Unique range sets and uniqueness polynomials in positive characteristic

by
Ta Thi Hoai An (Taipei), Julie Tzu-Yueh Wang (Taipei)
and Pit-Mann Wong (Notre Dame, IN)

1. Introduction. Let \mathbf{k} be an algebraically closed field of characteristic $p \geq 0$, complete with respect to a non-archimedean absolute value. Let $\mathcal{M}^{*}(\mathbf{k})$ be the set of non-constant meromorphic functions defined on \mathbf{k} and \mathcal{F} be a non-empty subset of $\mathcal{M}^{*}(\mathbf{k})$. For $f \in \mathcal{F}$ and a set S in the range of f define

$$
E(f, S)=\bigcup_{a \in S}\left\{(z, m) \in \mathbf{k} \times \mathbb{Z}^{+}: f(z)=a \text { with multiplicity } m\right\}
$$

Two functions f and g of \mathcal{F} are said to share S, counting multiplicity, if $E(f, S)=E(g, S)$. A set S is called a unique range set, counting multiplicity, for \mathcal{F}, if the condition $E(f, S)=E(g, S)$ for $f, g \in \mathcal{F}$ implies that $f \equiv g$. A polynomial P defined over \mathbf{k} is called a uniqueness polynomial for \mathcal{F} if the condition $P(f)=P(g)$ for $f, g \in \mathcal{F}$ implies that $f \equiv g ; P$ is called a strong uniqueness polynomial if the condition $P(f)=c P(g)$ for $f, g \in \mathcal{F}$ and some non-zero constant c implies that $c=1$ and $f \equiv g$. The following properties are immediate consequences of the definitions:
(P1) If $\mathcal{F} \subset \mathcal{F}^{\prime} \subset \mathcal{M}^{*}(\mathbf{k})$ then a finite set S in \mathbf{k} being a unique range set for \mathcal{F}^{\prime} implies that it is also a unique range set for \mathcal{F}.
(P2) If $\mathcal{F} \subset \mathcal{F}^{\prime} \subset \mathcal{M}^{*}(\mathbf{k})$ then a polynomial P being a (strong) uniqueness polynomial for \mathcal{F}^{\prime} implies that it is also a (strong) uniqueness polynomial for \mathcal{F}.

In studying unique range sets for $\mathcal{A}^{*}(\mathbf{k})=$ non-constant entire functions defined over \mathbf{k}, one is naturally led to the following polynomial:

$$
\begin{equation*}
P_{S}(X)=\left(X-s_{1}\right) \ldots\left(X-s_{n}\right) \tag{1.1}
\end{equation*}
$$

where $S=\left\{s_{1}, \ldots, s_{n}\right\}$ is a finite subset of \mathbf{k}. Suppose that $f, g \in \mathcal{A}^{*}(\mathbf{k})$ are

[^0]two entire functions sharing S counting multiplicity. Then $P_{S}(f)$ and $P_{S}(g)$ are non-archimedean entire functions with exactly the same zeros counting multiplicity. This implies that $P_{S}(f) / P_{S}(g)$ is entire and non-vanishing, hence must be a constant. This shows that:
(P3) With respect to the family of non-constant entire functions $\mathcal{A}^{*}(\mathbf{k})$, a finite set S is a unique range set counting multiplicity if and only if its associated polynomial, defined by (1.1), is a strong uniqueness polynomial.

Let S be a subset of \mathbf{k} of finite cardinality n. If $p=0$, or if $p>0$ and does not divide n, then S is a unique range set counting multiplicity for $\mathcal{A}^{*}(\mathbf{k})$ if and only if S is affine rigid, i.e. the only affine transformation preserving the set S is the identity. This result was first proved by Boutabaa, Escassut and Haddad [4] for the case of polynomials, extended by Cherry and Yang [7] to entire functions, in characteristic zero; and, in positive characteristic, by Voloch (cf. the appendix in [8]). If $p>0$ divides n, this geometric characterization of finite unique range sets counting multiplicity for $\mathcal{A}^{*}(\mathbf{k})$ is no longer valid; counter-examples were provided in [2] and [7]. Let $S=\left\{s_{1}, \ldots, s_{n}\right\}$ with n divisible by p. In this paper we give a complete characterization for S to be a unique range set counting multiplicity for $\mathcal{A}^{*}(\mathbf{k})$ if the associated polynomial P_{S} satisfies one of the following two conditions:
(1) $P_{S}^{\prime}(X)=\lambda(X-\alpha)^{m-1} \not \equiv 0$ and the multiplicity of $P_{S}(X)$ at $X-\alpha$ is strictly less than m which is prime to p;
(2) $P_{S}(X)$ is of the form $(X-\alpha)^{n}+a(X-\alpha)^{m}+b$ where m is prime to p.

There are several reasons to study polynomials of these two types. First of all, we will see later that if $P_{S}^{\prime}(X)=\lambda(X-\alpha)^{m-1}, m$ relatively prime to n, then the set S is affine rigid. Secondly, in [8] the second named author has shown that when $p \mid n$, if (a) $P_{S}(X)$ is injective on the zeros of $P_{S}^{\prime}(X)=$ $\lambda\left(X-\alpha_{1}\right)^{m_{1}} \ldots\left(X-\alpha_{l}\right)^{m_{l}}$, (b) the degree of $P_{S}^{\prime}(X)$ is $n-2$, and (c) the multiplicity of $X-\alpha_{i}$ in $P(X)-P\left(\alpha_{i}\right)$ is $m_{i}+1$, for $1 \leq i \leq l$, then P_{S} is a strong uniqueness polynomial for $\mathcal{M}^{*}(\mathbf{k})$ if and only if $l \geq 2$ and S is affine rigid. Therefore, if one looks for a set which is affinely rigid, but not a unique range set, it is natural to start with those S with $l=1$ (note that Example 2.2 of [2] satisfies the condition $l=1$). Thirdly, when $l=1$, the injective condition on the zero of $P_{S}^{\prime}(X)$ always holds. Hence this is a good example to see the impact of the conditions (b) and (c).

The main results in this paper are as follows. We always assume that \mathbf{k} is an algebraically closed field of characteristic $p>0$, complete with respect to a non-archimedean absolute value.

Theorem 1. Let S be a finite set in \mathbf{k} with associated polynomial P_{S}. Assume that $\# S=n$ is divisible by p and $P_{S}^{\prime}(X)=\gamma(X-\alpha)^{m-1}, \alpha \in \mathbf{k}$,
where $\gamma \neq 0, m \geq 2$ is relatively prime to n, and $P_{S}(\alpha) \neq 0$. Then S is affine rigid.

Theorem 2. Let S be a finite subset of \mathbf{k} with associated polynomial P_{S}. Assume that (i) $\# S=n$ is divisible by p, (ii) $P_{S}^{\prime}(X)=\gamma(X-\alpha)^{m-1}$ where $\gamma \neq 0$ and m is relatively prime to n, (iii) $P_{S}(\alpha) \neq 0$, and (iv) the multiplicity of $X-\alpha$ in $P_{S}(X)-P_{S}(\alpha)$ is strictly less than m. Then P_{S} is a strong uniqueness polynomial for $\mathcal{M}^{*}(\mathbf{k})$; in particular, S is a unique range set for $\mathcal{A}^{*}(\mathbf{k})$.

The polynomial P_{S} satisfies the conditions of Theorem 2 if and only if $\# S=n$ is divisible by p and P_{S} is of the form

$$
\begin{equation*}
P_{S}(X)=\sum_{0 \leq i \leq n} a_{i}(X-\alpha)^{n_{i}}+a(X-\alpha)^{m}+b, \quad a b \neq 0, a_{i} \neq 0, p \mid n_{i} \tag{1.2}
\end{equation*}
$$

where m, n are relatively prime and there exists n_{i} such that $n_{i}<m$. For example, if $p=2$ then $X^{4}+X^{2}+X^{3}+1$ satisfies all the conditions of Theorem 2 but $X^{4}+X^{2}+X+1$ does not. Some special examples satisfying the hypothesis of Theorem 2 were treated by various authors using the classical genus formula. We are able to arrive at this more general form by using a new technique which we call the Wronskian construction (see Section 3 for details).

Theorem 3. Let S be a finite subset of \mathbf{k} with n elements and n divisible by p. Suppose that its associated polynomial is of the form

$$
P_{S}(X)=(X-\alpha)^{n}+a(X-\alpha)^{m}+b
$$

where m is relatively prime to $n, a \neq 0$, and $b \neq 0$. Then:
(1) S is a unique range set for $\mathcal{A}^{*}(\mathbf{k})$ if and only if either
(a) $n=p^{r} s, p \nmid s, s \geq 2$ and $m \geq 1$, or
(b) $n=p^{r}$ and $3 \leq m \leq n-2$.
(2) P_{S} is a strong uniqueness polynomial for $\mathcal{M}^{*}(\mathbf{k})$ if and only if P_{S} is a uniqueness polynomial for $\mathcal{M}^{*}(\mathbf{k})$ if and only if either
(a) $n=p^{r}$ and $3 \leq m \leq n-2$ except $m=3$ and $n=5$, or
(b) $n=p^{r} s, p \nmid s, s \geq 2$ and $1 \leq m \leq n-2$ except $m=1$ and $s=2$.

Note that the polynomial in Theorem 3 satisfies all the hypothesis of Theorem 2 but (iv).
2. Proof of Theorem 1 and some basic reductions. We have seen that S is a unique range set counting multiplicity for $\mathcal{A}^{*}(\mathbf{k})$ if and only if its associated polynomial P_{S} is a strong uniqueness polynomial. Let $P(X)$ be a
monic polynomial of degree n in $\mathbf{k}[X]$; we introduce the following functions:

$$
\left\{\begin{array}{l}
F(X, Y)=(P(X)-P(Y)) /(X-Y) \tag{2.1}\\
F_{c}(X, Y)=P(X)-c P(Y), \quad c \neq 0,1 \text { is a constant. }
\end{array}\right.
$$

Denote by $F(X, Y, Z)$ and $F_{c}(X, Y, Z)$ respectively, the homogenizations of $F(X, Y)$ and $F_{c}(X, Y)$.

The following fact was observed by Cherry and Yang in [7]. For the convenience of the reader, we include their proof.

Proposition 1. (1) A polynomial $P \in \mathbf{k}[X]$ is a (strong) uniqueness polynomial for $\mathcal{M}^{*}(\mathbf{k})$ if and only if it is a (strong) uniqueness polynomial for the family of non-constant rational functions in $\mathbf{k}(t)$.
(2) A polynomial $P \in \mathbf{k}[X]$ is a (strong) uniqueness polynomial for $\mathcal{A}^{*}(\mathbf{k})$ if and only if it is a (strong) uniqueness polynomial for the family of nonconstant polynomials $\mathbf{k}[t]$.

Proof. Suppose that P is not a uniqueness polynomial for $\mathcal{M}^{*}(\mathbf{k})$. Then $F(f, g)=0$ for some $f, g \in \mathcal{M}^{*}(\mathbf{k})$. Therefore there is an irreducible factor $F_{0}(X, Y)$ of $F(X, Y)$ with $F_{0}(f, g)=0$. Then by Berkovich's nonarchimedean Picard Theorem (cf. [1] and also [6] for a more elementary proof), $F_{0}(X, Y)=0$ is a rational curve, and it can be rationally parametrized since \mathbf{k} is algebraically closed. In other words, there exist rational functions $r(t), s(t)$, and $R(X, Y)$ such that $t=R(X, Y)$, and $F_{0}(r(t), s(t))=0$. This shows that $P(X)$ is not a uniqueness polynomial for the family of non-constant polynomials $\mathbf{k}[t]$. The converse is clear.

For (2), we assume that $f, g \in \mathcal{A}^{*}(\mathbf{k})$. From the previous deduction, we let $h=R(f, g)$, so that $f=r(h)$, and $g=s(h)$. Since f and g are entire, the non-archimedean meromorphic function h must omit the poles of $r(t)$ and the poles of $s(t)$. However, a non-constant non-archimedean meromorphic function can omit at most one point in $\mathbf{k} \cup\{\infty\}$. Thus the $r(t)$ has only one pole which is also the unique pole of $s(t)$. Therefore, after making a projective linear change in coordinates, we can assume that this pole is ∞. Therefore, $r(t)$ and $s(t)$ are polynomials. Moreover, h is entire since it omits the pole of $r(t)$. This shows that if P is not a uniqueness polynomial for $\mathcal{A}^{*}(\mathbf{k})$, then it is not a uniqueness polynomial for the family of non-constant polynomials $\mathbf{k}[t]$. The converse is clear.

The proof for strong uniqueness is similar.
To prove that a polynomial is a strong uniqueness polynomial for $\mathcal{M}^{*}(\mathbf{k})$, it suffices to show that the curves $F(X, Y, Z)=0$ and $F_{c}(X, Y, Z)=0$ have no irreducible component of genus 0 . It was also observed by Cherry and Yang in [7] that a (strong) uniqueness polynomial for the family of polynomials over \mathbf{k} is also a (strong) uniqueness polynomial for $\mathcal{A}^{*}(\mathbf{k})$.

We refer to [8] for a proof of the following result:

Proposition 2. Let S be a finite set in \mathbf{k} and assume that $P_{S}^{\prime}(X)$ is not identically zero. Then S is affine rigid if and only if neither $F(X, Y)$ nor $F_{c}(X, Y), c \neq 0,1$, has a linear factor.

Proposition 3. Let \mathcal{F} be a subset of $\mathcal{M}^{*}(\mathbf{k})$ and $P(X)$ a polynomial. Then
(1) if S is a finite set of \mathbf{k}, then the zero set of $P_{S}(X)$ is affine rigid if and only if the zero set of $P_{S}(a X+b)$, where $a, b \in \mathbf{k}$ and $a \neq 0$, is affine rigid;
(2) $P(X)$ is a uniqueness polynomial for \mathcal{F} if and only if $a P(X)+b$, where $a, b \in \mathbf{k}$ and $a \neq 0$, is a uniqueness polynomial for \mathcal{F};
(3) if the family \mathcal{F} satisfies the condition that $f \in \mathcal{F}$ implies that $a f+b \in$ \mathcal{F} for any $a, b \in \mathbf{k}, a \neq 0$, then $P(X)$ is a strong uniqueness polynomial for \mathcal{F} if and only if $Q(X)=P(a X+b)$ is a strong uniqueness polynomial for \mathcal{F} where $a, b \in \mathbf{k}$ and $a \neq 0$.

Proof. Assertion (2) is clear. For (1), let $S=\left\{s_{1}, \ldots, s_{n}\right\}$. Then

$$
\begin{aligned}
P_{S}(a X+b) & =\left(a X+b-s_{1}\right) \ldots\left(a X+b-s_{n}\right) \\
& =a^{n}\left(X+\frac{b-s_{1}}{a}\right) \ldots\left(X+\frac{b-s_{n}}{a}\right) .
\end{aligned}
$$

Assertion (1) follows from this and the fact that S is affine rigid if and only if $a^{-1}(S-b)$ is affine rigid. For (3) it suffices to show that if $P(X)$ is not a strong uniqueness polynomial then neither is $Q(X)=P(a X+b)$. Suppose that $P(f)=c P(g), c \neq 0 \in \mathbf{k}$, for a pair of distinct functions in \mathcal{F}. Let $f_{0}=a^{-1}(f-b)$ and $g_{0}=a^{-1}(g-b)$. Then $f_{0}, g_{0} \in \mathcal{F}, f_{0} \neq g_{0}$, and $Q\left(f_{0}\right)=Q\left(g_{0}\right)$.

Proposition 4. Let $P(X)$ be a polynomial of degree n divisible by p and $P(0) \neq 0$. Suppose that $P^{\prime}(X)=\gamma X^{m-1}$ for some $m \geq 2$ relatively prime to n where γ is a non-zero constant. Then the polynomials $F(X, Y)$ and $F_{c}(X, Y), c \neq 0,1$, have no linear factors. Equivalently, the zero set of $P(X)$ is affine rigid.

Proof. We first claim that if $F(X, Y)$ or $F_{c}(X, Y)$ has a linear factor $X-a Y-b$ with $a \neq 0$, then $P(a Y+b)=\alpha P(Y)$ where $\alpha=1$ if $X-a Y-b$ is a linear factor of $F(X, Y)$; and $\alpha=c$ if $X-a Y-b$ is a linear factor of $F_{c}(X, Y)$. Indeed, $F(X, Y)=(X-a Y-b) Q(X, Y)$ for a polynomial $Q(X, Y)$ if and only if $P(X)-P(Y)=(X-Y)(X-a Y-b) Q(X, Y)$. For $X=a Y+b$ the right hand side is zero and we have $P(a Y+b)=P(Y)$ (so $\alpha=1$). Similarly $F_{c}(X, Y)=(X-a Y-b) R(X, Y)$ for a polynomial $R(X, Y)$ if and only if $P(X)-c P(Y)=(X-a Y-b) R(X, Y)$. For $X=a Y+b$ the right hand side is zero and we have $P(a Y+b)=c P(Y)$ (so $\alpha=c$, recall that $c \neq 0,1)$.

On the other hand, differentiation of $P(a Y+b)=\alpha P(Y)$ shows that $a(a Y+b)^{m-1}=\alpha Y^{m-1}$, hence $b=0$ (by the assumption that $m \geq 2$) and $a^{m}=\alpha$, i.e., $P(a Y)=\alpha P(Y)$. Comparing the leading coefficients and the constant terms of $P(a Y)$ and $\alpha P(Y)$, we see that $a^{n}=\alpha$, and $\alpha=1$ since $P(0) \neq 0$. Thus $a^{n}=a^{m}=\alpha=1$. But in the case of $F_{c}(X, Y)$ we have $\alpha=c \neq 1$, thus $F_{c}(X, Y)$ with $c \neq 1$ cannot have a linear factor $X-a Y-b$. Since m and n are relatively prime, the condition that $a^{n}=a^{m}=\alpha=1$ implies that $a=1$. Thus

$$
\frac{P(X)-P(Y)}{X-Y}=F(X, Y)=(X-a Y-b) Q(X, Y)=(X-Y) Q(X, Y)
$$

which implies that $P^{\prime}(X)=F(X, X) \equiv 0$, contradicting our assumption on $P^{\prime}(X)$. Thus $F(X, Y)$ cannot have a linear factor either.

Proof of Theorem 1. Let $Q(X)=P_{S}(X+\alpha)$. Then $Q(0) \neq 0$ and $Q^{\prime}(X)=P_{S}^{\prime}(X+\alpha)=\gamma X^{m-1}$. Thus the polynomial Q satisfies the hypothesis of Proposition 4, hence the zero set of $Q(X)$ is affine rigid. By part (1) of Proposition 3 the zero set of $P_{S}(X)$ is also affine rigid.
3. 1-forms of Wronskian type and the proof of Theorem 2. Consider the problem of computing the genus of a curve in $\mathbf{P}^{2}(\mathbf{k})$. The case of a smooth curve is easily computed via the genus formula $g=(q-1)(q-2) / 2$ where q is the degree of the smooth curve. Note that $(q-1)(q-2) / 2$ is the number of distinct monomials of degree q in z_{0}, z_{1} and z_{2}. There is also a genus formula for irreducible singular curves in terms of the Milnor number of an isolated singularity and the number of local branches at the singular point. It is usually quite a chore to compute these invariants, and worst of all is the condition that the curve be irreducible. For this reason we develop a procedure of computing the genus without a priori knowledge of irreducibility. The main idea is based on modifying the rational 1 -forms

$$
\frac{\left|\begin{array}{cc}
z_{i} & z_{j} \\
d z_{i} & d z_{j}
\end{array}\right|}{z_{j}^{2}}=\frac{z_{i}}{z_{j}}\left|\begin{array}{cc}
1 & 1 \\
\frac{d z_{i}}{z_{i}} & \frac{d z_{j}}{z_{j}}
\end{array}\right|=d\left(\frac{z_{i}}{z_{j}}\right), \quad i \neq j
$$

(where $\left[z_{0}, z_{1}, z_{2}\right]$ are the homogeneous coordinates of $\mathbf{P}^{2}(\mathbf{k})$), or more generally rational 1 -forms of the type

$$
\beta d\left(\frac{z_{j}}{z_{k}}\right)-\alpha d\left(\frac{z_{i}}{z_{k}}\right)=\left|\begin{array}{cc}
1 & 1 \\
\alpha d\left(\frac{z_{i}}{z_{k}}\right) & \beta d\left(\frac{z_{j}}{z_{k}}\right)
\end{array}\right|, \quad 0 \leq i, j, k \leq 2, \alpha, \beta \in \mathbf{k} .
$$

Any rational 1-form on $\mathbf{P}^{2}(\mathbf{k})$ is a linear combination of these forms (over the rational function field). We introduce formally the notion of 1 -forms of Wronskian type:

Definition 1. Let C be a curve in $\mathbf{P}^{2}(\mathbf{k})$. A differential 1-form ω on C is said to be a 1 -form of Wronskian type if $\omega=(f d g-g d f) h$ for some f, g, and h in the function field of C.

We look for polynomials P such that the curves defined by $F(X, Y, Z)$ $=0\left(\right.$ resp. $\left.F_{c}(X, Y, Z)=0, c \neq 0,1\right)$ have no linear component. Then we construct, on each of these curves, a 1-form ω of Wronskian type whose restriction to the curve is regular. If C has a rational irreducible component L then the pull-back of ω to L must be identically zero, as there are no non-trivial regular 1-forms on a rational curve. The Wronskian condition implies that if f and g are rational functions such that the image of the map ϕ defined by $(f, g, 1)$ is contained in $C=F(X, Y, 1)$ then either f and g are p th powers or the image of ϕ is contained in a line (see the proof of Lemmas 1 and 2 below).

Let $Q(X, Y, Z)$ be a non-trivial homogeneous polynomial in X, Y, Z and $C=[Q=0]$ be the curve defined by Q. By Euler's Theorem the condition $Q=0$ is equivalent to

$$
\begin{equation*}
X \frac{\partial Q}{\partial X}(X, Y, Z)+Y \frac{\partial Q}{\partial Y}(X, Y, Z)+Z \frac{\partial Q}{\partial Z}(X, Y, Z)=0 \tag{3.1}
\end{equation*}
$$

The (Zariski) tangent space of C is defined by the equations $Q=0$ and

$$
\begin{equation*}
\frac{\partial Q}{\partial X}(X, Y, Z) d X+\frac{\partial Q}{\partial Y}(X, Y, Z) d Y+\frac{\partial Q}{\partial Z}(X, Y, Z) d Z=0 \tag{3.2}
\end{equation*}
$$

If $\frac{\partial Q}{\partial X}(X, Y, Z) \not \equiv 0, \frac{\partial Q}{\partial Y}(X, Y, Z) \not \equiv 0, \frac{\partial Q}{\partial Z}(X, Y, Z) \not \equiv 0$, then, by Cramer's rule,

$$
\frac{\left|\begin{array}{cc}
X & Y \tag{3.3}\\
d X & d Y
\end{array}\right|}{\frac{\partial Q}{\partial Z}(X, Y, Z)} \equiv \frac{\left|\begin{array}{cc}
Y & Z \\
d Y & d Z
\end{array}\right|}{\frac{\partial Q}{\partial X}(X, Y, Z)} \equiv \frac{\left|\begin{array}{cc}
Z & X \\
d Z & d X
\end{array}\right|}{\frac{\partial Q}{\partial Y}(X, Y, Z)}
$$

defines a rational 1-form of Wronskian type on $\pi^{-1}(C)$ where $\pi: \mathbf{k}^{3} \backslash\{0\} \rightarrow$ $\mathbf{P}^{2}(\mathbf{k})$ is the projection map. More precisely, each of the rational 1-forms

$$
\frac{\left|\begin{array}{cc}
X & Y \\
d X & d Y
\end{array}\right|}{\frac{\partial Q}{\partial Z}(X, Y, Z)}, \quad \frac{\left|\begin{array}{cc}
Y & Z \\
d Y & d Z
\end{array}\right|}{\frac{\partial Q}{\partial X}(X, Y, Z)}, \quad \frac{\left|\begin{array}{cc}
Z & X \\
d Z & d X
\end{array}\right|}{\frac{\partial Q}{\partial Y}(X, Y, Z)}
$$

is well defined on $\mathbf{k}^{3} \backslash\{0\}$ and the identity (3.3) says that the pull-backs of these 1-forms to $\pi^{-1}(C)$ are identical. To realize these forms defined on $\mathbf{k}^{3} \backslash\{0\}$ as forms on $\mathbf{P}^{2}(\mathbf{k})$ we replace the homogeneous coordinates by inhomogeneous ones. For example,

$$
\frac{\left|\begin{array}{cc}
X & Y \\
d X & d Y
\end{array}\right|}{\frac{\partial Q}{\partial Z}(X, Y, Z)}=\frac{X d Y-Y d X}{\frac{\partial Q}{\partial Z}(X, Y, Z)}=-\frac{X^{2}}{\frac{\partial Q}{\partial Z}(X, Y, Z)} d\left(\frac{Y}{X}\right)
$$

where $d(Y / X)$ is a well defined rational 1-form on $\mathbf{P}^{2}(\mathbf{k})$ because Y / X is a well defined rational function on $\mathbf{P}^{2}(\mathbf{k})$. Suppose that $\operatorname{deg} Q=q \geq 3$. Then, for any homogeneous polynomial R of degree $q-3, X^{2} R /(\partial Q / \partial Z)$ is a well defined rational function on $\mathbf{P}^{2}(\mathbf{k})$, hence

$$
R(X, Y, Z) \frac{\left|\begin{array}{cc}
X & Y \\
d X & d Y
\end{array}\right|}{\frac{\partial Q}{\partial Z}(X, Y, Z)}=-\frac{X^{2} R(X, Y, Z)}{\frac{\partial Q}{\partial Z}(X, Y, Z)} d\left(\frac{Y}{X}\right)
$$

is a well defined rational 1-form of Wronskian type on $\mathbf{P}^{2}(\mathbf{k})$. If $\operatorname{deg} Q \leq 3$ then for any homogeneous polynomial R of degree $3-q$,

$$
\frac{1}{R(X, Y, Z)} \frac{\left|\begin{array}{cc}
X & Y \\
d X & d Y
\end{array}\right|}{\frac{\partial Q}{\partial Z}(X, Y, Z)}=-\frac{X^{2}}{R(X, Y, Z) \frac{\partial Q}{\partial Z}(X, Y, Z)} d\left(\frac{Y}{X}\right)
$$

is a well defined rational 1-form of Wronskian type on $\mathbf{P}^{2}(\mathbf{k})$. Suppose that $f_{i}, 0 \leq i \leq 2$ (at least one of them not identically zero), are non-archimedean entire functions such that $Q\left(f_{0}, f_{1}, f_{2}\right) \equiv 0$, i.e., the image of the map $f=$ $\left[f_{0}, f_{1}, f_{2}\right]: \mathbf{k} \rightarrow \mathbf{P}^{2}(\mathbf{k})$ is contained in C. Then we have

$$
\begin{aligned}
& f_{0} \frac{\partial Q}{\partial X}\left(f_{0}, f_{1}, f_{2}\right)+f_{1} \frac{\partial Q}{\partial Y}\left(f_{0}, f_{1}, f_{2}\right)+f_{2} \frac{\partial Q}{\partial Z}\left(f_{0}, f_{1}, f_{2}\right)=0, \\
& f_{0}^{\prime} \frac{\partial Q}{\partial X}\left(f_{0}, f_{1}, f_{2}\right)+f_{1}^{\prime} \frac{\partial Q}{\partial Y}\left(f_{0}, f_{1}, f_{2}\right)+f_{2}^{\prime} \frac{\partial Q}{\partial Z}\left(f_{0}, f_{1}, f_{2}\right)=0 .
\end{aligned}
$$

If all three partial derivatives $\frac{\partial Q}{\partial X}\left(f_{0}, f_{1}, f_{2}\right), \frac{\partial Q}{\partial Y}\left(f_{0}, f_{1}, f_{2}\right), \frac{\partial Q}{\partial Z}\left(f_{0}, f_{1}, f_{2}\right)$ are not identically zero, then by Cramer's rule, we have

$$
\begin{equation*}
\frac{W\left(f_{0}, f_{1}\right)}{\frac{\partial Q}{\partial Z}\left(f_{0}, f_{1}, f_{2}\right)} \equiv \frac{W\left(f_{1}, f_{2}\right)}{\frac{\partial Q}{\partial X}\left(f_{0}, f_{1}, f_{2}\right)} \equiv \frac{W\left(f_{2}, f_{0}\right)}{\frac{\partial Q}{\partial Y}\left(f_{0}, f_{1}, f_{2}\right)} \tag{3.4}
\end{equation*}
$$

where

$$
W\left(f_{i}, f_{j}\right):=\left|\begin{array}{cc}
f_{i} & f_{j} \\
f_{i}^{\prime} & f_{j}^{\prime}
\end{array}\right|=f_{i} f_{j}^{\prime}-f_{j} f_{i}^{\prime}
$$

is the Wronskian of f_{i} and f_{j}. The method of constructing a 1 -form of Wronskian type is particularly useful in the following situation. An entire function is said to be a pth power if it can be represented as a convergent power series of the form $\sum_{i} a_{i} X^{p i}$, and a meromorphic function is said to be a p th power if it is the quotient of two entire functions of p th power.

Lemma 1. Let $P(X)$ be a polynomial of degree n divisible by p and $P(0) \neq 0$. Suppose that $P^{\prime}(X)=m \gamma X^{m-1}$ with $\gamma \neq 0$ and $m \geq 3$ is a positive integer relatively prime to p. Then for each $c \neq 0,1, P(f) \not \equiv c P(g)$, for all meromorphic functions f and g which are not pth powers.

Proof. From the given properties of $P(X)$, we have $P(X)=Q(X)+\gamma X^{m}$ where Q is a p th power polynomial with $\operatorname{deg} Q=n$. Let $F_{c}(X, Y, Z)$ be the
homogenization of the polynomial $F_{c}(X, Y, 1)=P(X)-c P(Y)$:

$$
F_{c}(X, Y, Z)=Q(X, Z)-c Q(Y, Z)+\gamma X^{m} Z^{n-m}-c \gamma Y^{m} Z^{n-m}
$$

where $Q(X, Z)$ denotes the homogenization of $Q(X)$. Hence

$$
\begin{aligned}
& \frac{\partial F_{c}}{\partial X}(X, Y, Z)=m \gamma X^{m-1} Z^{n-m}, \\
& \frac{\partial F_{c}}{\partial Y}(X, Y, Z)=-m \gamma Y^{m-1} Z^{n-m}, \\
& \frac{\partial F_{c}}{\partial Z}(X, Y, Z)=(n-m) \gamma Z^{n-m-1}\left(X^{m}-c Y^{m}\right) .
\end{aligned}
$$

The common zeros of the preceding equations are all points with $Z=0$ and also the point $(0,0,1)$. However the point $(0,0,1)$ is not on the curve $C_{c}=\left\{F_{c}(X, Y, Z)=0\right\} \subset \mathbf{P}^{2}(\mathbf{k}), c \neq 1$, for if $P(0)-c P(0)=0$ and $P(0) \neq 0$ then $c=1$. We now consider the following rational 1 -form, well defined on $\mathbf{P}^{2}(\mathbf{k})$:

$$
\omega:=\left|\begin{array}{cc}
Y / X & Z / X \\
d(Y / X) & d(Z / X)
\end{array}\right|=\frac{\left|\begin{array}{cc}
Y & Z \\
d Y & d Z
\end{array}\right|}{X^{2}} .
$$

Rewrite ω as

$$
\omega=X^{m-3} \eta, \quad \eta=\frac{\left|\begin{array}{cc}
Y & Z \tag{3.5}\\
d Y & d Z
\end{array}\right|}{X^{m-1}} .
$$

Note that η is not well defined on $\mathbf{P}^{2}(\mathbf{k})$ but is a well defined rational 1-form on $\mathbf{k}^{3} \backslash\{0\}$. From (3.4) and the expressions above for $\partial F_{c} / \partial X, \partial F_{c} / \partial Y$, we see that, on the curve $\pi^{-1}\left(C_{c}\right) \subset \mathbf{k}^{3} \backslash\{0\}$ (where $\pi: \mathbf{k}^{3} \backslash\{0\} \rightarrow \mathbf{P}^{2}(\mathbf{k})$ is the standard projection):

$$
\eta=\frac{\left|\begin{array}{cc}
Y & Z \tag{3.6}\\
d Y & d Z
\end{array}\right|}{X^{m-1}} \equiv-\frac{\left|\begin{array}{cc}
Z & X \\
d Z & d X
\end{array}\right|}{Y^{m-1}} .
$$

The LHS of (3.6) is regular except possibly when $X=0$ (note that the numerator may vanish when $X=0$); on the other hand the RHS is regular except possibly when $Y=0$; hence it is regular with the possible exception at $X=Y=0$. By (3.5), when $m \geq 3$, the same is true for ω. However, as observed earlier, the point $(0,0,1)$ is not in $C_{c}=\left\{F_{c}(X, Y, Z)=0\right\}, c \neq 1$. Suppose that there exists a non-constant holomorphic map $\phi=\left[f_{0}, f_{1}, f_{2}\right]$: $\mathbf{k} \rightarrow C_{c} \subset \mathbf{P}^{2}(\mathbf{k})$. Since $f_{2} \not \equiv 0$ (otherwise the map is constant) we may represent the map as $\phi=\left[f=f_{0} / f_{2}, g=f_{1} / f_{2}, 1\right]$. The condition $\phi(\mathbf{k}) \subset C_{c}$ implies that $P(f)-c P(g) \equiv 0$ and $\phi^{*} \omega \equiv 0$. By the definition of ω this implies that (using the expression on the LHS of (3.6)) $-g^{\prime}=W(g, 1) \equiv 0$,
i.e., g is a p th power. Analogously, using the expression on the RHS of (3.6) yields $f^{\prime}=W(1, f) \equiv 0$, i.e., f is a p th power.

Note that in the preceding lemma, if $n=m+1$ then the curve $F_{c}(X, Y)=$ $P(X)-c P(Y), c \neq 0,1$, is non-singular, and the preceding proof can be simplified by using the classical genus formula. However, for $n>m+1$ the curve is singular and the classical genus formula cannot be applied unless we know that the curve is irreducible. Irreducibility is a condition that is usually very difficult to verify. The Wronskian construction bypasses this difficulty. Next we deal with the curve $F(X, Y)=(P(X)-P(Y)) /(X-Y)=0$. The case of $F(X, Y)$ is more complicated. In the present situation the curve $F(X, Y)=0$ turns out to be always singular for the class of polynomials P under consideration. As we shall see the Wronskian construction still works provided that we impose one (fairly minor) additional condition (see condition (C3) below) on the polynomial P, as counter-examples for uniqueness exist without this condition (see Section 5). The conditions on P in Lemma 1 may be equivalently stated as follows:

$$
\begin{equation*}
P(X)=Q(X)+\gamma X^{m}+b, \quad \gamma \neq 0, b \neq 0,1 \leq m<n \tag{C1}
\end{equation*}
$$

m and n are relatively prime where $Q(X)$ is a p th power polynomial:

$$
\begin{equation*}
Q(X)=\sum_{l=0}^{q} a_{l} X^{n_{l}}, \quad n_{l}=p^{\alpha_{l}} \beta_{l} \tag{C2}
\end{equation*}
$$

$0<n_{0}<n_{1}<\ldots<n_{q}=n$. Thus the polynomial $F(X, Y)$ is of the form

$$
\begin{equation*}
F(X, Y)=\sum_{l=0}^{q} Q_{l}(X, Y)+\gamma\left(\sum_{i=0}^{m-1} X^{m-i-1} Y^{i}\right) \tag{3.7}
\end{equation*}
$$

where

$$
Q_{l}(X, Y)=a_{l}(X-Y)^{p^{\alpha_{l}}-1}\left(\sum_{i=0}^{\beta_{l}-1} X^{\beta_{l}-i-1} Y^{i}\right)^{p^{\alpha_{l}}}
$$

We shall impose an additional condition on the lowest degree term of $Q(X)$:

$$
\begin{equation*}
p^{\alpha_{0}} \beta_{0}=n_{0}<m \tag{C3}
\end{equation*}
$$

In other words, γX^{m} is not the term of the lowest degree of the polynomial $P(X)-P(0)=P(X)-b$. Note that the condition (C3) implies that $m \geq 3$.

Lemma 2. Let $P(X)=Q(X)+\gamma X^{m}+b$ be a polynomial of degree n satisfying the conditions of Lemma 1, and assume in addition that m is not the lowest degree term of $P(X)-b$. Then $F(f, g) \neq 0$ for all $f, g \in \mathcal{M}^{*}(\mathbf{k})$ which are not pth powers.

Proof. As remarked prior to the lemma, the conditions on P are equivalent to the conditions (C1), (C2) and (C3). Let $F(X, Y, Z)$ be the homog-
enization of the polynomial $F(X, Y, 1)=F(X, Y)$ (see (3.7)):

$$
\begin{aligned}
F(X, Y, Z)= & \sum_{l=0}^{q} a_{l}(X-Y)^{p^{\alpha_{l}}-1}\left(\sum_{i=0}^{\beta_{l}-1} X^{\beta_{l}-i-1} Y^{i}\right)^{p^{\alpha_{l}}} \\
& +\gamma Z^{n-m} \sum_{i=0}^{m-1} X^{m-i-1} Y^{i}
\end{aligned}
$$

with the gradient

$$
\begin{aligned}
& \frac{\partial F}{\partial X}(X, Y, Z)=\frac{m \gamma(X-Y) X^{m-1} Z^{n-m}-F(X, Y, Z)}{(X-Y)^{2}} \\
& \frac{\partial F}{\partial Y}(X, Y, Z)=\frac{-m \gamma(X-Y) Y^{m-1} Z^{n-m}+F(X, Y, Z)}{(X-Y)^{2}} \\
& \frac{\partial F}{\partial Z}(X, Y, Z)=-(n-m) \gamma Z^{n-m-1} \sum_{i=0}^{m-1} X^{m-i-1} Y^{i}
\end{aligned}
$$

On the curve $C=\{F(X, Y, Z)=0\}$ these reduce to

$$
\begin{aligned}
& \frac{\partial F}{\partial X}(X, Y, Z)=\frac{m \gamma X^{m-1} Z^{n-m}}{X-Y} \\
& \frac{\partial F}{\partial Y}(X, Y, Z)=\frac{-m \gamma Y^{m-1} Z^{n-m}}{X-Y} \\
& \frac{\partial F}{\partial Z}(X, Y, Z)=m \gamma Z^{n-m-1} \sum_{i=0}^{m-1} X^{m-i-1} Y^{i}
\end{aligned}
$$

Consider the 1-form

$$
\eta:=\frac{(X-Y)}{Z X^{m-1}}\left|\begin{array}{cc}
Y & Z \\
d Y & d Z
\end{array}\right|
$$

Note that η is well defined only on $\mathbf{k}^{3} \backslash\{0\}$. By (3.4) the restriction of η to the curve $\pi^{-1}(C)$ where $C=\{F(X, Y, Z)=0\} \subset \mathbf{P}^{2}(\mathbf{k})$ may also be expressed as

$$
\begin{align*}
\eta & :=\frac{(X-Y)\left|\begin{array}{cc}
Y & Z \\
d Y & d Z
\end{array}\right|}{Z X^{m-1}} \tag{3.8}\\
& \equiv-\frac{(X-Y)\left|\begin{array}{cc}
Z & X \\
d Z & d X
\end{array}\right|}{Z Y^{m-1}} \equiv-\frac{\left|\begin{array}{cc}
X & Y \\
d X & d Y
\end{array}\right|}{\sum_{i=0}^{m-1} X^{m-i-1} Y^{i}} .
\end{align*}
$$

The 1 -form is well defined only on $\mathbf{k}^{3} \backslash\{0\}$. As remarked earlier, for any
homogeneous polynomial B of degree 2,

$$
\varrho=\frac{1}{B}\left|\begin{array}{cc}
Y & Z \\
d Y & d Z
\end{array}\right|
$$

is a well defined rational 1-form on the projective space, hence we may multiply ϱ by any rational function (i.e., quotient of two homogeneous polynomial of the same degree) on the projective space to get a well defined rational 1 -form. This means that we need to multiply η by a homogeneous polynomial of degree $m-3 \geq 0$ to get a well defined 1-form on the projective space. With this in mind we introduce the following rational 1-form ω well defined on $\mathbf{P}^{2}(\mathbf{k})$:

$$
\begin{aligned}
& \omega:=\left(X^{\beta_{0}-1}+X^{\beta_{0}-2} Y+\ldots+Y^{\beta_{0}-1}\right)^{p^{\alpha_{0}}}(X-Y)^{m-3-\left(\beta_{0}-1\right) p^{\alpha_{0}}} \eta \\
& =\frac{\left(X^{\beta_{0}-1}+X^{\beta_{0}-2} Y+\ldots+Y^{\beta_{0}-1}\right)^{p_{0}}(X-Y)^{m-2-\left(\beta_{0}-1\right) p^{\alpha_{0}}}}{Z X^{m-1}}\left|\begin{array}{cc}
Y & Z \\
d Y & d Z
\end{array}\right| .
\end{aligned}
$$

From (3.8), we see that η, hence also ω, has no poles except possibly at $(0,0,1)$. Indeed, from the identity

$$
\frac{(X-Y)\left|\begin{array}{cc}
Y & Z \\
d Y & d Z
\end{array}\right|}{Z X^{m-1}} \equiv-\frac{\left|\begin{array}{cc}
X & Y \\
d X & d Y
\end{array}\right|}{\sum_{i=0}^{m-1} X^{m-i-1} Y^{i}}
$$

we infer that there is no pole along $Z=0$, since the points of the curve C at infinity are of the form $\left\{(1, \nu, 0) \mid \nu^{n}=1\right\}$ and the denominator of the LHS does not vanish at such points because m is relatively prime to n.

We now check that ω is regular at $(0,0,1)$. Let $D(0 ; \varepsilon):=\{u \in \mathbf{k} \mid$ $\left.|u|_{v}<\varepsilon\right\}$ be an open disc centered at the origin with radius $\varepsilon>0$. Let $\psi=(x, y, 1)$ be any local analytic map from $D(0 ; \varepsilon)$ to the curve C such that $\psi(0)=(0,0,1)$. It suffices to show that $\operatorname{ord}_{0} \omega(x, y, 1) \geq 0$. By symmetry it is clear that $\operatorname{ord}_{0}(x)=\operatorname{ord}_{0}(y):=\mu$. This implies that $\operatorname{ord}_{0}(x-y) \geq \mu$ and $\operatorname{ord}_{0}\left(x^{i}\right)=\operatorname{ord}_{0}\left(y^{i}\right)$ for all i, hence

$$
\operatorname{ord}_{0}\left(Q_{l}(x, y)\right)=\operatorname{ord}_{0}\left((x-y)^{p^{\alpha_{l}}-1}\left(\sum_{i=0}^{\beta_{l}-1} x^{\beta_{l}-1-i} y^{i}\right)^{p^{\alpha_{l}}}\right) \geq\left(p^{\alpha_{l}} \beta_{l}-1\right) \mu
$$

for all l and

$$
\operatorname{ord}_{0}\left(\sum_{i=0}^{m-1} x^{m-1-i} y^{i}\right) \geq(m-1) \mu
$$

Since $p^{\alpha_{0}} \beta_{0}$ is the lowest degree of the non-constant monomials in the polynomial $P(X)$, we infer that

$$
\left\{(m-1) \mu, \min _{1 \leq l \leq q}\left\{\left(p^{\alpha_{l}} \beta_{l}-1\right) \mu\right\}\right\}>\left(p^{\alpha_{0}} \beta_{0}-1\right) \mu
$$

On the curve $C=\{F(X, Y, Z)=0\}$,

$$
Q_{0}(X, Y)=-\sum_{1 \leq l \leq q} Q_{l}(X, Y)-\gamma \sum_{i=0}^{m-1} X^{m-1-i} Y^{i}
$$

hence

$$
\operatorname{ord}_{0}\left(Q_{0}(x, y)\right) \geq \min \left\{\min _{1 \leq l \leq q}\left\{\operatorname{ord}_{0}\left(Q_{l}(x, y)\right)\right\}, \operatorname{ord}_{0}\left(\sum_{i=0}^{m-1} x^{m-1-i} y^{i}\right)\right\},
$$

which is equivalent to

$$
\operatorname{ord}_{0}\left((x-y)^{p^{\alpha_{0}}-1}\left(\sum_{i=0}^{\beta_{0}-1} x^{\beta_{0}-1-i} y^{i}\right)^{p^{\alpha_{0}}}\right)>\left(p^{\alpha_{0}} \beta_{0}-1\right) \mu .
$$

This last inequality implies that

$$
\begin{equation*}
\operatorname{ord}_{0}(x-y)>\mu \tag{3.9}
\end{equation*}
$$

or

$$
\begin{equation*}
\operatorname{ord}_{0}\left(\sum_{i=0}^{\beta_{0}-1} x^{\beta_{0}-1-i} y^{i}\right)>\left(\beta_{0}-1\right) \mu . \tag{3.10}
\end{equation*}
$$

To estimate the order of ω at 0 note that $\operatorname{ord}_{0} x^{\prime}=\operatorname{ord}_{0} x-1=\mu-1$, hence

$$
\operatorname{ord}_{0}\left|\begin{array}{ll}
y & 1 \\
y^{\prime} & 0
\end{array}\right| \geq \mu-1
$$

If (3.9) holds the order of $\omega(x, y, 1)$ at 0 is at least

$$
\begin{aligned}
p^{\alpha_{0}}\left(\beta_{0}-1\right) \mu+\left(m-2-p^{\alpha_{0}}\left(\beta_{0}-1\right)\right)(& \mu+1)+\mu-1-(m-1) \mu \\
& =m-\beta_{0} p^{\alpha_{0}}+p^{\alpha_{0}}-3 \geq p^{\alpha_{0}}-2 \geq 0 .
\end{aligned}
$$

If (3.10) holds then this order is at least

$$
\begin{aligned}
p^{\alpha_{0}}\left(\left(\beta_{0}-1\right) \mu+1\right)+\left(m-2-p^{\alpha_{0}}\left(\beta_{0}-1\right)\right) \mu+\mu-1- & (m-1) \mu \\
& =p^{\alpha_{0}}-1>0 .
\end{aligned}
$$

This shows that ω is regular at $(0,0,1)$. Therefore ω is regular on $C=$ $\{F(X, Y, Z)=0\}$.

Suppose that the curve has a component, C^{\prime}, of genus zero; then the restriction of ω to C^{\prime}, being a regular 1 -form, must be identically zero. Since the genus of C^{\prime} is zero there exists a non-trivial holomorphic map $\phi=\left[f_{0}, f_{1}, f_{2}\right]: \mathbf{k} \rightarrow C^{\prime} \subset \mathbf{P}^{2}(\mathbf{k})$. Since $f_{2} \not \equiv 0$ (otherwise the map is constant) we may represent the map as $\phi=\left[f=f_{0} / f_{2}, g=f_{1} / f_{2}, 1\right]$. The condition that $\phi(\mathbf{k}) \subset C^{\prime}$ implies that $(P(f)-P(g)) /(f-g) \equiv 0$ and $\phi^{*} \omega \equiv 0$. By the definition of ω this means that either $\phi^{*} \eta \equiv 0$ or $\left(f^{\beta_{0}-1}+f^{\beta_{0}-2} g+\ldots+g^{\beta_{0}-1}\right)^{p^{\alpha_{0}}}(f-g)^{m-3-\left(\beta_{0}-1\right) p^{\alpha_{0}}} \equiv 0$. The second alternative is eliminated, since $F(X, Y)$ has no linear factor by Proposition 4
and $\left(X^{\beta_{0}-1}+X^{\beta_{0}-2} Y+\ldots+Y^{\beta_{0}-1}\right)^{p^{\alpha_{0}}}$ decomposes into linear factors as the field is algebraically closed. The first alternative is eliminated because $\phi^{*} \eta \equiv 0$ implies that $-g^{\prime}=W(g, 1) \equiv 0$, and $f^{\prime}=W(1, f) \equiv 0$, i.e., f and g are p th powers contrary to the assumption that f is not a p th power.

Proof of Theorem 2. By Proposition 3 there is no loss of generality in assuming that $\alpha=0$. Suppose that f and g are two non-constant meromorphic functions such that $P(f)=\beta P(g)$ for some constant $\beta \neq 0$. If f and g are not p th powers then Lemmas 1 and 2 imply that $\beta=1$ and $f \equiv g$. It remains to deal with the case where f is a p th power. Suppose that $f=f_{0}^{p^{i}}, i \geq 1$, where f_{0} is not a p th power. We claim that g is also a p th power. Differentiating the identity $P(f)=\beta P(g)$, using the assumption on P, yields

$$
\beta g^{m-1} g^{\prime}=\gamma f^{m-1} f^{\prime} \equiv 0
$$

which implies that g is also a p th power so $g=g_{0}^{p^{l}}$ for some $l \geq 1$ and g_{0} is not a p th power. Indeed, g is also a p^{i} th power (i.e., $i=l$). This can be seen by using the expression (1.2) in the introduction:

$$
P_{S}(X)=\sum_{0 \leq j \leq n, p \mid j} a_{j} X^{j}+a X^{m}+b
$$

Let $\widehat{a}, \widehat{b}, \widehat{a}_{j}$ be chosen such that $\widehat{a}^{p^{i}}=a, \widehat{b}^{p^{i}}=b, \widehat{a}_{j}^{p^{i}}=a_{j}$ and define a polynomial

$$
P_{0}(X)=\sum_{0 \leq j \leq n, p \mid j} \widehat{a}_{j} X^{j}+\widehat{a} X^{m}+\widehat{b}
$$

then $P_{S}(f)=P_{0}\left(f_{0}\right)^{p^{i}}$. Similarly, $P_{S}(g)=P_{1}\left(g_{0}\right)^{p^{l}}$ where

$$
P_{1}(X)=\sum_{0 \leq j \leq n, p \mid j} \widetilde{a}_{j} X^{j}+\widetilde{a} X^{m}+\widetilde{b}
$$

and $\widetilde{a}, \widetilde{b}, \widetilde{a}_{j}$ are chosen such that $\widetilde{a}^{p^{l}}=a, \widetilde{b}^{p^{l}}=b, \widetilde{a}_{j}^{p^{l}}=a_{j}$. Thus $P(f)=$ $\beta P(g)$ implies that $P_{0}\left(f_{0}\right)^{p^{i}}=\beta P_{1}\left(g_{0}\right)^{p^{l}}$. If $l \leq i$ then $P_{0}\left(f_{0}\right)^{p^{i-l}}=\gamma P_{1}\left(g_{0}\right)$, where $\gamma^{p^{l}}=\beta$, is not a p th power by the assumptions on P_{S} and that g_{0} is not a p th power. This implies that $i=l$ and that $P_{0}\left(f_{0}\right)=\beta P_{0}\left(g_{0}\right)$. By construction the polynomial P_{0} satisfies the assumptions of the theorem, and since f_{0} and g_{0} are not p th powers we conclude as before that $\beta=1$ and $f_{0} \equiv g_{0}$, which, of course, implies that $f \equiv g$. This shows that P_{S} is a strong uniqueness polynomial for $\mathcal{M}^{*}(\mathbf{k})$. By property (P 1) in the introduction P_{S} is also a strong uniqueness polynomial for $\mathcal{A}^{*}(\mathbf{k})$. Finally property (P 3) asserts that this is equivalent to the set S being a unique range set for $\mathcal{A}^{*}(\mathbf{k})$.
4. Application of the Truncated Second Main Theorem. In this section, we will deal with polynomials of the form $P(X)=X^{n}+a X^{m}+b$ where n is a power of p, m is prime to n and $a b \neq 0$. This type of polynomial was discussed by Boutabaa, Cherry and Escassut in [2]. However their results do not cover all possible cases of (strong) uniqueness polynomials for $\mathcal{A}^{*}(\mathbf{k})$ and $\mathcal{M}^{*}(\mathbf{k})$. The main tool for this is the Truncated Second Main Theorem (see [3]):

Theorem (Second Main Theorem in positive characteristic). Let $f=$ f_{1} / f_{2} where f_{1}, f_{2} are entire functions without common zeros and assume that f is not a pth power. Let c_{1}, \ldots, c_{q} be q distinct elements in \mathbf{k}. Then

$$
(q-2) \max \left\{T_{f_{1}}(t), T_{f_{2}}(t)\right\} \leq \sum_{i=1}^{q} N_{1}\left(f-c_{i}, t\right)-\log t+O(1)
$$

where $N_{1}\left(f-c_{i}, t\right)$ is the counting function of $f-c_{i}$, with the number of zeros counted without multiplicity.

For the case of function fields of positive characteristic the Second Main Theorem for rational functions can be found in [9] and [10].

Lemma 3. Let $P(X)=X^{n}+a X^{m}+b$, with $m<n=p^{r} s, r, s \geq 1, p \nmid s$, m prime to n and $a b \neq 0$. Then
(i) $P(X)$ is a uniqueness polynomial for $\mathcal{M}^{*}(\mathbf{k})$ if

$$
(n, m) \notin\left\{\left(2 p^{r}, 1\right),\left(p^{r}, 1\right)\right\} \cup\left\{\left(p^{r}, 2\right)\right\} \cup\{(5,3)\} \cup\{(n, n-1)\}
$$

(ii) $P(X)$ is a uniqueness polynomial for $\mathcal{A}^{*}(\mathbf{k})$ if

$$
s \geq 2 \quad \text { or } \quad s=1 \quad \text { and } \quad 3 \leq m \leq n-2
$$

Proof. By Proposition 1, to show that $P(X)$ is a uniqueness polynomial for $\mathcal{M}^{*}(\mathbf{k})\left(\right.$ resp. $\left.\mathcal{A}^{*}(\mathbf{k})\right)$ it suffices to consider $P(f)$ for rational functions f (resp. polynomials). Suppose that f and g are two distinct non-constant rational functions such that $P(f)=P(g)$. As in the proof of Theorem 2 we may assume that neither f nor g is a p th power. Next we represent the rational functions as

$$
f=\frac{h f_{1}}{f_{2}}, \quad g=\frac{h g_{1}}{f_{2}}
$$

where h, f_{1}, g_{1}, f_{2} are polynomials such that (1) f_{1} and g_{1} are relatively prime (i.e., no common zeros) and (2) f_{2} is relatively prime to h. The condition that $P(f)=P(g)$ is equivalent to

$$
h^{n-m}\left(f_{1}^{s}-g_{1}^{s}\right)^{p^{r}}=-a f_{2}^{n-m}\left(f_{1}^{m}-g_{1}^{m}\right)
$$

We now claim that f_{1} / g_{1} is not a p th power. If it is, then both f_{1} and g_{1} have to be p th powers since f_{1} and g_{1} are relatively prime. Hence the above identity shows that h / f_{2} is also a p th power. This implies that $f=h f_{1} / f_{2}$
is also a p th power, which contradicts our assumption. Decomposing the above identity into linear factors we get, as $n=p^{r} s$,

$$
\begin{equation*}
h^{p^{r} s-m}\left(f_{1}-g_{1}\right)^{p^{r}-1} \prod_{i=1}^{s-1}\left(f_{1}-\mu_{i} g_{1}\right)^{p^{r}}=-a f_{2}^{p^{r} s-m} \prod_{i=1}^{m-1}\left(f_{1}-\nu_{i} g_{1}\right) \tag{4.1}
\end{equation*}
$$

where $\mu_{i}, i=1, \ldots, s-1$ (resp. $\nu_{i}, 1 \leq i \leq m-1$), are the distinct (as s and m are relatively prime to p) roots of the polynomials $X^{s-1}+$ $X^{s-2}+\ldots+X+1$ (resp. $X^{m-1}+X^{m-2}+\ldots+X+1$). In fact the set $\left\{1, \mu_{1}, \ldots, \mu_{s-1}, \nu_{1}, \ldots, \nu_{m-1}\right\}$ consists of mutually distinct elements as m is relatively prime to $n=p^{r} s$. If ξ is a root of $f_{1}=g_{1}$, then since f_{1} and g_{1} have no common zero, $f_{1}(\xi)=g_{1}(\xi) \neq 0$. This implies, as $\nu_{i} \neq 1$, that $f_{1}(\xi) \neq \nu_{i} g_{1}(\xi)$ for $i=1, \ldots, m-1$. Conversely, a root of $f_{1}-\nu_{i} g_{1}$ is not a root of $f_{1}-g_{1}$ either. For the same reason, as μ_{i} and ν_{j} are distinct for all i, j, $f_{1}-\mu_{i}$ and $f_{1}-\nu_{j} g_{1}$ have no common roots either. Lastly, by construction, the polynomials f_{2} and h have no common zeros. Putting all these together we conclude that

$$
\begin{gathered}
{\left[h^{p^{r} s-m}=0\right]=\left[\prod_{i=1}^{m-1}\left(f_{1}-\nu_{i} g_{1}\right)=0\right]} \\
{\left[\left(f_{1}-g_{1}\right)^{p^{r}-1} \prod_{i=1}^{s-1}\left(f_{1}-\mu_{i} g_{1}\right)^{p^{r}}=0\right]=\left[f_{2}^{p^{r} s-m}=0\right]}
\end{gathered}
$$

where the bracket indicates the divisors of zero counting multiplicity. Consequently, we have

$$
\prod_{i=1}^{m-1}\left(f_{1}-\nu_{i} g_{1}\right)=b h^{p^{r} s-m}
$$

for some constant b; in particular, $\prod_{i=1}^{m-1}\left(f_{1}-\nu_{i} g_{1}\right)$ is a $\left(p^{r} s-m\right)$ th power. As $\nu_{i} \neq \nu_{j}$ for $i \neq j$, we conclude that $f_{1}-\nu_{i} g_{1}$ is a $\left(p^{r} s-m\right)$ th power for each i and so

$$
\begin{equation*}
N_{1}\left(\frac{f_{1}}{g_{1}}-\nu_{i}\right) \leq \frac{1}{p^{r} s-m} N\left(\frac{f_{1}}{g_{1}}-\nu_{i}\right) \tag{4.2}
\end{equation*}
$$

Analogously,

$$
\begin{equation*}
\left(f_{1}-g_{1}\right)^{p^{r}-1} \prod_{i=1}^{s-1}\left(f_{1}-\mu_{i} g_{1}\right)^{p^{r}}=c_{1} f_{2}^{p^{r} s-m} \tag{4.3}
\end{equation*}
$$

for some constant c_{1}. Again, since $f_{1}-g_{1}$ and $f_{1}-\mu_{i} g_{1}$ have no common roots we conclude that

$$
\left(p^{r}-1\right) \operatorname{ord}_{\xi}\left(f_{1}-g_{1}\right)=\left(p^{r} s-m\right) \operatorname{ord}_{\xi} f_{2}
$$

if ξ is a root of $f_{1}-g_{1}$. This implies that

$$
\begin{equation*}
N_{1}\left(\frac{f_{1}}{g_{1}}-1\right) \leq \frac{\operatorname{gcd}\left(p^{r} s-m, p^{r}-1\right)}{p^{r} s-m} N\left(\frac{f_{1}}{g_{1}}-1\right) \tag{4.4}
\end{equation*}
$$

provided that $p^{r} s-m>0$. Analogously we also have

$$
p^{r} \operatorname{ord}_{\xi_{i}}\left(f_{1}-\mu_{i} g_{1}\right)=\left(p^{r} s-m\right) \operatorname{ord}_{\xi_{i}} f_{2}
$$

if ξ_{i} is a root of $f_{1}-\mu_{i} g_{1}$. Since p^{r} and $p^{r} s-m$ are relatively prime, $\operatorname{ord}_{\xi_{i}}\left(f_{1}-\mu_{i} g_{1}\right)$ is a multiple of $p^{r} s-m$ and so

$$
\begin{equation*}
N_{1}\left(\frac{f_{1}}{g_{1}}-\mu_{i}\right) \leq \frac{1}{p^{r} s-m} N\left(\frac{f_{1}}{g_{1}}-\mu_{i}\right) \tag{4.5}
\end{equation*}
$$

provided that $p^{r} s-m>0$. The Second Main Theorem, applied to f_{1} / g_{1} and $1, \mu_{1}, \ldots, \mu_{s-1}, \nu_{1}, \ldots, \nu_{m-1}$, yields (by (4.2) and (4.4) and (4.5)) $(m+s-3) \max \left\{\operatorname{deg} f_{1}, \operatorname{deg} g_{1}\right\}$

$$
\begin{aligned}
& \leq N_{1}\left(\frac{f_{1}}{g_{1}}-1\right)+\sum_{i=1}^{s-1} N_{1}\left(\frac{f_{1}}{g_{1}}-\mu_{i}\right)+\sum_{i=1}^{m-1} N_{1}\left(\frac{f_{1}}{g_{1}}-\nu_{i}\right)-1 \\
& \leq \frac{1}{p^{r} s-m}\left\{\gamma N\left(\frac{f_{1}}{g_{1}}-1\right)+\sum_{i=1}^{s-1} N\left(\frac{f_{1}}{g_{1}}-\mu_{i}\right)+\sum_{i=1}^{m-1} N\left(\frac{f_{1}}{g_{1}}-\nu_{i}\right)\right\}-1 \\
& \leq\left(\frac{\gamma+m+s-2}{p^{r} s-m}\right) \max \left\{\operatorname{deg} f_{1}, \operatorname{deg} g_{1}\right\}-1
\end{aligned}
$$

where $\gamma=\operatorname{gcd}\left(p^{r} s-m, p^{r}-1\right)$ provided that $p^{r} s-m>0$. This implies that

$$
\begin{equation*}
(m+s-3)\left(p^{r} s-m-1\right)<\gamma+1 \leq p^{r} s-m+1 \tag{4.6}
\end{equation*}
$$

which in particular yields

$$
\begin{equation*}
(m+s-4)\left(p^{r} s-m-1\right)<2 \tag{4.7}
\end{equation*}
$$

Thus, for (n, m) in the cases:
(1) $m=n-2=p^{r} s-2, m+s \geq 6$,
(2) $m \leq n-3=p^{r} s-3, m+s \geq 5$,
we have $(m+s-3)\left(p^{r} s-m-1\right) \geq 2$ contradicting (4.7). In other words, any (n, m) in cases (1) and (2) yields a uniqueness polynomial.

On the other hand, if $n-m=p^{r} s-m=1$ then (4.6) is satisfied, hence $(n, m)=(n, n-1)$ must be excluded. Note that (4.6) is automatically satisfied if $m+s \leq 3(m \geq 1, s \geq 1)$, thus $(n, m)=\left(2 p^{r}, 1\right),\left(p^{r}, 1\right)$ and ($p^{r}, 2$) must also be excluded. To see which other cases should be excluded we need only consider those (n, m) such that $m \leq n-2$ and $m+s \geq 4$. If $m \geq 5$ then $m+s \geq 6$ is automatically satisfied, thus these are not to be excluded (by (1) and (2) above). If $m=4$, then $n \neq m+2$ since m and n are relatively prime. Thus, $m \leq n-3$, and in this case, $m+s \geq 5$ is automatically satisfied. These are not to be excluded by (2) above. It
remains to consider the case $m \leq 3$ and $m+s=4$. Clearly we have either $m=3, s=1$ or $m=1, s=3$ (the case $m=s=2$ is eliminated by the assumption that n, m are relatively prime). If $m=3, s=1$ it is easily seen that $\gamma=\operatorname{gcd}\left(p^{r}-3, p^{r}-1\right) \leq 2$. In these cases (4.7) is not useful but we deduce from (4.6) that $0 \leq p^{r}-4=p^{r} s-m-1<\gamma+1 \leq 3$ and we again arrive at a contradiction, except in the cases $(n, m)=(4,3),(5,3)$. Thus these two cases have to be excluded. If $m=1, s=3$ then the greatest common divisor of $\left(3 p^{r}-1, p^{r}-1\right)$ is again at most 2 , hence (4.6) implies that $3 p^{r}-1<3$, which is impossible. Thus none of these are excluded. This completes the proof of (i).

If $f \neq g$ are non-constant polynomials then $f_{2}=1$, hence, by (4.3), $f_{1}-g_{1}, f_{1}-\mu_{i} g_{1}, 1 \leq i \leq s-1$, are constants. If $s \geq 2$, then this implies that f_{1} and g_{1} are constants, contradicting our assumption. Therefore it suffices to consider the case $s=1$. In this case, $f_{1}-g_{1}=c \neq 1$ is still a constant, and by applying the Second Main Theorem to f_{1} / g_{1} and $1, \nu_{1}, \ldots, \nu_{m-1}$ we get

$$
\begin{aligned}
(m-2) \max \left\{\operatorname{deg} f_{1}, \operatorname{deg} g_{1}\right\} & \leq N_{1}\left(\frac{f_{1}}{g_{1}}-1\right)+\sum_{i=1}^{m-1} N_{1}\left(\frac{f_{1}}{g_{1}}-\nu_{i}\right)-1 \\
& \leq \frac{1}{n-m} \sum_{i=1}^{m-1} N\left(\frac{f_{1}}{g_{1}}-\nu_{i}\right)-1 \\
& \leq\left(\frac{m-1}{n-m}\right) \max \left\{\operatorname{deg} f_{1}, \operatorname{deg} g_{1}\right\}-1
\end{aligned}
$$

This yields

$$
\left(m-2-\frac{m-1}{n-m}\right) \max \left\{\operatorname{deg} f_{1}, \operatorname{deg} g_{1}\right\} \leq-1
$$

Clearly, this is impossible if $(m-2) n \geq m^{2}-m-1$. In other words, we derive a contradiction when $m \geq 3$ and

$$
n \geq \frac{m^{2}-m-1}{m-2}=m+1+\frac{1}{m-2} \geq m+2
$$

This completes the proof of (ii).
Lemma 4. Let $P(X)=X^{n}+a X^{m}+b$, with $m<n=p^{r} s, r, s \geq 1$, $p \nmid s, m$ prime to n and $a b \neq 0$. Then
(i) if $s \geq 3$ and $1 \leq m \leq p^{r}$, then there exist no non-constant $f, g \in$ $\mathcal{M}^{*}(\mathbf{k})$ such that $P(f)=c P(g)$ for $c \neq 0,1$;
(ii) if $s \geq 2$ or $s=1$ and $m \geq 3$ then there exist no non-constant $f, g \in \mathcal{A}^{*}(\mathbf{k})$ such that $P(f)=c P(g)$ for some $c \neq 0,1$.

Proof. Suppose that there exist non-constant rational functions f and g such that $P(f)=c P(g), c \neq 0,1$. As in the preceding lemma, we may assume that none of the functions $f, g, f / g$ is a p th power. Write $f=f_{1} / f_{2}$ and $g=g_{1} / f_{2}$ where f_{1} and f_{2} (resp. g_{1} and f_{2}) are polynomials with no common zero. Then f_{1} and g_{1} have no common zero, for if $f_{1}(u)=g_{1}(u)=0$ then $b=P(0)=P(f(u))=c P(g(a))=c b$, which is impossible since $b \neq 0$ and $c \neq 1$. It is also easy to see from the equation $P(f)=c P(g)$ that $\operatorname{deg} f_{1}=\operatorname{deg} g_{1} \geq \operatorname{deg} f_{2}$. From the equation we also derive

$$
\begin{equation*}
\left(f_{1}^{s}-\alpha g_{1}^{s}\right)^{p^{r}}+b(1-c) f_{2}^{p^{r} s}=-a\left(f_{1}^{m}-c g_{1}^{m}\right) f_{2}^{p^{r} s-m} \tag{4.8}
\end{equation*}
$$

where $\alpha^{p^{r}}=c$. Since the vanishing order of every zero of the function on the LHS above is a multiple of p^{r}, the identity above implies that the vanishing order of every zero of the function $f_{1}^{m}-c g_{1}^{m}$, which is not a zero of f_{2}, is a multiple of p^{r}. Suppose that u is a common zero of $f_{1}^{m}-c g_{1}^{m}$ and f_{2}; then the preceding identity shows that it is also a zero of $f_{1}^{s}-\alpha g_{1}^{s}$. Thus, as the roots of $f_{1}^{m}-c g_{1}^{m}$ are distinct (m being prime to p), the vanishing order of $f_{1}^{m}-c g_{1}^{m}$ at u is also a multiple of p^{r}. This implies that $\left\{-a\left(f_{1}^{m}-c g_{1}^{m}\right)-b(1-c) f_{2}^{m}\right\} f_{2}^{p^{r}-m}$ is a p^{r} th power. Rewrite the equation (4.8) as

$$
\begin{equation*}
\left(f_{1}^{s}-\alpha g_{1}^{s}\right)^{p^{r}}=\left(\left\{-a\left(f_{1}^{m}-c g_{1}^{m}\right)-b(1-c) f_{2}^{m}\right\} f_{2}^{p^{r}-m}\right) f_{2}^{p^{r}(s-1)} \tag{4.9}
\end{equation*}
$$

this shows that $N_{1}\left(f_{1}^{s}-\alpha g_{1}^{s}\right) \leq N_{1}\left(\left\{-a\left(f_{1}^{m}-c g_{1}^{m}\right)-b(1-c) f_{2}^{m}\right\} f_{2}^{p^{r}-m}\right)$. Apply the Truncated Second Main Theorem to f_{1} / g_{1} and s distinct values $\alpha_{1}, \ldots, \alpha_{s}$, where α_{i} is a root of the equation $X^{s}=\alpha$. We get
$(s-2) \max \left\{\operatorname{deg} f_{1}, \operatorname{deg} g_{1}\right\}$

$$
\begin{aligned}
& \leq \sum_{i=1}^{s} N_{1}\left(f_{1} / g_{1}-\alpha_{i}\right)-1=\sum_{i=1}^{s} N_{1}\left(f_{1}-\alpha_{i} g_{1}\right)-1 \\
& \leq \frac{1}{p^{r}}\left(\left(p^{r}-m\right) N\left(f_{2}\right)+N\left(-a f_{1}^{m}+a c g_{1}^{m}-b(1-c) f_{2}^{m}\right)\right)-1 \\
& \leq \frac{1}{p^{r}}\left(p^{r}-m+m\right) \max \left\{\operatorname{deg} f_{1}, \operatorname{deg} g_{1}\right\}-1 \\
& =\max \left\{\operatorname{deg} f_{1}, \operatorname{deg} g_{1}\right\}-1
\end{aligned}
$$

which is impossible if $s \geq 3$. This completes the proof of (i).
If f and g are polynomials then $f_{2}=1$. In this case, we have

$$
\begin{equation*}
\left(f^{s}-\alpha g^{s}\right)^{p^{r}}=-a f^{m}+a c g^{m}-b(1-c) \tag{4.10}
\end{equation*}
$$

Then $-a f^{m}+a c g^{m}-b(1-c)$ and $f^{m}-c g^{m}$ are p^{r} th powers. Apply the Truncated Second Main Theorem to f_{1} / g_{1} and $s+m$ distinct values $\alpha_{1}, \ldots, \alpha_{s}$, $\beta_{1}, \ldots, \beta_{m}$, where α_{i} 's are the roots of the equation $X^{s}=\alpha$ and β_{j} 's are
the roots of $X^{m}=c$. We have

$$
\begin{aligned}
(s+m-2) & \max \left\{\operatorname{deg} f_{1}, \operatorname{deg} g_{1}\right\} \\
& \leq \sum_{i=1}^{s} N_{1}\left(f / g-\alpha_{i}\right)+\sum_{i=1}^{m} N_{1}\left(f / g-\beta_{j}\right)-1 \\
& =N_{1}\left(-a f^{m}+a c g^{m}-b(1-c)\right)+N_{1}\left(f^{m}-c g^{m}\right)-1 \\
& \leq \frac{1}{p^{r}}\left(N\left(-a f^{m}+a c g_{1}^{m}-b(1-c)\right)+N\left(f^{m}-c g^{m}\right)\right)-1 \\
& \leq \frac{2 m}{p^{r}} \max \left\{\operatorname{deg} f_{1}, \operatorname{deg} g_{1}\right\}-1
\end{aligned}
$$

This yields

$$
\left(s-2+m\left(1-\frac{2}{p^{r}}\right)\right) \max \left\{\operatorname{deg} f_{1}, \operatorname{deg} g_{1}\right\} \leq-1
$$

Clearly, this is impossible if $s \geq 2$. If $s=1$ and $m \geq 3$ then $p^{r} \geq 4$. Hence the above inequality is also impossible in this case. This completes the proof of (ii).

5. Proof of Theorem 3

Proposition 5. Suppose that $P(X)=X^{p^{r}}+a X^{m}+b$ with $r \geq 1$ and $a, b \neq 0$. If $m=1,2$ or $p^{r}-1$ then $P(X)$ is not a uniqueness polynomial for $\mathcal{A}^{*}(\mathbf{k})$.

Proof. For $m=1$ choose α such that $\alpha^{p^{r}-1}=-a$. Then $P(X+\alpha)=$ $P(X)$, hence $P(X)$ is not a uniqueness polynomial for $\mathcal{A}^{*}(\mathbf{k})$.

If $m=2$ then $F(X, Y)=(X-Y)^{p^{r}-1}+a(X+Y)$. The functions

$$
f=-\frac{1}{a}\left(\frac{t}{2}\right)^{p^{r}-1}+\frac{t}{2} \quad \text { and } \quad g=-\frac{1}{a}\left(\frac{t}{2}\right)^{p^{r}-1}-\frac{t}{2}
$$

clearly satisfy the equation $F(f, g)=0$, hence $P(X)$ is not a uniqueness polynomial for $\mathcal{A}^{*}(\mathbf{k})$.

If $m=p^{r}-1$ let $Q(X)=a^{-p^{r}} P(a X)-1-b a^{-p^{r}}=X^{p^{r}}+X^{p^{r}-1}+1$. By Proposition $3, P(X)$ is a uniqueness polynomial for $\mathcal{A}^{*}(\mathbf{k})$ if and only if $Q(X)$ is. Since $Q(X)=Q(X-1)$ the polynomial Q cannot be a uniqueness polynomial for $\mathcal{A}^{*}(\mathbf{k})$.

Proposition 6. Suppose that $P(X)=X^{n}+a X^{m}+b$ with $a, b \neq 0$. If either $n=2 p^{r}, m=1$ and $p \neq 2$, or $n=5, m=3$ and $p=5$, then $P(X)$ is not a uniqueness polynomial for $\mathcal{M}^{*}(\mathbf{k})$.

Proof. If $n=2 p^{r}$ and $m=1$ then $F(X, Y)=(X-Y)^{p^{r}-1}(X+Y)^{p^{r}}+a$. The functions

$$
f=\frac{\alpha}{2}\left(\frac{1}{t^{p^{r}-1}}+t^{p^{r}}\right) \quad \text { and } \quad g=\frac{\alpha}{2}\left(\frac{1}{t^{p^{r}-1}}-t^{p^{r}}\right)
$$

where $\alpha^{2 p^{r}-1}=-a$, satisfy the equation $F(f, g)=0$. Hence $P(X)$ is not a uniqueness polynomial for $\mathcal{M}^{*}(\mathbf{k})$.

For the second case where $n=5, m=3$, we take

$$
f=\frac{\alpha t\left(\omega^{2} t^{2}-\omega\right)}{(\omega-1)\left(t^{2}+\omega\right)^{2}} \quad \text { and } \quad g=\frac{\alpha t\left(t^{2}-1\right)}{(\omega-1)\left(t^{2}+\omega\right)^{2}}
$$

where $\omega^{2}+\omega+1=0$ and $\alpha^{2}=-a$. By a direct calculation we get

$$
f-g=\frac{-\alpha \omega^{2} t}{t^{2}+\omega}, \quad f-\omega g=\frac{-\alpha \omega t^{3}}{\left(t^{2}+\omega\right)^{2}}, \quad f-\omega^{2} g=\frac{-\alpha \omega t}{\left(t^{2}+\omega\right)^{2}} .
$$

Hence, $(f-g)^{4}=-a\left(f^{2}+f g+g^{2}\right)$ and this implies that $P(X)$ is not a uniqueness polynomial for $\mathcal{M}^{*}(\mathbf{k})$.

Proof of Theorem 3. By Proposition 3, we may assume that $P_{S}(X)=$ $X^{n}+a X^{m}+b$ with $a, b \neq 0$. By Proposition $5, P_{S}(X)$ is not a uniqueness polynomial for $\mathcal{A}^{*}(\mathbf{k})$ if $n=p^{r}$ and $m=1$ or $m=2$ or $m=n-1$. On the other hand, Lemma 3, Lemma 4 and property (P3) in the introduction imply that S is a unique range set for $\mathcal{A}^{*}(\mathbf{k})$ if either (a) $n=p^{r}$ and $3 \leq m \leq n-2$ or (b) $n=p^{r} s, s>1$, and $m \geq 1$. This completes the proof of (1).

If $m=n-1$ then $F(X, Y, Z)=0$ has only one singular point $(0,0,1)$ which is ordinary and has multiplicity $n-2$. Thus the curve $C=[F(X, Y, Z)$ $=0]$ is irreducible and its genus is 0 . Therefore $P(X)$ is not a uniqueness polynomial for $\mathcal{M}^{*}(\mathbf{k})$. If either $n=2 p^{r}, m=1$ and $p \neq 2$, or $n=p=5$ and $m=3$, then $P(X)$ is not a uniqueness polynomial by Proposition 6 . Except in these cases, $P(X)$ is a strong uniqueness polynomial for $\mathcal{M}^{*}(\mathbf{k})$ by Lemmas 1,3 and 4 .

References

[1] V. Berkovich, Spectral Theory and Analytic Geometry over Non-Archimedean Fields, Math. Surveys Monographs 33, Amer. Math. Soc., Providence, RI, 1990.
[2] A. Boutabaa, W. Cherry and A. Escassut, Unique range sets in positive characteristic, Acta Arith. 103 (2002), 169-189.
[3] A. Boutabaa and A. Escassut, Nevanlinna theory in characteristic p and applications, preprint.
[4] A. Boutabaa, A. Escassut and L. Haddad, On uniqueness of p-adic entire functions, Indag. Math. 8 (1997), 145-155.
[5] W. Cherry and J. T.-Y. Wang, Uniqueness polynomials for entire functions, Internat. J. Math. 13 (2002), 323-332.
[6] W. Cherry and J. T.-Y. Wang, Non-Archimedean analytic maps to algebraic curves, in: Value Distribution Theory and Complex Dynamics, W. Cherry and C.-C. Yang (eds.), Contemp. Math. 303, Amer. Math. Soc., 2002, 7-36.
[7] W. Cherry and C.-C. Yang, Uniqueness of non-Archimedean entire functions sharing sets of values counting multiplicity, Proc. Amer. Math. Soc. 127 (1999), 967-971.
[8] J. T.-Y. Wang, Uniqueness polynomials and bi-unique range sets for rational functions and non-Archimedean meromorphic functions, Acta Arith. 104 (2002), 183200.
[9] -, The truncated second main theorem of function fields, J. Number Theory 58 (1996), 139-157.
[10] -, A note on Wronskians and ABC theorem in function fields of prime characteristic, Manuscripta Math. 98 (1999), 255-264.

Institute of Mathematics
Academia Sinica
Nankang, Taipei 11529, Taiwan, R.O.C.
E-mail: tthan@math.sinica.edu.tw
jwang@math.sinica.edu.tw

Department of Mathematics University of Notre Dame
Notre Dame, IN 46556, U.S.A.
E-mail: wong.2@nd.edu

Received on 6.5.2002
and in revised form on 6.8.2002

[^0]: 2000 Mathematics Subject Classification: Primary 12E05; Secondary 11S80, 30D35.

