear factor
X —aY —b with a # 0, then P(aY +b) = aP(Y) wherea =1if X —aY —b
is a linear factor of FI(X,Y); and a = ¢ if X —aY — b is a linear factor of
F.(X,Y).Indeed, F(X,Y) = (X—aY—b)Q(X,Y) for a polynomial Q(X,Y)
if and only if P(X)—P(Y) = (X = Y)(X —aY —b)Q(X,Y). For X = aY +b
the right hand side is zero and we have P(aY +b) = P(Y) (so a = 1).
Similarly F.(X,Y) = (X —aY —b)R(X,Y) for a polynomial R(X,Y) if and
only if P(X) —cP(Y) = (X —aY —b)R(X,Y). For X = aY + b the right
hand side is zero and we have P(aY + b) = cP(Y) (so o = ¢, recall that
c#0,1).
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On the other hand, differentiation of P(aY + b) = aP(Y') shows that
a(aY +b)" 1 = aY™"! hence b = 0 (by the assumption that m > 2) and
a™ = a, ie., P(aY) = aP(Y). Comparing the leading coefficients and the
constant terms of P(aY) and aP(Y'), we see that a™ = «, and a = 1 since
P(0) # 0. Thus @™ = @™ = a = 1. But in the case of F.(X,Y) we have
a =c# 1, thus F.(X,Y) with ¢ # 1 cannot have a linear factor X —aY —b.
Since m and n are relatively prime, the condition that a” = ™ = a =1
implies that a = 1. Thus

P(X)— P(Y)
X-Y

which implies that P/(X) = F(X, X) = 0, contradicting our assumption on
P'(X). Thus F(X,Y) cannot have a linear factor either. m

=F(X,Y) = (X —aY —b)Q(X,Y) = (X - YV)Q(X,Y)

Proof of Theorem 1. Let Q(X) = Ps(X + «). Then Q(0) # 0 and
Q' (X) = PL(X + a) = yX™ 1. Thus the polynomial Q satisfies the hy-
pothesis of Proposition 4, hence the zero set of Q(X) is affine rigid. By part
(1) of Proposition 3 the zero set of Ps(X) is also affine rigid. m

3. 1-forms of Wronskian type and the proof of Theorem 2. Con-
sider the problem of computing the genus of a curve in P?(k). The case of a
smooth curve is easily computed via the genus formula g = (¢ —1)(¢ — 2)/2
where ¢ is the degree of the smooth curve. Note that (¢ — 1)(q — 2)/2 is
the number of distinct monomials of degree g in zg, 21 and z,. There is
also a genus formula for irreducible singular curves in terms of the Milnor
number of an isolated singularity and the number of local branches at the
singular point. It is usually quite a chore to compute these invariants, and
worst of all is the condition that the curve be irreducible. For this reason
we develop a procedure of computing the genus without a priori knowledge
of irreducibility. The main idea is based on modifying the rational 1-forms

Zi Zj
dZi de Z; 1 1 Zi X .
2 =—ldu dzy|=d{—], i #7
Zj 2|z Zj Zj

(where [zq, 21, 22] are the homogeneous coordinates of P?(k)), or more gen-
erally rational 1-forms of the type
Zj Zi 1 1
dl 2| —ad| =) = . 2
(%) =od(%) ~[aafz) oulz)
Any rational 1-form on P2(k) is a linear combination of these forms (over

the rational function field). We introduce formally the notion of 1-forms of
Wronskian type:

. 0<i,§,k<2 a,B€ck
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DEFINITION 1. Let C be a curve in P?(k). A differential 1-form w on C
is said to be a I-form of Wronskian type if w = (fdg — gdf )h for some f, g,
and A in the function field of C.

We look for polynomials P such that the curves defined by F(X,Y, Z)
= 0 (resp. F.(X,Y,Z) = 0,¢ # 0,1) have no linear component. Then we
construct, on each of these curves, a 1-form w of Wronskian type whose
restriction to the curve is regular. If C' has a rational irreducible component
L then the pull-back of w to L must be identically zero, as there are no
non-trivial regular 1-forms on a rational curve. The Wronskian condition
implies that if f and g are rational functions such that the image of the
map ¢ defined by (f,g,1) is contained in C' = F(X,Y, 1) then either f and
g are pth powers or the image of ¢ is contained in a line (see the proof of
Lemmas 1 and 2 below).

Let Q(X,Y, Z) be a non-trivial homogeneous polynomial in X, Y, Z and
C = [@Q = 0] be the curve defined by Q. By Euler’s Theorem the condition
Q@ = 0 is equivalent to

9Q 0Q oQ _
(3.1) X(‘)—X(X’Y’Z)+Y8_Y(X’Y’Z)+Z8_Z(X’Y’Z)_O'
The (Zariski) tangent space of C' is defined by the equations = 0 and
oQ oQ oQ B
(3.2) T (XY, 2)dX + SE(XY, 2)dY + 52 (X, Y, 2)dZ = 0.

If 59(X,Y,2) #0,32(X,Y,Z) # 0,92(X,Y, Z) # 0, then, by Cramer’s
rule,
X Y Y ~Z Z X
(3.3) ax dYy | |dY dZ|  |dZ dX
' PXY.Z) RXY.Z) FXY.Z)
defines a rational 1-form of Wronskian type on 7~ 1(C) where 7 : k3\ {0} —
P2 (k) is the projection map. More precisely, each of the rational 1-forms

X Y YZ‘ z X

dX dY dY dZ dZ dX

9(X,Y.z) %(XY.Z)) %X,V Z)
is well defined on k3 \ {0} and the identity (3.3) says that the pull-backs
of these 1-forms to 71'_1<C) are identical. To realize these forms defined on

k? \ {0} as forms on P?(k) we replace the homogeneous coordinates by
inhomogeneous ones. For example,

X Y
dX dY _XdY—YdX_ X2 d<Y>
(XY, Z) S2(X,Y,2) 99(X,Y,2) \X
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where d(Y/X) is a well defined rational 1-form on P?(k) because Y/X is a
well defined rational function on P2(k). Suppose that deg Q = g > 3. Then,
for any homogeneous polynomial R of degree ¢ — 3, X?R/(0Q/0Z) is a well
defined rational function on P?(k), hence
X Y

R(X,Y,Z) dX _dv| _

R Y. Z) FR(XY.2)
is a well defined rational 1-form of Wronskian type on P2(k). If deg Q < 3
then for any homogeneous polynomial R of degree 3 — ¢,

X’R(X.Y.Z) | <§>

X Y
1 dx dvy| X2 d<Y>
R(X,Y,Z) %2(X,Y,Z)  R(X,Y,2)%2(X,Y,2) \X

is a well defined rational 1-form of Wronskian type on P2(k). Suppose that
fi, 0 <1 < 2 (at least one of them not identically zero), are non-archimedean
entire functions such that Q(fo, f1, f2) = 0, i.e., the image of the map f =
[fo, f1, f2] : k — P?%(k) is contained in C. Then we have

Jo Q(fmfl f2) + Q(fo,f17f2)+f2 Q(fo,fth)
féa—X<f07f17f2)+f{a_Y(f07f17f2)+féa_Z(f(Jvflan)
2Q

If all three partial derivatives g—g(fo,fl,fQ), g—g(fo,fl,fg)
are not identically zero, then by Cramer’s rule, we have

W (fo, f1) W (fi, f2) W(f2, fo)

(fO)fl)f2)

3.4 = =
4 %(fo,fhfz) %(fmflafz) %(anflafZ)
where

W(fir f;) = jf § — il = [

is the Wronskian of f; and f;. The method of constructing a 1-form of
Wronskian type is particularly useful in the following situation. An entire
function is said to be a pth power if it can be represented as a convergent
power series of the form Y, a; X?*, and a meromorphic function is said to
be a pth power if it is the quotient of two entire functions of pth power.

LEMMA 1. Let P(X) be a polynomial of degree n divisible by p and
P(0) # 0. Suppose that P'(X) = myX™ ! with v # 0 and m > 3 is a
positive integer relatively prime to p. Then for each ¢ # 0,1, P(f) # cP(g),
for all meromorphic functions f and g which are not pth powers.

Proof. From the given properties of P(X), we have P(X) = Q(X)+~yX™
where @ is a pth power polynomial with deg @ = n. Let F.(X,Y, Z) be the
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homogenization of the polynomial F.(X,Y,1) = P(X) — cP(Y):

Fu(X,Y, Z) = Q(X, Z) — cQ(Y, Z) + X ™ 2" — cyymznm
where Q(X, Z) denotes the homogenization of Q(X). Hence

oF,
e (X,Y,Z) =myXm 1z,
F.
gy (X,Y,Z) = —myY ™ tznm,
F.
%Z (X,Y,Z) = (n—m)yZ" ™ HX™ —cY™).

The common zeros of the preceding equations are all points with Z = 0
and also the point (0,0, 1). However the point (0,0,1) is not on the curve
C. = {F.(X,Y,Z) = 0} C P%(k), ¢ # 1, for if P(0) — ¢P(0) = 0 and
P(0) # 0 then ¢ = 1. We now consider the following rational 1-form, well
defined on P?(k):

Y Z
o Y/X Z/X _ Yy d7
YTlAy/x) dz/x)| T x2
Rewrite w as
Y Z
3 dY dZ

Note that 7 is not well defined on P?(k) but is a well defined rational 1-form
on k?\ {0}. From (3.4) and the expressions above for OF,./0X,0F./0Y, we
see that, on the curve 7=1(C,.) C k®\ {0} (where 7 : k? \ {0} — P?(k) is
the standard projection):

Y 7 7z X
dy dz| = |dz dx
(36) n= Xm—1 = ym—1 '

The LHS of (3.6) is regular except possibly when X = 0 (note that the
numerator may vanish when X = 0); on the other hand the RHS is regular
except possibly when Y = 0; hence it is regular with the possible exception
at X =Y = 0. By (3.5), when m > 3, the same is true for w. However, as
observed earlier, the point (0,0,1) is not in C. = {F.(X,Y,Z) = 0}, ¢ # 1.
Suppose that there exists a non-constant holomorphic map ¢ = [fo, f1, fo] :
k — C. C P?(k). Since fo # 0 (otherwise the map is constant) we may
represent the map as ¢ = [f = fo/f2,9 = f1/f2,1]. The condition ¢(k) C C.
implies that P(f) — cP(g) = 0 and ¢*w = 0. By the definition of w this
implies that (using the expression on the LHS of (3.6)) —¢’ = W(g,1) =0,
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i.e., g is a pth power. Analogously, using the expression on the RHS of (3.6)
yields /" =W(1, f) =0, i.e., f is a pth power. m

Note that in the preceding lemma, if n = m+1 then the curve F.(X,Y) =
P(X)—cP(Y),c# 0,1, is non-singular, and the preceding proof can be sim-
plified by using the classical genus formula. However, for n > m+1 the curve
is singular and the classical genus formula cannot be applied unless we know
that the curve is irreducible. Irreducibility is a condition that is usually very
difficult to verify. The Wronskian construction bypasses this difficulty. Next
we deal with the curve F(X,Y) = (P(X)—P(Y))/(X —=Y) = 0. The case of
F(X,Y) is more complicated. In the present situation the curve F(X,Y) =0
turns out to be always singular for the class of polynomials P under con-
sideration. As we shall see the Wronskian construction still works provided
that we impose one (fairly minor) additional condition (see condition (C3)
below) on the polynomial P, as counter-examples for uniqueness exist with-
out this condition (see Section 5). The conditions on P in Lemma 1 may be
equivalently stated as follows:

m and n are relatively prime where Q(X) is a pth power polynomial:

q
(C2) QX)=> aX™, n=pp,
1=0
0<ng<ni <...<ng=mn. Thus the polynomial F'(X,Y) is of the form
q m—1

(3.7) FX,Y)=Y QuX.Y)+ 'y( 3 Xm*iflyi)

1=0 =0
where

Bi—1

@q
QX Y) =a(x =Yy () xoly)
1=0

We shall impose an additional condition on the lowest degree term of Q(X):
(03) paoﬁo =ng < m.

In other words, yX™ is not the term of the lowest degree of the polynomial
P(X)—P(0) = P(X)—b. Note that the condition (C3) implies that m > 3.

LEMMA 2. Let P(X) = Q(X) +vX™ + b be a polynomial of degree n
satisfying the conditions of Lemma 1, and assume in addition that m is not
the lowest degree term of P(X) —b. Then F(f,g) # 0 for all f,g € M*(k)

which are not pth powers.

Proof. As remarked prior to the lemma, the conditions on P are equiv-
alent to the conditions (C1), (C2) and (C3). Let F(X,Y, Z) be the homog-
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enization of the polynomial F(X,Y,1) = F(X,Y) (see (3.7)):
Bi—1 o

q
FX,Y,2)= Y a(X —yp L3 xomyt)
1=0 i=0
m—1
+ ,yzn—m Z Xm—i—lyi
i=0
with the gradient
oF my(X —Y)Xmtznm - F(X,Y, Z)
—(X,Y,Z2) =
8X( Y, 2) (X —Y)? ’
oF —my(X = Y)Ym-lznmm 4 (XY, Z)
—(X,Y,Z) =
GY( ¥, 2) (X —-Y)2 ’
oF n—m—1 = m—i—1y,1
57 (XY 2) = —(n—mnZ ;X Y?,
On the curve C' = {F(X,Y, Z) = 0} these reduce to
oF myXm-lznom
ax Y2 =y
oF —myYm-lzn-m
—(X,Y,72) =
8Y< ¥, 2) X-Y ’
OF ey o
Z(X.Y.7Z) = anmfl mezflyz.
o7 (XY, 2) = my Z&
Consider the 1-form
_X-V)y z
T Zxmet Ay Az )|

Note that n is well defined only on k?\ {0}. By (3.4) the restriction of 7
to the curve 7~ 1(C) where C = {F(X,Y,Z) = 0} C P2(k) may also be
expressed as

Y Z
. '_(X_Y)‘dy dZ‘
( . ) 77‘_ ZXm_l
z X X Y
. (X_Y)'dZ ax| dX dY'
= — m— = — m—1 i i‘
Zym—1 Yoo X y

The 1-form is well defined only on k3 \ {0}. As remarked earlier, for any



270 T.T. H. An et al.

homogeneous polynomial B of degree 2,
_1|y 2z
°=Bldy az
is a well defined rational 1-form on the projective space, hence we may multi-
ply o by any rational function (i.e., quotient of two homogeneous polynomial
of the same degree) on the projective space to get a well defined rational
1-form. This means that we need to multiply n by a homogeneous polyno-
mial of degree m—3 > 0 to get a well defined 1-form on the projective space.

With this in mind we introduce the following rational 1-form w well defined
on P?(k):

wi= (XP 4 XPo=2y gy om0 (X — y)m 3o bpy

(XBo=1 4 XBo=2y 4 4 YPo- 1™ (X —y)ym—2=(Bo=1p% |y 7
ZXm—1 ay dz|

From (3.8), we see that 7, hence also w, has no poles except possibly at
(0,0,1). Indeed, from the identity

Y 7 X Y
(X_Y)'dy dZ‘ B dX dY‘
7 xm—1 - Z;z—ol Xm—i—1yi

we infer that there is no pole along Z = 0, since the points of the curve C
at infinity are of the form {(1,7,0) | v = 1} and the denominator of the
LHS does not vanish at such points because m is relatively prime to n.

We now check that w is regular at (0,0,1). Let D(0;¢) := {u € k |
lul, < €} be an open disc centered at the origin with radius e > 0. Let
1 = (z,y,1) be any local analytic map from D(0;¢) to the curve C such that
¥(0) = (0,0,1). It suffices to show that ordgw(z,y,1) > 0. By symmetry it
is clear that ordg(z) = ordg(y) := p. This implies that ordg(z — y) > p and
ordg(z%) = ordg(y?) for all 4, hence

Bi—1 o

ordo(@Qu(z,y)) = ordo (@)™ (Y 2 7)" ) = (6 = D
=0

for all [ and
-1

ordy ( :cmflfiyi> > (m—1)pu.

%

3

I
<)

Since p“° [y is the lowest degree of the non-constant monomials in the poly-
nomial P(X), we infer that

{(m =D, min {(p™ 6 = u}} > (™o — .
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On the curve C' = {F(X,Y,Z) =0},

m—1
QuXY) == 3 QX Y) -7 3 X7,
1<i<q i=0
hence
m—1
ordo(Qo(,y)) > min { 112121 {ordo(Q;(z,y))}, ordg ( pm—1-i 7,)}
== 1=0
which is equivalent to
Bo—1 20

ordy (( PO 1( Z gPo—1-t ’) ) > (p™ By — 1)p.

This last inequality implies that
(3.9) ordo(x —y) >

or
Bo—1

(3.10) ordy ( Z gho—1=i Z) (Bo — 1)p.

To estimate the order of w at 0 note that ordg 2’ = ordgz —1 = p— 1, hence
1
If (3.9) holds the order of w(z,y,1) at 0 is at least
p*(Bo— Dp+(m—=2-=p*Bo—)(p+1)+p—1=(m-1pu
—m — Bop® +p*° —3>p™ —2> 0.
If (3.10) holds then this order is at least
P ((Bo— Dp+ 1)+ (m—2-p™(Bo—))p+p—1—(m—1)u
=p* —1>0.

ordg

This shows that w is regular at (0,0,1). Therefore w is regular on C =
{F(X,Y,Z) =0}.

Suppose that the curve has a component, C’, of genus zero; then the
restriction of w to C’, being a regular 1-form, must be identically zero.
Since the genus of C” is zero there exists a non-trivial holomorphic map
¢ = [fo, f1,f2] : k — C" C P3(k). Since fo # 0 (otherwise the map is
constant) we may represent the map as ¢ = [f = fo/f2,9 = fi/f2,1].
The condition that ¢(k) C C’ implies that (P(f) — P(9))/(f —g) = 0
and ¢*w = 0. By the definition of w this means that either ¢*n = 0 or
(fPo—1 4 fho=2g 4 4 gh=1p"0(f — g)ym=3=(Bo=1)P"® = (. The second
alternative is eliminated, since F'(X,Y") has no linear factor by Proposition 4
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and (XPo—1 4 XPo=2y 4 4 YPo—1)P" decomposes into linear factors as
the field is algebraically closed. The first alternative is eliminated because
¢*n = 0 implies that —g’ = W(g,1) =0, and f' = W(1, f) =0, i.e., f and
g are pth powers contrary to the assumption that f is not a pth power. m

Proof of Theorem 2. By Proposition 3 there is no loss of generality in
assuming that a = 0. Suppose that f and g are two non-constant mero-
morphic functions such that P(f) = BP(g) for some constant 8 # 0. If
f and g are not pth powers then Lemmas 1 and 2 imply that 3 = 1 and
J = g. It remains to deal with the case where f is a pth power. Suppose
that f = fgl, i > 1, where fy is not a pth power. We claim that ¢ is also a
pth power. Differentiating the identity P(f) = BP(g), using the assumption
on P, yields

Bg™ g =vfmf =0,

1
which implies that ¢ is also a pth power so g = ¢g§ for some [ > 1 and gy
is not a pth power. Indeed, g is also a p'th power (i.e., ¢ = [). This can be
seen by using the expression (1.2) in the introduction:

Pg(X) = Z a; X7 +aX™ +b.

0<j<n,plj

Let a, Z, a; be chosen such that ar' = a, W o= b, at

; = a;j and define
a polynomial

Po(X)= > @X +axX™+0;

0<j<n,plj
then Ps(f) = Py(fo)?' . Similarly, Ps(g) = Pl(go)pl where
P(X)= > @X +axm+b,

0<j<n,plj

and a, B’ a; are chosen such that ar' = a,gpl = b, Zi?l = a;. Thus P(f) =
BP(g) implies that Po(fo)?" = BPi(go)? . If I < i then Po(fo)* = vPi(g0),
where fypl = f3, is not a pth power by the assumptions on Ps and that gg
is not a pth power. This implies that ¢ = [ and that Py(fo) = SPy(g0). By
construction the polynomial Py satisfies the assumptions of the theorem, and
since fo and gg are not pth powers we conclude as before that 5 = 1 and
fo = go, which, of course, implies that f = g. This shows that Pg is a strong
uniqueness polynomial for M*(k). By property (P1) in the introduction
Py is also a strong uniqueness polynomial for A4*(k). Finally property (P3)
asserts that this is equivalent to the set S being a unique range set for

A*(k). =
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4. Application of the Truncated Second Main Theorem. In this
section, we will deal with polynomials of the form P(X) = X" +aX™ 4+ b
where n is a power of p, m is prime to n and ab # 0 . This type of polynomial
was discussed by Boutabaa, Cherry and Escassut in [2]. However their results
do not cover all possible cases of (strong) uniqueness polynomials for .A* (k)
and M* (k). The main tool for this is the Truncated Second Main Theorem
(see [3]):

THEOREM (Second Main Theorem in positive characteristic). Let f =
f1/f2 where f1, fo are entire functions without common zeros and assume
that f is not a pth power. Let ci,...,cq be q distinct elements in k. Then

(¢ = 2) max{Ty, (1), Tr, (1)} < ZNl(f — ¢, t) —logt + O(1)

where N1(f — ¢;,t) is the counting function of f — ¢;, with the number of
zeros counted without multiplicity.

For the case of function fields of positive characteristic the Second Main
Theorem for rational functions can be found in [9] and [10].

LEMMA 3. Let P(X) = X"4+aX™+b, withm <n=p"s, r,s > 1, pts,
m prime ton and ab # 0. Then

(i) P(X) is a uniqueness polynomial for M*(k) if

(n,m) & {(2p", 1), (p", 1)} U{(p",2)} U{(5,3)} U{(n,n - 1)},
(ii) P(X) is a uniqueness polynomial for A*(k) if
§s>2 or s=1 and 3<m<n-2.

Proof. By Proposition 1, to show that P(X) is a uniqueness polynomial
for M*(k) (resp. A*(k)) it suffices to consider P(f) for rational functions
f (resp. polynomials). Suppose that f and g are two distinct non-constant
rational functions such that P(f) = P(g). As in the proof of Theorem 2
we may assume that neither f nor g is a pth power. Next we represent the
rational functions as

_hf _ hg
f - T 9=
f2 f2
where h, f1, 91, fo are polynomials such that (1) f; and g; are relatively
prime (i.e., no common zeros) and (2) fo is relatively prime to h. The con-
dition that P(f) = P(g) is equivalent to

A" = 9" = —afy (A = at")-
We now claim that f;/g7 is not a pth power. If it is, then both f; and ¢,

have to be pth powers since f; and g; are relatively prime. Hence the above
identity shows that h/fs is also a pth power. This implies that f = hf1/f>
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is also a pth power, which contradicts our assumption. Decomposing the
above identity into linear factors we get, as n = p”s,

s—1 m—1
(@1) B — g T [ mig)” = —aft T [ (- vig)
i=1 1=1

where p;, it = 1,...,s — 1 (resp. v;, 1 < i < m — 1), are the distinct
(as s and m are relatively prime to p) roots of the polynomials X*~1 +
X572 4 4+ X +1 (vesp. X™ 14+ X™ 24+ ...+ X +1). In fact the set
{1,415+« fhs—1,V1,- .., Vm—1} consists of mutually distinct elements as m
is relatively prime to n = p”s. If £ is a root of f; = g1, then since f; and
g1 have no common zero, f1(§) = g1(§) # 0. This implies, as v; # 1, that
f1(&) #vigi(§) for i =1,...,m — 1. Conversely, a root of f; —v;¢1 is not a
root of f1—g either. For the same reason, as y; and v; are distinct for all 4, j,
fi—pi and f1 —vjg; have no common roots either. Lastly, by construction,
the polynomials fo and h have no common zeros. Putting all these together
we conclude that

[P = [Wi_[l (fr —vig1) = 0}
=1

(f1=91)" 11_[ fr = pg)” = }:[g%fmzo]

where the bracket indicates the divisors of zero counting multiplicity. Con-
sequently, we have

m—1
[T (r = vign) = bn#"s=
=1

for some constant b; in particular, Hﬁ;l(fl —v;g1) is a (p"s — m)th power.
As v; # vj for i # j, we conclude that fi; — ;91 is a (p"s — m)th power for
each ¢ and so

1
(4.2) N, (ﬁ - Vi> <1 N(ﬁ - ,,1_>,
g1 prs—m g1
Analogously,
s—1
(4.3) (fr—g0)” (A = pig)” = fy s
i=1

for some constant ¢;. Again, since f1 — g1 and f; — p;91 have no common
roots we conclude that

(p" —1)orde(f1 — g1) = (p"s —m) orde fo
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if £ is a root of f; — g1. This implies that

(4.4) N, (ﬁ - 1) ged(p’s —m,p" = 1) (ﬁ - 1)

g1 p's — g1
provided that p"s —m > 0. Analogously we also have

p"orde, (fi — pig1) = (p"s —m)orde, fo
if & is a root of f; — p;g1. Since p” and p"s — m are relatively prime,
orde, (f1 — pig1) is a multiple of p"s — m and so

1
(4.5) N(ﬁ—u>§71\7(£—ui>
g1 p's—m g1
provided that p"s —m > 0. The Second Main Theorem, applied to fi/¢1
and 1,1, .., ls—1, Y15+ -+, Vm—1, yields (by (4.2) and (4.4) and (4.5))
(m + s — 3) max{deg f1,deg g1 }

o Enlon) En(s o)

=1

s—1 m—1
() B ) B ()
ps—m g1 =1 g1 1 g1

1 1=

< (—’Y + :n o 2) max{deg f1,deggi} — 1,
prs—m
where v = ged(p”s —m, p” — 1) provided that p”s —m > 0. This implies that
(4.6) (m+s=3)(p's—m-1)<y+1<p's—m+1,
which in particular yields
(4.7) (m+s—4)(p"s—m—1) <2

Thus, for (n,m) in the cases:
(I)m=n—-2=p"s—2, m+s>6, (2)m<n—-3=p"s—3, m+s>5,

we have (m + s —3)(p"s —m — 1) > 2 contradicting (4.7). In other words,
any (n,m) in cases (1) and (2) yields a uniqueness polynomial.

On the other hand, if n —m = p"s — m = 1 then (4.6) is satisfied,
hence (n,m) = (n,n—1) must be excluded. Note that (4.6) is automatically
satisfied if m +s < 3 (m > 1,s > 1), thus (n,m) = (2p",1),(p",1) and
(p",2) must also be excluded. To see which other cases should be excluded
we need only consider those (n,m) such that m < n — 2 and m + s > 4.
If m > 5 then m 4+ s > 6 is automatically satisfied, thus these are not to
be excluded (by (1) and (2) above). If m = 4, then n # m + 2 since m
and n are relatively prime. Thus, m < n — 3, and in this case, m +s > 5
is automatically satisfied. These are not to be excluded by (2) above. It
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remains to consider the case m < 3 and m + s = 4. Clearly we have either
m =3,s =1orm = 1,s = 3 (the case m = s = 2 is eliminated by the
assumption that n, m are relatively prime). If m = 3,s = 1 it is easily seen
that v = ged(p” — 3,p" — 1) < 2. In these cases (4.7) is not useful but we
deduce from (4.6) that 0 < p" —4 =p"'s—m—1 < v+ 1 < 3 and we
again arrive at a contradiction, except in the cases (n,m) = (4,3), (5,3).
Thus these two cases have to be excluded. If m = 1, s = 3 then the greatest
common divisor of (3p” — 1,p” — 1) is again at most 2, hence (4.6) implies
that 3p” — 1 < 3, which is impossible. Thus none of these are excluded. This
completes the proof of (i).

If f # g are non-constant polynomials then fo = 1, hence, by (4.3),
fi—g1, fi—pig1, 1 <1 < s—1, are constants. If s > 2, then this implies that
f1 and g1 are constants, contradicting our assumption. Therefore it suffices
to consider the case s = 1. In this case, f1 — g1 = ¢ # 1 is still a constant,
and by applying the Second Main Theorem to f1/g1 and 1,v1,...,Vp_1 We
get

m—1
(m — 2) max{deg f1,deg g1} < Ny (ﬁ — 1> + Z Ny (ﬁ — V,-) -1
g1 =1 g1
m—1
S 1 .ZV(é — Z/i> -1
M3 g1

—_

n =
m—
< < ) max{deg f1,deg g} — 1.
n—m

This yields
—1
<m _9_ m_) max{deg f1,deg g1} < —1.
n—m

Clearly, this is impossible if (m — 2)n > m? — m — 1. In other words, we
derive a contradiction when m > 3 and

m2—m—1 1
n>————=m+1+ >m 4+ 2.
m— 2 m— 2

This completes the proof of (ii). m

LEMMA 4. Let P(X) = X" +aX™ + b, with m <n = p"s, r,s > 1,
pts,m prime to n and ab # 0. Then

(i) if s >3 and 1 < m < p", then there exist no non-constant f,g €
M* (k) such that P(f)=cP(g) for ¢ #0,1;

(ii))if s > 2 or s =1 and m > 3 then there exist no non-constant
fyg € A*(k) such that P(f) = cP(g) for some ¢ # 0, 1.
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Proof. Suppose that there exist non-constant rational functions f and
g such that P(f) = ¢P(g), ¢ # 0,1. As in the preceding lemma, we may
assume that none of the functions f, g, f/g is a pth power. Write f = f1/f>
and g = g1/ f2 where fi and fo (resp. g1 and f3) are polynomials with no
common zero. Then f; and g; have no common zero, for if f1(u) = g1(u) =0
then b = P(0) = P(f(u)) = ¢P(g(a)) = cb, which is impossible since b # 0
and ¢ # 1. It is also easy to see from the equation P(f) = cP(g) that
deg f1 = deg g1 > deg f5. From the equation we also derive

(48)  (ff —ag)” +b(1—o)ff " = —a(f" g 3T

where a?” = ¢. Since the vanishing order of every zero of the function on the
LHS above is a multiple of p”, the identity above implies that the vanishing
order of every zero of the function f{" — cg{", which is not a zero of fa,
is a multiple of p". Suppose that u is a common zero of f{" — cg]* and
f2; then the preceding identity shows that it is also a zero of f7 — agj.
Thus, as the roots of f{" — cg]* are distinct (m being prime to p), the
vanishing order of f{™ — cg" at u is also a multiple of p". This implies that
{—a(f{" —cg?") —b(1 — c)fgn}f2T_m is a p"th power. Rewrite the equation
(4.8) as

(09)  (ff —agh)” = ({=alfi" = egi") —b(1 =)} M1 )

this shows that Ny (ff — ag) < Ny({—a(f{" — cgi) — b(1 — ) f3"} 2™,
Apply the Truncated Second Main Theorem to f1/¢1 and s distinct values
ai,...,Qs, where o is a root of the equation X* = a. We get

(s —2) max{deg f1,deg g1}

<Y Ni(fi/gr — ) =1=) Ni(fi —aigr) — 1

i=1 i=1

IN

((p" =m)N(f2) + N(=afi" +acgi” —b(1 = ¢)f3")) = 1

IN
SIS

(p" — m + m)max{deg f1,deg g1} — 1

= max{deg fi,deg g1} — 1

which is impossible if s > 3. This completes the proof of (i).
If f and g are polynomials then fo = 1. In this case, we have

(4.10) (f* — ag®)P" = —af™ + acg™ — b(1 — ¢).
Then —af™+acg™—b(1—c) and f" —cg™ are p"th powers. Apply the Trun-
cated Second Main Theorem to fi/g1 and s+ m distinct values aq, ..., as,

Bi,-..,Bm, where o;’s are the roots of the equation X° = « and 3;’s are
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the roots of X™ = ¢. We have

(s + m — 2) max{deg f1,deg g1}

<Y Ni(flg—a)+ > Ni(f/lg—8)—1
=1 i=1
= Ni(—af™ +acg™ —b(1 —c)) + Ni(f™ —cg™) — 1

< ]%(N(—afm +acgl — b(1 - &) + N(f™ — eg™)) — 1

2
< om max{deg f1,deggr} — 1.
pT’
This yields

2
(s _9 —|—m(1 — ]7)> max{deg fi,degg:} < —1.

Clearly, this is impossible if s > 2. If s = 1 and m > 3 then p” > 4. Hence
the above inequality is also impossible in this case. This completes the proof
of (ii). m

5. Proof of Theorem 3

PROPOSITION 5. Suppose that P(X) = XP" +aX™ + b with r > 1 and
a,b#0. If m=1,2 or p” — 1 then P(X) is not a uniqueness polynomial
for A*(k).

Proof. For m = 1 choose a such that a? ~* = —a. Then P(X + ) =
P(X), hence P(X) is not a uniqueness polynomial for A4*(k).

If m = 2 then F(X,Y) = (X —Y)? ~! 4 a(X +Y). The functions

A 1/e\" ' ¢
__(t P oand g=-—-(2 2
/ a<2> tgoand g a<2> 2

clearly satisfy the equation F'(f,g) = 0, hence P(X) is not a uniqueness
polynomial for A*(k).

Ifm=p —1let QX)=0a? PaX)—1—ba? =X +XP~1 41,
By Proposition 3, P(X) is a uniqueness polynomial for A4*(k) if and only if
Q(X) is. Since Q(X) = Q(X — 1) the polynomial () cannot be a uniqueness
polynomial for A*(k). =

PROPOSITION 6. Suppose that P(X) = X" + aX"™ + b with a,b # 0. If
eithern =2p", m =1 and p# 2, orn =5, m =3 and p = 5, then P(X)
is not a uniqueness polynomial for M*(k).
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Proof. Ifn = 2p” and m = 1 then F(X,Y) = (X -Y)? "{(X+Y)? +a.
The functions

a 1 r « 1 r
_ ¢ p _ = _ 4P
f= 5 (tp"l +t ) and ¢ = 5 <tp"'1 t >,

where o?P"~1 = —aq, satisfy the equation F(f,g) = 0. Hence P(X) is not a
uniqueness polynomial for M* (k).
For the second case where n = 5, m = 3, we take

t(w?t? — t(t?—1
= at(w w) and g = at( )
@—- D +w)? @— 1)@ +w)?
where w? +w + 1 =0 and o? = —a. By a direct calculation we get
—aw?t —awt? 9 —awt
f9=gre 19 =@rop /9= mEror

Hence, (f — g)* = —a(f* + fg + ¢*) and this implies that P(X) is not a
uniqueness polynomial for M*(k). m

Proof of Theorem 3. By Proposition 3, we may assume that Pg(X) =
X" 4+ aX™ + b with a,b # 0. By Proposition 5, Pg(X) is not a uniqueness
polynomial for A*(k) if n =p" and m =1 or m =2 or m =n — 1. On the
other hand, Lemma 3, Lemma 4 and property (P3) in the introduction imply
that S is a unique range set for A*(k) if either (a) n = p” and 3 <m < n-—2
or (b) n=p"s, s > 1, and m > 1. This completes the proof of (1).

If m =n—1 then F(X,Y,Z) = 0 has only one singular point (0,0, 1)
which is ordinary and has multiplicity n—2. Thus the curve C' = [F(X,Y, Z)
= 0] is irreducible and its genus is 0. Therefore P(X) is not a uniqueness
polynomial for M*(k). If either n =2p", m =land p #2,orn=p =25
and m = 3, then P(X) is not a uniqueness polynomial by Proposition 6.
Except in these cases, P(X) is a strong uniqueness polynomial for M* (k)
by Lemmas 1, 3 and 4. =
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