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Twisted modular forms and parabolic cohomology

by

Min Ho Lee (Cedar Falls, IA)

1. Introduction. Twisted modular forms are obtained by essentially
pulling the usual modular forms back via an equivariant holomorphic map
of the Poincaré upper half plane into itself. Let H be the Poincaré upper half
plane, and let Γ ⊂ SL(2,R) be a Fuchsian group of the first kind. We denote
by j : SL(2,R)×H → C the automorphy factor given by j(γ, z) = cz+d for
z ∈ H and γ =

(
a b
c d

)
∈ SL(2,R). Then the usual modular forms of weight

k for Γ are defined by using the automorphy factor j(γ, z)k for γ ∈ Γ and
z ∈ H. In order to consider twisted modular forms we need a holomorphic
map ω : H → H that is equivariant with respect to a homomorphism χ :
Γ → SL(2,R), which means that ω(γz) = χ(γ)ω(z) for all γ ∈ Γ and z ∈ H.
Then twisted modular forms of weight k associated to Γ , ω and χ are defined
by using the automorphy factor j(χ(γ), ω(z))k for γ ∈ Γ and z ∈ H.

As an example of an equivariant pair (ω, χ) we can consider the period
map ω of an elliptic surface E over the Riemann surface X = Γ\H∪{cusps}
and the monodromy representation χ of E. There are also naturally defined
holomorphic maps ω which are equivariant with respect to the monodromy
representations χ of a certain class of second order linear ordinary differ-
ential equations defined on a Riemann surface. Twisted modular forms of
weight three are closely related to the theory of elliptic surfaces. To be
more specific, let E0 be the generic fiber of an elliptic surface E over X.
Then E0 is an elliptic curve over the function field K(X) of X, and the
Poincaré normal map associated to E0 satisfies a certain second order lin-
ear ordinary differential equation. If ω is the quotient of two linearly in-
dependent homogeneous solutions of the given differential equation and if
χ is the monodromy representation, then each solution of the differential
equation determines a twisted modular form of weight three (see e.g. [2],
[4], [6], [7], [16]). Twisted modular forms of higher weights were consid-
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ered by Stiller [17] in connection with such linear ordinary differential equa-
tions.

Let f : H → C be a usual elliptic cusp form of weight m+ 2 for Γ , and
set

aν(γ) =
γz0�

z0

f(z)zν dz

for ν = 0, 1, . . . ,m, where z0 ∈ H∪Q∪{∞}. Then the vector-valued function
Φf : Γ → Cm+1 given by

Φf (γ) = t(a0(γ), a1(γ), . . . , am(γ)) ∈ Cm+1

for all γ ∈ Γ is a 1-cocycle which determines an element of the parabolic
cohomology H1

P (Γ, V m) of Γ with coefficients in V m, where V m is the mth
symmetric power of V = C2 whose Γ -action is induced by the standard
representation of SL(2,R) on C2. It is well known that the map f 7→ Φf
induces the Eichler–Shimura isomorphism of the form

H1
P (Γ, V m) = Sm+2(Γ )⊕ Sm+2(Γ ),

where Sm+2(Γ ) is the space of cusp forms of weight m+2 for Γ (cf. [3], [15]).
On the other hand, if f is a twisted cusp form of weight m + 2 associated
to Γ , ω and χ, then, by using the integrals

γz0�

z0

f(z)ω(z)ν dω(z)

for ν = 0, 1, . . . ,m, we obtain a 1-cocycle in H1
P (Γ, V m

χ ), where V m
χ has the

same underlying space as V m but its Γ -action is induced by the composition
of χ and the standard representation of SL(2,R) on C2.

In this paper we obtain the analogue of the Eichler–Shimura isomor-
phism for twisted modular forms. We describe the isomorphism as a Hodge
structure on the parabolic cohomology H1

P (Γ, V m
χ ) using the methods of

Bayer–Neukirch [1] and Zucker [18].

2. Twisted modular forms. Let H be the Poincaré upper half plane
on which SL(2,R) acts by linear fractional transformations, and let Γ ⊂
SL(2,R) be a Fuchsian group of the first kind. Let χ : Γ → SL(2,R) be a
homomorphism, and let ω : H → H be a holomorphic map that is equivari-
ant with χ, which means that

ω(γz) = χ(γ)ω(z)

for all γ ∈ Γ and z ∈ H. We assume that χ(Γ ) is a Fuchsian group of the
first kind and that the inverse image of a parabolic subgroup of Γ ′ = χ(Γ )
under χ is a parabolic subgroup of Γ so that the Γ -cusps and Γ ′-cusps
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correspond. Given an element δ =
(
a b
c d

)
∈ SL(2,R), we set

j(δ, w) = cw + d

for all w ∈ H.

Definition 2.1. Let k be a nonnegative integer. A holomorphic function
f : H → C is said to be a twisted modular form of weight k for Γ associated
to ω and χ if f satisfies the following conditions:

(i) f(γz) = f(z) j(χ(γ), ω(z))k for all γ ∈ Γ and z ∈ H.
(ii) f is holomorphic at each Γ -cusp.

The function f is said to be a twisted cusp form of weight k for Γ associated
to ω and χ if (ii) is replaced with

(ii)′ f vanishes at each Γ -cusp.

We shall denote by Sk(Γ, ω, χ) the space of twisted cusp forms of weight
k for Γ associated to ω and χ.

Remark 2.2. If the condition (i) in Definition 2.1 is replaced with

f(γz) = f(z)j(γ, z)mj(χ(γ), ω(z))k,

then the given holomorphic function f is said to be a mixed automorphic
form of type (m,k) associated to Γ , ω and χ (see [11]). Thus a twisted
modular form of weight k can be regarded as a mixed automorphic form
of type (0, k). Certain types of mixed automorphic forms arise naturally as
holomorphic forms of the highest degree on some families of abelian varieties.
For example, a mixed automorphic form of type (2, k) can be identified
with holomorphic forms of degree k + 1 on the fiber product of k copies of
an elliptic surface. Various aspects of mixed automorphic forms have been
investigated recently (see e.g. [8], [10]–[14]).

Example 2.3. Let Γ be a Fuchsian group of the first kind, and let K(X)
be the function field of the smooth complex algebraic curve X = Γ\H ∪
{cusps}. Consider a second order linear differential equation

Λ̃f̃ =
(
d2

dx2 + P̃ (x)
d

dx
+ Q̃(x)

)
f̃ = 0

for x ∈ X and P̃ (x), Q̃(x) ∈ K(X) with regular singular points, whose
singular points are contained in Γ\{cusps} ⊂ X. Let

Λf =
(
d2

dz2 + P (z)
d

dz
+Q(z)

)
f = 0

for z ∈ H be the differential equation obtained by pulling the equation
Λ̃f̃ = 0 via the natural projection map H → Γ\H ⊂ X. If ω1 and ω2 are
linearly independent solutions of Λf = 0, then we denote by Sm(Λ) the
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linear ordinary differential operator of order m + 1 such that the m + 1
functions

ωm1 , ω
m−1
1 ω2, . . . , ω1ω

m−1
2 , ωm2

are linearly independent solutions of the corresponding homogeneous equa-
tion

Sm(Λ)f = 0.

We set ω(z) = ω1(z)/ω2(z) for all z ∈ H, and denote by χ : Γ → SL(2,R)
the monodromy representation of Γ for the second order equation Λf = 0.
Given a function ψ on H, let fψ be a solution of the equation Sm(Λ2)f = ψ.
Then the function

dm+1

dω(z)m+1

(
fψ(z)
ω2(z)m

)

is a twisted modular form of weight m+ 2 for Γ associated to ω and χ (see
[17, p. 32] for details).

3. Sheaves on Riemann surfaces. Let χ : Γ → SL(2,R) and ω :
H → H be as in Section 2 satisfying ω(γz) = χ(γ)ω(z) for all γ ∈ Γ and
z ∈ H. We set Γ ′ = χ(Γ ), and denote by Σ and Σ ′ the sets of Γ -cusps
and Γ ′-cusps, respectively. Thus we can consider the associated Riemann
surfaces

X0 = Γ\H, X ′0 = Γ ′\H, X = Γ\H ∪Σ, X ′ = Γ ′\H ∪Σ′,
where X and X ′ are compact, and there are natural inclusion maps

η : X0 → X, η′ : X ′0 → X ′.

The natural action of SL(2,R) on C2 induces a representation of Γ ′ on
C2. Let V be the complex vector space C2 regarded as a representation space
of Γ ′, and for a nonnegative integer m let V m be the mth symmetric power
of V . Let OH be the sheaf of holomorphic functions on H, and set

OH(V m) = OH ⊗ V m,

where V m is considered as a constant sheaf on H. The group Γ ′ acts on OH
by γ · f(z) = f(γ−1z) for γ ∈ Γ ′ and f ∈ OH. This action and the natural
action of Γ ′ on V induces an action of Γ ′ on OH(V ) = OH ⊗ V = OH ⊗C2

given by
(
γ ·
(
f1

f2

))
(z) = γ

(
f1

f2

)
(γ−1z) =

(
af1 + bf2

cf1 + df2

)(
dz − b
−cz + a

)

for all γ =
(
a b
c d

)
∈ Γ ′ and

(
f1

f2

)
∈ OH(V ) = OH ⊗ C2.
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Let EH be the subsheaf of OH(V ) generated by the global section
(
z
1

)
, that

is,

EH =
{
f(z)

(
z

1

) ∣∣∣∣ f ∈ OH
}
.

Lemma 3.1. The sheaf EH is invariant under the action of Γ ′.

Proof. Let f ∈ OH and γ =
(
a b
c d

)
∈ Γ ′. Then we have

γ · f(z)
(
z

1

)
= f(γ−1z)

(
a(γ−1z) + b

c(γ−1z) + d

)

= (c(γ−1z) + d)f(γ−1z)
(
z

1

)

= (−cz + a)f
(
dz − b
−cz + a

)(
z

1

)

for all z ∈ H, and hence it follows that EH is Γ ′-invariant.

Given a positive integer m, let EmH ⊂ OH(V m) be the mth symmetric
power of EH. The action of Γ ′ on OH(V ) induces Γ ′-actions on OH(V m) and
on EmH . Let OH(V m)Γ

′
(resp. (EmH )Γ

′
) denote the subsheaf of OH(V m) (resp.

EmH ) consisting of the elements that are fixed under the Γ ′-action. Then
OH(V m)Γ

′
and (EmH )Γ

′
determine sheaves OX′0(V m) and EmX′0 , respectively,

on X ′0 with EmX′0 ⊂ OX′0(V m). Let Ω1
X′0

be the sheaf of holomorphic 1-forms

on X ′0, and let Ω1
(2) (resp. O(2)(V m)) be the sheaf on X ′ whose sections are

the sections of η′∗Ω1
X′0

(resp. η′∗OX′0(V m)) that are square-integrable near
the cusps of Γ ′. We denote by Em(2) the extension of EmX′0 in O(2)(V m).

Proposition 3.2. Let ω∗(Ω1⊗Em)(2) be the inverse image of the sheaf
(Ω1⊗Em)(2) = Ω1

(2)⊗Em(2) via the map ωX : X → X ′ induced by ω : H → H.
Then there is a canonical isomorphism

Sm+2(Γ, ω, χ) ∼= H0(X,ω∗(Ω1 ⊗ Em)(2))

between the space of twisted cusp forms of weight m+ 2 for Γ associated to
ω and χ, and the space of sections of the sheaf ω∗(Ω1 ⊗ Em)(2) on X.

Proof. As in the proof of Lemma 12.15 of [18] the space of usual mod-
ular forms of weight m + 2 for Γ ′ is canonically isomorphic to the space
H0(X ′, (Ω1⊗Em)(2)) of sections of (Ω1⊗Em)(2) on X ′. Let f be an element
of H0(X,ω∗(Ω1 ⊗ Em)(2)). Then there is a section f ′ of (Ω1 ⊗ Em)(2) such
that f = f ′ ◦ ω. Thus we have

f(γz) = f ′(ω(γz)) = f ′(χ(γ)ω(z)) = j(χ(γ), ω(z))m+2f ′(ω(z))

= j(χ(γ), ω(z))m+2f(z)
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for all γ ∈ Γ and z ∈ H; hence f satisfies the transformation formula in
Definition 2.1(i) for twisted modular forms of weight m + 2. Since f ′ is a
cusp form and since the Γ -cusps and Γ ′-cusps correspond, f is a twisted
cusp form of weight m+ 2 for Γ associated to ω and χ.

The complex vector space C2 possesses not only the Γ ′-action described
above (in which case we wrote V for C2) but also the Γ -action that is
obtained by the composition of the homomorphism χ : Γ → SL(2,R) with
the natural representation of SL(2,R) on C2. We shall use Vχ to denote C2

when it is regarded as the representation space of Γ with respect to this
action. For each nonnegative integer k let V k

χ denote the kth symmetric
power of Vχ. Thus Γ acts on V k

χ by the composition of χ and the canonical
irreducible representation of SL(2,R) on the kth symmetric power of C2.

For each Γ -cusp s ∈ Σ we denote by Γs the parabolic subgroup of Γ
fixing s. Then the parabolic cohomology of Γ with coefficients in V m

χ is
given by

H1
P (Γ, V m

χ ) =
⋂

s∈Σ
Ker[H1(Γ, V m

χ )→ H1(Γs, V m
χ )].

The group Γ acts on H× V m
χ by

γ · (z, v) = (γz, (Sm ◦ χ)v)

for all γ ∈ Γ and (z, v) ∈ H × V m
χ , where Sm is the mth symmetric tensor

representation of SL(2,R) on V m
χ = Cm+1. Then the quotient

Ṽ m
χ = Γ\H × V m

χ

with respect to this action is the locally constant system on X0 associated
to V m

χ . Let η∗Ṽ m
χ be the direct image sheaf on X of Ṽ m

χ via the inclusion
map η : X0 → X.

Proposition 3.3. The parabolic cohomology H1
P (Γ, V m

χ ) of Γ with coef-

ficients in V m
χ is canonically isomorphic to the first cohomology H1(X, η∗Ṽ m

χ )

of X with coefficients in the sheaf η∗Ṽ m
χ on X.

Proof. The proof of this when the homomorphism χ is the inclusion map
is given in [18, Proposition 12.5]. Essentially the same proof can be used for
general χ as is sketched below. The Leray spectral sequence for η : X0 → X
determines the exact sequence

0→ H1(X, η∗Ṽ m
χ )→ H1(X0, Ṽ

m
χ ) $→ H0(X,R1η∗Ṽ m

χ ).

For each cusp s ∈ Σ we consider a small punctured disc ∆s around s. Then
we have

H0(X,R1η∗Ṽ m
χ ) =

⊕

s∈Σ
H1(∆s, Ṽ

m
χ ),
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and the map $ is the direct sum of the restriction maps

$s : H1(X0, Ṽ
m
χ )→ H1(∆s, Ṽ

m
χ ).

Thus, using the relations

H1(X0, Ṽ
m
χ ) = H1(Γ, V m

χ ),

H1(∆s, Ṽ
m
χ ) = H1(Γs\H, Ṽ m

χ ) = H1(Γs, V m
χ ),

we see that $s can be regarded as the natural map

$s : H1(Γ, V m
χ )→ H1(Γs, V m

χ )

with H1
P (Γ, V m

χ ) =
⋂
s∈Σ Ker$s. Therefore we obtain the desired isomor-

phism from this and the above exact sequence.

4. Hodge structures. Given a nonnegative integer k, let EkH ⊂ OH(V k)
be as in Section 3. Since the map ω : H → H is equivariant with respect to
the homomorphism χ : Γ → SL(2,R) and EkH is invariant under Γ ′ = χ(Γ ),
the inverse image ω∗(EkH) of EkH via the map ω : H → H is Γ -invariant. We
set

FkH = ω∗(EkH)⊗OH(V m−k
χ ).

Then FkH is also Γ -invariant, and we obtain a Γ -invariant filtration

OH(V m
χ ) = F0

H ⊃ F1
H ⊃ . . . ⊃ FmH ⊃ Fm+1

H = {0}
of the sheaf OH(V m

χ ) on H. If OX0(V m
χ ) and Fk are the sheaves on X0 =

Γ\H induced by the Γ -fixed sheaves OH(V m
χ )Γ and (FkH)Γ , respectively,

then we obtain a filtration {Fk}∞k=0 of the sheaf OX0(V m
χ ) on X0 = Γ\H

with
OX0(V m

χ ) = F0 ⊃ F1 ⊃ . . . ⊃ Fm ⊃ Fm+1 = {0}.
Let Ω•X′0 be the holomorphic de Rham complex on X ′0 = Γ ′\H. Then the

pullback ω∗Ω•X′0 = ω∗X0
Ω•X′0 of Ω•X′0 via the map ωX0 : X0 → X ′0 induced by

ω : H → H is a complex on X0. We set

ω∗Ω•X′0(V m
χ ) = ω∗Ω•X′0 ⊗OX0(V m

χ ),

and denote by ω∗Ω•(2)(V
m
χ ) the complex of sheaves on X whose sections are

the sections of the complex η∗(ω∗Ω•X′0)(V m
χ ) that are square-integrable near

the Γ -cusps.

Proposition 4.1. The cohomology H i(X, η∗Ṽ m
χ ) of X with coefficients

in the sheaf η∗Ṽ m
χ is canonically isomorphic to the hypercohomology

Hi(X,ω∗Ω•(2)(V
m
χ ))

of the complex ω∗Ω•(2)(V
m
χ ) for each i.
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Proof. Let V m be as in Section 2, and let Ṽ m = Γ ′\H × V m be the
associated locally constant system on X ′0. If η′ : X ′0 → X ′ is the natural
inclusion map as before, then by [18, Theorem 4.8] there is a canonical
isomorphism

H i(X ′, η′∗Ṽ
m) ∼= Hi(X ′, Ω•(2)(V

m)),

where Ω•(2)(V
m) is the complex of sheaves on X ′ whose sections are the

sections of the complex η′∗(Ω
•
X′0

)(V m) that are square-integrable near the

Γ ′-cusps. Now the proposition follows by pulling back the sheaves η′∗Ṽ
m

and Ω•(2)(V
m) via the map ωX0 : X0 → X ′0 induced by ω : H → H.

Let OX and OX′ be the sheaf of holomorphic functions on X and X ′,
respectively, and let Ω1

X′(logΣ′) be the sheaf of meromorphic 1-forms on
X ′ that are holomorphic on X ′0 and have a pole of order at most one at the
Γ ′-cusps. Then the map

d⊗ 1 : OH(V m
χ )→ Ω1

H ⊗OH(V m
χ )

of sheaves on H induces the map

5 : ω∗OX′(V m
χ )→ ω∗Ω1

X′(logΣ′)⊗OX(V m
χ )

of sheaves on X; here ω∗(·) denotes the inverse image of the sheaf (·) via the
map ωX : X → X ′, and (·)(V m

χ ) = (·)⊗ V m
χ . Now we consider the complex

K•, where K0 = ω∗OX′(V m
χ ), K1 is the image of the map 5, and Kj = {0}

for j ≥ 2. Then ω∗Ω•(2)(V
m
χ ) is a subcomplex of K•. We set

F k(ω∗Ωr
(2))(V

m
χ ) = ω∗Ωr

(2)(Fk−r)(2)

for each k and r. Then the filtration {Fk}∞k=0 of OX0(V m
χ ) constructed above

induces a filtration {F k(ω∗Ω•(2))(V
m
χ )} of the complex (ω∗Ω•(2))(V

m
χ ), which

in turn induces a filtration {F kK•} of the complex K•.

Proposition 4.2. The inclusion ω∗Ω•(2)(V
m
χ ) → K• of filtered com-

plexes induces an isomorphism

H•(X,Ω•(V m
χ )) ∼= H•(X,K•)

on hypercohomology.

Proof. As in the proof of Proposition 4.1, by pulling back the com-
plexes in [18, Proposition 9.1] via ωX : X → X ′, we see that the inclusion
ω∗Ω•(2)(V

m
χ ) → K• is a quasi-isomorphism, that is, it induces an isomor-

phism on the respective cohomology sheaves. Thus the proposition follows
from the lemma given in [5, p. 447].

Proposition 4.3. The graded complex Gr•(K•) with

Grp(K•) = F pK•/F p+1K•
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associated to the filtration {F kK•} of the complex K• described above is
acyclic except for p = 0,m+ 1.

Proof. This follows by pulling back each complex Grp(K•) contained in
the proof of [18, Lemma 12.14] via the map ωX : X → X ′.

Theorem 4.4. The parabolic cohomology H1
P (Γ, V m

χ ) of the group Γ has
a polarized Hodge decomposition of type {(m+ 1, 0), (0,m+ 1)} of the form

H1
P (Γ, V m

χ ) ∼= Sm+2(Γ, ω, χ)⊕ Sm+2(Γ, ω, χ).

Proof. The sheaf OX0(V m
χ ) can be shown to possess a structure of a

polarized variation of Hodge structure of weight m using the construction
of such a structure when χ is the identity described in [18, §12]. Thus by
[18, Theorem 11.6], there is a Hodge structure of weight m+ 1 on

H1(X, η∗V m
χ ) ∼= H1(X,ω∗Ω•(2)(V

m
χ ))

(see Proposition 4.1) whose Hodge filtration is induced by the filtration on
the complex (ω∗Ω•(2))(V

m
χ ). Therefore from Proposition 4.2 it follows that

for each p the (p,m+1−p) component of H1(X, η∗V m
χ ) is determined by the

hypercohomology H1(X,Grp(K•)). Hence, using Proposition 4.3, we obtain

H1(X, η∗Ṽ m
χ ) = Hm+1,0 ⊕H0,m+1 = Hm+1,0 ⊕Hm+1,0.

Since H1
P (Γ, V m

χ ) is isomorphic to H1(X, η∗Ṽ m
χ ) by Proposition 3.2, it suf-

fices to prove that Hm+1,0 is isomorphic to Sm+2(Γ, ω, χ). Since the Hodge
filtration

{F kH1(X, η∗V m
χ )}

of H1(X, η∗V m
χ ) is induced by the filtration of Ω•(2)(V

m
χ ), we have

Hm+1,0 = Fm+1H1(X, η∗Ṽ m
χ ) = H1(X,Fm+1(ω∗Ω•(2))(V

m
χ )).

However, we have

H1(X,Fm+1(ω∗Ω•(2))(V
m
χ ))

= H1(X,Fm+1(ω∗Ω0
(2))(V

m
χ ))⊕H0(X,Fm+1(ω∗Ω1

(2))(V
m
χ )),

where

Fm+1(ω∗Ω0
(2))(V

m
χ ) = ω∗Ω0

(2) ⊗ (Fm+1)(2) = 0,

Fm+1(ω∗Ω1
(2))(V

m
χ ) = ω∗Ω1

(2) ⊗ (Fm)(2) = ω∗(Ω1 ⊗ Em)(2).

Here ω∗(Ω1⊗Em)(2) is the extension of ω∗(Ω1⊗Em) in ω∗Ω•(V m
χ )(2). Thus,

using Proposition 3.1, we obtain

Hm+1,0 = H0(X,ω∗(Ω1 ⊗ Em)(2)) ∼= Sm+2(Γ, ω, χ),

and the theorem follows from this.
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Remark 4.5. When m = 1 in Theorem 4.4, the Hodge structures of the
parabolic cohomology H1

P (Γ, Vχ) associated to elliptic surfaces were studied
in [2] and [4]. In particular, given Γ , ω and χ determined by an elliptic
surface, the dimension of the (1, 1)-component in the Hodge decomposition
of H1

P (Γ, Vχ) was given in [2, Proposition 3.20] by a formula that depends
on the types of singular fibers contained in the given elliptic surface. In
our case, however, because of the assumption that the inverse image of the
parabolic subgroups of Γ ′ are parabolic subgroups of Γ the only singular
fibers involved are of type Ib in the sense of Kodaira (see [8, p. 56], [9]),
assuming that Γ , ω and χ come from an elliptic surface. Thus Theorem 4.4
above, in particular, implies that the (1, 1)-component of H1

P (Γ, Vχ) is zero
if the associated elliptic surface has singular fibers of type Ib only.
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