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Zones of large and small values for Dedekind sums

by

Kurt Girstmair (Innsbruck)

1. Introduction and main results. Throughout this paper let m and
N be integers, N 6= 0, with (m,N) = 1. The classical Dedekind sum s(m,N)
is defined by

s(m,N) =
|N |∑

k=1

((k/N))((mk/N))

where ((. . .)) denotes the usual sawtooth-function (cf., e.g., [2]). Because of

s(m,−N) = s(m,N) and s(m+N,N) = s(m,N),

it suffices to consider N ≥ 1 and m in the range 0 ≤ m < N . The general
definition, however, will be needed below. In the present context it is more
natural to work with

S(m,N) = 12s(m,N).

This paper deals with zones of large and small values of |S(m,N)| for m in
the aforesaid range. To this end we observe, first,

|S(m,N)| < N(1)

for all possible integersm (cf., e.g., [5, (14)]). Our distinction between “large”
and “small” is oriented towards the quadratic mean value of S(m,N). It is
known that (

1
N

∑

0≤m<N
|S(m,N)|2

)1/2

� N1/2(2)

for N tending to infinity (more precisely, the asymptotic main term of (2)
lies between 2

√
N and 5

√
N , cf. [9]). Having (2) in mind we say that S(m,N)

is small if S(m,N) �
√
N and large if

√
N = o(S(m,N)) as N → ∞. It

has been observed by various authors (cf. [2], [4], [5]) that S(m,N) becomes
large for arguments m lying near points N · c/d, where d is a small natural
number and (c, d) = 1. In [5] we conjectured a sort of converse, namely,
that S(m,N) is small (in the above sense) if m is outside a certain union
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of intervals with mid-points N · c/d, 1 ≤ d ≤
√
N . In this paper we prove

a stronger version of this conjecture (cf. Theorem 1). Indeed, the intervals
considered here are smaller than those of [5] (cf. the remark at the end of
Section 2 below), and their definition is simpler.

The following terminology will be used: A Farey point (or simply an
F -point) has the shape N · c/d, 1 ≤ d ≤

√
N , 0 ≤ c ≤ d, (c, d) = 1. The

denominator d is called the order of the F -point. Further, we fix an arbitrary
constant C > 0. The interval

Ic/d = {x : 0 ≤ x ≤ N, |x−N · c/d| ≤ C
√
N/d2}(3)

is called the F -neighbourhood of the point N · c/d. We write

Fd =
⋃

0≤c≤d
(c,d)=1

Ic/d(4)

for the union of all neighbourhoods belonging to F -points of a fixed order d.
Further,

F =
⋃

1≤d≤
√
N

Fd.(5)

The integers m (relatively prime to N , as always) lying in F are called
F -neighbours. More precisely, m is an F -neighbour of order d if m ∈ Fd,
and it is an F -neighbour of N ·c/d if it lies in Ic/d. An integer m, 0 ≤ m < N ,
which is not in F is called an ordinary integer.

Theorem 1. Let N ≥ 15 and m be an ordinary integer. Then

|S(m,N)| ≤ (2 + 1/C)
√
N + 5.

It is not hard to see that the set F is small in terms of its Lebesgue
measure: By (3) and (4), the measure of Fd is ≤ 2Cϕ(d)

√
N/d2; accordingly,

the measure of F is

≤ 2C
√
N

∑

1≤d≤
√
N

ϕ(d)/d2 =
6C
π2

√
N(logN +O(1))

for large numbers N (cf. [1, p. 71]). Nevertheless, the number of F -points
might be large, since F is the union of many intervals—their number
amounts to � N . The following theorem says that this is not the case.
In particular, the number of ordinary integers exceeds that of F -neighbours
by far, which justifies our choice of names.

Theorem 2. For each N ≥ 17 the number of F -neighbours is

≤ C
√
N(logN + 2 log 2).

Let us look briefly at the graph

G = {(m,S(m,N)) : 0 ≤ m < N}
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of the function m 7→ S(m,N). Theorems 1 and 2 say that G consists of a
very large flat zone outside of F . This is illustrated by Diagram 1, which
represents all 1772 pairs (m,S(m,N)) with m 6∈ F for N = 2997 = 34 · 37
and C = 1. But the said flat zone is interrupted by many potential zones
of disturbance, namely, the F -neighbourhoods. Since we used small circles
to represent points (m,S(m,N)), only the largest of these neighbourhoods
become visible in this diagram, the smaller ones disappear in the cluster of
circles.

Diagram 1. The graph G outside of F for N = 2997, C = 1

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Are the F -neighbourhoods really zones of disturbance for the graph G?
The answer is of an asymptotic nature, of course. Hence suppose that N
runs through a sequence of natural numbers tending to infinity. The number
d ≤
√
N need not be constant but may also tend to infinity, and the same is

true of the number m, 0 ≤ m < N . Suppose that m remains an F -neighbour
of order d while N grows. This means that the abscissa

xm = m−N · c/d(6)

of m relative to the corresponding F -point fulfils xm �
√
N/d2. We say

m is a distant F -neighbour (close F -neighbour, respectively) of order d if
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|xm| �
√
N/d2 (xm = o(

√
N/d2), respectively). In accordance with this

notion we call an interval I with mid-point N · c/d a close F -neighbourhood
of order d if its length is o(

√
N/d2) for N tending to infinity.

Theorem 3. (a) If , in the above setting , m is a distant F -neighbour ,
then S(m,N) is small , i.e., S(m,N)�

√
N.

(b) If , on the other hand , m is a close F -neighbour of order d, then
S(m,N) is large. More precisely ,

S(m,N) =
N

d2xm
+ o(
√
N) and

√
N = o

(
N

d2xm

)
.

In view of Theorems 1 and 2, assertion (a) is not surprising. Indeed, if we
change the constant C, an ordinary integer m becomes an F -neighbour and
conversely—so the asymptotic behaviour of distant F -neighbours and ordi-
nary integers should be much the same. However, we combine this assertion
with another observation: Since an F -neighbour m of order d is an integer,
we have |xm| ≥ 1/d, by (6). Suppose that d �

√
N as N tends to infinity.

Then 1/d �
√
N/d2, so m remains distant in the above sense. Hence we

obtain

Corollary 1. If m is an F -neighbour of order d �
√
N , then S(m,N)

�
√
N for N tending to infinity.

The corollary says that F -neighbourhoods of an order d �
√
N are not

really zones of disturbance for the graph G. In fact, |S(m,N)|may be consid-
erably larger than

√
N only if both d = o(

√
N) and m is a close F -neighbour

of order d. In view of (6), assertion (b) of Theorem 3 may be stated as fol-
lows:

Corollary 2. Let N tend to infinity and d = o(
√
N). Let I run through

a sequence of close F -neighbourhoods of order d. Then the points
(m,S(m,N)), m ∈ I, of the above graph G tend to the corresponding points
(x, y), x = m, on the hyperbola

(x−N · c/d) · y = N/d2.

The hyperbolic nature of the graph G in the vicinity of F -points of small
order has been observed in the literature (cf. [2], [4], [5]). The hyperbola of
Corollary 2 is equilateral, its mid-point is the F -point N ·c/d, its asymptotes
are given by x = N ·c/d and y = 0, and its parameter is

√
2N/d. One should,

however, not think that the part {(m,S(m,N)) : m ∈ I} of the graph has
a symmetric shape relative to the mid-point of the hyperbola, since the
distribution of right and left F -neighbours m (i.e., those with xm > 0 and
xm < 0, respectively) around N · c/d is in general not symmetric. In Section
3 we shall discuss some more details of this kind.
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Diagram 2 displays almost all pairs (m,S(m,N)) with m ∈ F for the
same N = 2997 and C = 1. There are only two exceptions: the values
m = 1 and m = N − 1 have been omitted for reasons of space, since
S(m,N) is close to ±N in these cases, whereas all other values do not
exceed ±N/2.

Diagram 2. The graph G restricted to F for N = 2997, C = 1
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Our understanding of “large” and “small” comes from a quadratic mean

value (cf. (2)) which favours large numbers, of course. From this point of view
the majority of Dedekind sums is not only small but even “microscopic”.
Indeed,

1
N

∑

0≤m<N
|S(m,N)| � log2N(7)

(cf. [4, Lemma 6], cf. also [8]). The microscopic size of most Dedekind sums
has some influence on S(m,N) for distant F -neighbours m; namely, the
hyperbolic shape of the above graph G in general extends over those m,
too—up to few exceptions, cf. the example and the remark at the end of
Section 3.
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The distribution of Dedekind sums has attracted a great deal of interest
(cf. [8], [2], [3], [4], [9]). The results of this paper belong to the easier ones.
In our opinion they contribute something to the understanding of pictures
of the graph G.

2. Farey neighbours and ordinary integers. In this section we prove
Theorems 1 and 2. As above, let N and d be natural numbers with d < N ,
and m and c integers with (m,N) = (c, d) = 1. We put

q = md−Nc,(8)

which means m − N · c/d = q/d. Then q 6= 0, for otherwise m/N = c/d,
which is impossible since d < N and both fractions are reduced. A crucial
ingredient of all proofs is the generalized reciprocity law for Dedekind sums,
which we state as follows (cf., e.g., [5, Lemma 1]): For some integer r with
(r, q) = 1,

S(m,N) = S(c, d)± S(r, q) +
N2 + d2 + q2

Ndq
± 3,(9)

where the ± sign is the sign of q in both cases. Combined with (1), the
reciprocity law gives

|S(m,N)| ≤ d+ |q|+ N

d|q| +
d

N |q| +
|q|
Nd

+ 3(10)

for all m, N , c, d, and q as above.

Proof of Theorem 1. Suppose now, in addition, that c/d is an F -point
and 0 ≤ m < N . Because of d < N , we have N ≥ 2 and m > 0. Further,

d ≤
√
N and

d

N |q| ≤
d

N
≤ 1√

N
.(11)

By [6, p. 127, Theorem 10.5], there is always an F -point c/d such that
∣∣∣∣
m

N
− c

d

∣∣∣∣ <
1

db
√
Nc

.

We fix such an F -point and obtain, from (8),

|q| ≤ N√
N − 1

=
√
N + 1 +

1√
N − 1

(12)

and
|q|
dN
≤ |q|
N
≤ 1√

N
+

2
N
,(13)

provided that N ≥ 4. Finally, suppose that m is an ordinary integer. So
its distance to the above F -point satisfies |m−N · c/d| > C

√
N/d2, which



Zones for Dedekind sums 305

means |q| ≥ C
√
N/d and

N

d|q| ≤
√
N/C.(14)

On inserting the estimates (11)–(14) into (10), we obtain

|S(m,N)| ≤
(

2 +
1
C

)√
N + 4 +

1√
N − 1

+
2√
N

+
2
N
,

which is ≤ (2 + 1/C)
√
N + 5 for N ≥ 15.

The proof of Theorem 2 is based on the following

Lemma 1. Let 1 ≤ d < N . Then

](Fd ∩ {m ∈ Z : (m,N) = 1}) ≤ 2C
√
N/d.

Proof. Put δ = (N, d), so N = δ · N ′, d = δ · d′ with (N ′, d′) = 1.
Consider an element m of the set in question. Since m is in Fd, there is
an integer q with |q| ≤ C

√
N/d such that md ≡ q mod N (cf. (8)). Then δ

divides q, so q = δ · q′ for some integer q′ with |q′| ≤ C
√
N/(δd). Further,

md′ ≡ q′ mod N ′ and q′ 6= 0 since, otherwise, q = 0 and N | d, which is
impossible. Letm′ be the unique solution of the congruencemd′ ≡ q′ mod N ′

that lies in {0, 1, . . . , N ′ − 1}. Then m has the shape

m = m′ + l ·N ′

for some l ∈ Z, 0 ≤ l < δ. Since we have at most 2C
√
N/(δd) possibilities

for q′, the assertion follows.

Proof of Theorem 2. The set of F -neighbours is

F ∩ {m ∈ Z : (m,N) = 1}.
By (5) and Lemma 1, its cardinality is bounded by

∑

1≤d≤
√
N

2C
√
N/d = 2C

√
N

∑

1≤d≤
√
N

1/d.

However, one readily infers from [7, p. 6, Theorem 5] that the sum on the
right hand side is ≤ log(2

√
N) whenever N ≥ 17.

Remark. In [5] we considered intervals around the F -points which were
larger than our F -neighbourhoods when the order d ≤

√
N was large, their

size being (roughly)
√
N/d3. Altogether, those intervals contained � N 2/3

integers, in contrast with the situation of Theorem 2.

3. The behaviour of Farey neighbours. In what follows let m be an
F -neighbour of order d, so d ≤

√
N and q = md−Nc fulfils |q| ≤ C

√
N/d

for the corresponding F -point N · c/d. Then (9) gives

S(m,N) =
N

dq
+ E(d+ |q|+ 4)(15)



306 K. Girstmair

if N is sufficiently large, where E(x) denotes an error term of absolute value
≤ x.

Proof of Theorem 3. From (15) we clearly obtain

S(m,N) =
N

dq
+ E((1 + C)

√
N + 4)(16)

for large numbers N . If m remains distant while N tends to infinity, then
|q| �

√
N/d and N/(d|q|) �

√
N , so (16) shows S(m,N) �

√
N , which is

assertion (a) of Theorem 3.
As to assertion (b), suppose that m remains a close F -neighbour. Then

xm = o(
√
N/d2) and 1 = o(

√
N/(d2xm)). So the main term N/(dq) =

N/(d2xm) of (15) satisfies
√
N = o(N/(d2xm)). Further, q = o(

√
N/d), so

both q = o(
√
N) and d = o(

√
N). Altogether, the error term in (15) is

o(
√
N).

As in Section 1, let us have a look at the graph G of the function
m 7→ S(m,N). We concentrate upon one particular order d ≥ 2 with
d = o(

√
N), which means that close F -neighbours m of order d are pos-

sible. The corresponding set Fd consists of ϕ(d) (pairwise disjoint) intervals
Ic/d, and Theorem 3 (b) says that close to the center N ·c/d of Ic/d the graph
becomes similar to the hyperbola

y =
N

d2(x−N · c/d)
.

Accordingly,G has a positive spike on the right and a negative one on the left
of N · c/d. The possible height (or depth) of these spikes is asymptotically
bounded by N/(dδ) with δ = (N, d). Indeed, since |q| = |md − Nc| ≥ δ,
the asymptotic value of |S(m,N)| is |N/(dq)| ≤ N/(dδ). If, for instance,
δ = 1, then the whole set Fd contains exactly one m with q = 1, so
the (asymptotically) maximal height N/d is taken for exactly one integer
m ∈ Fd; the same holds for the depth −N/d. The case d = 1 is exceptional
inasmuch as we have two intervals I0 and I1 instead, each of which defines
only one branch of the respective hyperbola.

However, the similarity of G with the said hyperbolas is restricted by
the fact that the distribution of numbers m, (m,N) = 1, in the set Fd may
not be uniform. If the order d grows, the F -neighbourhoods Ic/d contain
fewer of these integers and become empty with increasing frequency: In
fact, Fd contains at most 2C

√
N/d such integers, by Lemma 1. So each

F -neighbourhood Ic/d contains

≤ 2C
√
N

dϕ(d)

numbers m on average. This mean value tends to zero if d � N 1/4+ε, say.
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Moreover, the integers m are not symmetric about the center N · c/d of Ic/d
in general, as the following trivial example shows: If Ic/d contains both a
right F -neighbour m and a left F -neighbour m′, then

1 ≤ m−m′ ≤ 2C
√
N/d2,

which requires d � N1/4. For the same reason, m′ is relatively far away
from the center N · c/d if m is close to it. Thus, if xm = 1/d, say, then
|xm′ | ≥ 1− 1/d.

Example. Let N = 2 · 106 + 3 (a prime number), d = 11, c = 7, so
the corresponding F -point is ≈ 1272729.182. Choosing C = 1, we have
C
√
N/d2 ≈ 11.688. Hence Ic/d contains 23 integers m with (m,N) = 1

(viz., all of 1272718, . . . , 1272740). For these numbers m, |q| ≤ b
√
N/11c =

128, so (15) shows that S(m,N) = N/(dq) + E(143); and going back to
(9) one even obtains E(142.001). Because of N/(d|q|) ≥ 1420.45, S(m,N)
must be equal to N/(dq) up to a relative error of less than 10 percent.
Thus, the main term of Theorem 3 (b) is essentially the correct value of
S(m,N) for all 22 F -neighbours of N · 7/11. On computing the exact val-
ues of S(m,N) one sees that the error is even much smaller, the largest
value of |N/(dq) − S(m,N)| being ≈ 29.897 for m = 1272736. This is
due to the fact that the terms q and d in the E-term of (15) come from
the Dedekind sums S(r, q) and S(c, d) of (9), which are expected to be
much smaller than d and q themselves (cf. (7)). In the following table
we list the closest F -neighbours m of N · c/d together with S(m,N) and
∆ = N/(dq)− S(m,N). The table shows that the size of the positive spike
of the graph G is considerably smaller than that of the negative one here,
which is a consequence of xm = −2/11 for m = 1272729 but xm = 9/11 for
m = 1272730.

m S(m,N) ∆ m S(m,N) ∆

1272725 −3954.081 1.506 1272730 20199.192 2.859
1272726 −5184.021 −10.792 1272731 9090.786 0.136
1272727 −7553.322 −22.447 1272732 5861.443 3.669
1272728 −13985.594 −0.441 1272733 4328.184 0.827
1272729 −90907.864 −1.364 1272734 3422.278 8.259

Remark. Although it often happens, it is not always true that N/(dq) is
a reasonable approximation of S(m,N) for distant F -neighbours, especially
if d is small. So take N = 1009, C = 1.2, and d = 1. Then m = 36 lies in I0;
however, S(m,N) ≈ −7.992, whereas N/(dq) = N/m ≈ 28.028. If, on the
other hand, C has been chosen small enough (say C = 1/5), then N/(dq)
clearly dominates the error term of (16) for all F -neighbours.
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