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Module structure of rings of integers
in octahedral extensions

by

M. Godin and B. Sodäıgui (Valenciennes)

1. Introduction. For every number field K, OK denotes its ring of
integers and Cl(K) its classgroup.

Let K/k be an extension of number fields of degree n. The ring OK
is a torsion free Ok-module of rank n, so there exists an ideal I of Ok
such that OK ' On−1

k ⊕ I as Ok-modules. The class of I in Cl(k) is called
the Steinitz class of K/k or of OK , and is denoted by Clk(OK) (see [FT,
Theorem 13, p. 95]). The structure of OK as an Ok-module is determined
up to isomorphism by its rank and its Steinitz class.

Now, let Γ be a finite group and ∆ a normal subgroup of Γ . We have
the following exact sequence:

Σ : 1→ ∆→ Γ → Γ/∆→ 1.

We fix a Galois extension E/k with Galois group isomorphic to Γ/∆.
We denote by R(E/k,Σ) (resp. Rt(E/k,Σ)) the set of (realizable) classes
c ∈ Cl(k) such that there exists a Galois extension (resp. Galois extension
which is at most tamely ramified, i.e. tame) N/k, containing E, with an
isomorphism π from Gal(N/k) to Γ and with E being the subfield of N
fixed by π−1(∆), and the Steinitz class of ON equal to c.

For∆ = Γ ,R(E/k,Σ) (resp.Rt(E/k,Σ)) is simply the set of the Steinitz
classes of Galois extensions (resp. tame Galois extensions) of k whose Ga-
lois group is isomorphic to Γ ; we write R(k, Γ ) and Rt(k, Γ ) instead of
R(E/k,Σ) and Rt(E/k,Σ).

For previous work concerning the determination of R(E/k,Σ) and
Rt(E/k,Σ) see [C1, C2, GS]. In [GS], we consider the case of Γ = A4,
the alternating group, and ∆ its subgroup of order 3; under the hypothesis
that the class number of k is odd, we determine R(E/k,Σ) and Rt(E/k,Σ)
and prove that they are subgroups of Cl(k) when OE is a free Ok-module or
the class number of k is not divisible by 3.
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When Γ is abelian, a consequence of McCulloh’s work (see [Mc]) is that
Rt(k, Γ ) is a subgroup of Cl(k). In [C3], it is shown that Rt(k, Γ ) is a sub-
group of Cl(k) in the situation when Γ is a nonabelian group of order p3,
and k contains the mth roots of unity, where p is an odd prime number
and m is the exponent of Γ . When Γ is the quaternion or dihedral group of
order 8, or the alternating (tetrahedral) group A4, it is respectively proven
in [So1], [So2] and [GS] that Rt(k, Γ ) = Cl(k) (therefore equal to R(k, Γ ))
if the class number of k is odd.

In this paper, we are interested in the case where Γ is the symmetric
(octahedral) group S4 on 4 letters which can be defined by the presentation:

S4 = 〈µ, ν, σ, τ : µ2 = ν2 = σ3 = τ2 = 1, µν = νµ, τστ = σ−1,

σµσ−1 = ν, τµτ = ν〉,
and

∆ = 〈µ, ν〉.
The group S4 is a semidirect product of ∆ and 〈σ, τ〉, where ∆ ' Z/2Z×

Z/2Z and 〈σ, τ〉 ' D3 (or S3), D3 being the dihedral group of order 6.
A Galois extension of k is called octahedral if its Galois group is isomorphic
to S4.

We have Gal(E/k) ' 〈σ, τ〉, therefore E/k is a dihedral extension of
degree 6. In Section 2, we shall prove the following main result:

Theorem 1.1. Let k be a number field. Let E/k be a dihedral extension
of degree 6. Assume that the class number of k is odd. Then

(i) R(E/k,Σ) = Clk(OE)(Cl(k))3, where (Cl(k))3 is the subgroup of third
powers of elements of Cl(k). In addition, if E/k is tame then Rt(E/k,Σ) =
R(E/k,Σ).

(ii) R(k, S4) = Rt(k, S4) = Cl(k).

Remark. The hypothesis that the class number of k is odd comes from
an embedding problem.

If the class number of k is not divisible by 3 then (Cl(k))3 = Cl(k).
According to the definition of the Steinitz class, OE is a free Ok-module if
and only if Clk(OE) = 1. Therefore we have:

Corollary 1.2. Under the hypotheses and notation of Theorem 1.1 we
have the following assertions:

(1) If the class number of k is not divisible by 3 then R(E/k,Σ) = Cl(k)
(= Rt(E/k,Σ) if E/k is tame).

(2) If OE is a free Ok-module then R(E/k,Σ) is the subgroup of Cl(k)
equal to (Cl(k))3 (= Rt(E/k,Σ) if E/k is tame).
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Now we point out our principal motivation for studying the set of Steinitz
classes. Let M be a maximal Ok-order in k[Γ ] containing Ok[Γ ] and let
C`(M) be its locally free classgroup. We denote by R(M) the set of real-
izable classes, that is, the set of classes c ∈ C`(M) such that there exists
a Galois extension N/k, at most tamely ramified, and with Galois group
isomorphic to Γ , for which the class of M⊗Ok[Γ ] ON is equal to c. An in-
teresting problem is to determine the structure of R(M) in the case that
Γ is nonabelian, the abelian case being solved by McCulloh (see [Mc]). For
instance, in [So2, So3], a close link is shown between the determination of
that structure and the problem of studying the Steinitz classes.

2. Proof of the main result. Let N/k be an octahedral extension.
If π is an isomorphism from Gal(N/k) to S4 and γ ∈ S4, one identifies
π−1(γ) with γ. Let E/k be the subextension of N fixed by ∆. Then E/k
is a dihedral extension of degree 6. Let k′/k be the quadratic subextension
of E/k. Then N/k′ is a Galois extension with Galois group isomorphic to
the alternating group A4. The extension N/E is biquadratic, and contains
three quadratic extensions of E; if L/E is one of these then the others are
σ(L) and σ2(L).

Proposition 2.1. With the above notation we have

Clk(ON ) = (Clk(OE))4(NE/k(ClE(OL)))3.

Proof (analogous to that in [GS, Proposition 2.1] because Gal(N/k′) '
A4). By transitivity of the Steinitz class in a tower of number fields (see [F,
Theorem 4.1]) we have

Clk(ON ) = (Clk(OE))4NE/k(ClE(ON )).

We know ([GS, Lemme 2.2]) that the Steinitz class of a biquadratic extension
is the product of the Steinitz classes of its three quadratic subextensions.
Thus

ClE(ON ) = ClE(OL)ClE(Oσ(L))ClE(Oσ2(L)).

As we have seen in the proof of [GS, Proposition 2.1], if we write L =
E(
√
m), then since σi(L) = E(

√
σi(m)) and σi(∆(L/E)) = ∆(σi(L)/E)

(where ∆(L/E) and ∆(σi(L)/E) denote the discriminants), we have by
Artin (see [A])

ClE(Oσi(L)) = σi(ClE(OL)).

Hence
NE/k(ClE(ON )) = (NE/k(ClE(OL)))3.

This completes the proof.

To prove Theorem 1.1, we need the following lemma which is a criterion
for an embedding problem. This lemma is well known. Its origin lies in a
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statement in [Ma, p. 365, application for n = 4, (ii)] without proof. A part
of it is Theorem I.2 of [J]. Here we complete the proof.

Lemma 2.2. Let k be a number field. Let E/k be a dihedral extension
of degree 6 with Galois group 〈σ, τ〉, and let K/k be its (cubic non-Galois)
subextension fixed by τ . Let a ∈ K be an element which is not a square
in E, and let M be the quadratic extension K(

√
a)/K. Then the following

assertions are equivalent :

(1) E/k is embeddable in an octahedral extension N/k containing M and
such that N/M is biquadratic.

(2) NK/k(a) is a square in k, where NK/k is the norm map in K/k.

In addition if the embedding is possible, we can choose N=E(
√
a,
√
σ(a)).

Proof. The implication (1)⇒(2) is Theorem I.2 of [J]. Now we prove
(2)⇒(1). Since a is not a square in E, neither is σ(a). By Kummer theory
and the fact that NK/k(a) is a square, we have E(

√
a)/E 6= E(

√
σ(a))/E.

Let N/E be the biquadratic extension E(
√
a,
√
σ(a))/E, and σ1 and σ2

the generators of Gal(N/E). We denote by σ (resp. τ) a k-embedding of
N which extends σ (resp. τ). It is immediate that σ(

√
a) = ±

√
σ(a).

As NK/k(a) = aσ(a)σ2(a) is a square in k, we deduce that σ2(a) has
a square root in N . Hence σ(

√
σ(a)) = ±

√
σ2(a), and σ(N) ⊂ N . We

have (
√
a)2 = a, so (τ(

√
a))2 = τ(a) = a, and then τ(

√
a) = ±√a. Simi-

larly, (τ(
√
σ(a)))2 = τσ(a) = σ2τ(a) = σ2(a), and therefore τ(

√
σ(a)) =

±
√
σ2(a) and τ(N) ⊂ N . We conclude that N/k is Galois of degree 24 and

Gal(N/k) = 〈σ1, σ2, σ, τ〉. Now, choose (for instance) σ1, σ2, σ, τ defined by:

σ1(
√
a) = −√a, σ1(

√
σ(a)) =

√
σ(a), σ1(

√
σ2(a)) = −

√
σ2(a),

σ2(
√
a) = −√a, σ2(

√
σ(a)) = −

√
σ(a), σ2(

√
σ2(a)) =

√
σ2(a),

σ(
√
a) =

√
σ(a), σ(

√
σ(a)) =

√
σ2(a), σ(

√
σ2(a)) =

√
a,

τ(
√
a) =

√
a, τ(

√
σ(a)) =

√
σ2(a), τ(

√
σ2(a)) =

√
σ(a).

An easy calculation shows that Gal(N/k) ' S4, which completes the proof.

Proof of Theorem 1.1(i). Let k be a number field. Let E/k be a dihedral
extension of degree 6. Assume that the class number of k is odd. We begin
by proving the equalities

R(E/k,Σ) = (Clk(OE))4(NE/k(Cl(E)))3,(2.1)

Rt(E/k,Σ) = R(E/k,Σ) if E/k is tame.(2.2)

The inclusion (for any number field k)

(2.3) R(E/k,Σ) ⊂ (Clk(OE))4(NE/k(Cl(E)))3
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is an immediate consequence of Proposition 2.1. Let us now show

(2.4) (Clk(OE))4(NE/k(Cl(E)))3 ⊂ R(E/k,Σ).

Let c ∈ NE/k(Cl(E)). Since NE/k(Cl(E)) is a subgroup of Cl(k), its order
is also odd. Hence there exists c′ ∈ NE/k(Cl(E)) such that c = c′4. Let
C ∈ Cl(E) be such that c′ = NE/k(C).

We denote by Cl(E, 4OE) the ray classgroup modulo 4OE. The canonical
surjection from Cl(E, 4OE) onto Cl(E) and the Chebotarev density theorem
in ray classgroups (see [N, Chap. V, Theorem 6.4, p. 132]) allow us to assert
that there exist m ∈ E×, a fractional ideal I of OE , and a prime ideal P of
OE such that P ∩Ok splits completely in E/k and

mOE = I2P, m ≡ 1 mod∗ 4OE , Cl(I−1) = C,

where mod∗ is the usual notion of congruence in class field theory (see [N]).
We have

(mσ(m)τ(mσ(m)))OE = (Iσ(I)τ(I)τσ(I))2Pσ(P)τ(P)τσ(P).

Put a = mσ(m)τ(mσ(m)). It is obvious that a is not a square in
E (vP(a) ≡ 1 mod 2). Let K/k be the non-Galois cubic subextension of
E/k fixed by τ . Since Gal(E/K) = 〈τ〉, we have a = NE/K(mσ(m))
∈ K. Let M be the quadratic extension K(

√
a)/K. We have NK/k(a) =

(NE/k(m))2. By Lemma 2.2, E/k is embeddable in the octahedral exten-
sion N = E(

√
a,
√
σ(a)).

Let L be the quadratic extension E(
√
a)/E. We deduce from m ≡ 1mod∗

4OE that γ(m) ≡ 1 mod∗ 4OE for γ = σ, τ or τσ, hence a ≡ 1 mod∗ 4OE.
By Kummer theory (see [H, §39]) ∆(L/E) = Pσ(P)τ(P)τσ(P). A result of
Artin (see [A]) yields ClE(OL) = Cl(Iσ(I)τ(I)τσ(I))−1, whence

ClE(OL) = Cσ(C)τ(C)τσ(C).

Using Proposition 2.1 we get

Clk(ON ) = (Clk(OE))4(NE/k(Cσ(C)τ(C)τσ(C)))3.

Therefore
Clk(ON ) = (Clk(OE))4(c′4)3 = (Clk(OE))4c3.

We conclude that (2.4) holds, and then (2.1) follows thanks to (2.3) and
(2.4).

Clearly E(
√
a)/E and E(

√
σ(a))/E are tame. It follows that N/E is

tame. If E/k is tame, so is N/k. Therefore

(Clk(OE))4(NE/k(Cl(E)))3 ⊂ Rt(E/k,Σ).

Hence R(E/k,Σ) = Rt(E/k,Σ), which completes the proof of (2.2).
Now we complete the proof of (i). Let k′/k be the quadratic subextension

of E/k. Because the class number of k is odd, k′/k is ramified. Since it is the
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unique nontrivial abelian subextension of E/k, we infer that NE/k : Cl(E)→
Cl(k) is surjective (see [W, Theorem 10.1, p. 400]). Therefore NE/k(Cl(E)) =
Cl(k). Hence

R(E/k,Σ) = (Clk(OE))4(Cl(k))3 = Clk(OE)(Cl(k))3.

Proof of Theorem 1.1(ii). Let D3 be the dihedral group of order 6. For
any number field k, it follows from [E, Chap. III, §3, 3.1, p. 59] that

Rt(k,D3) = Cl(k).

Let c ∈ Cl(k). There exists a tame dihedral extension E/k of degree 6 such
that c = Clk(OE). On the other hand, by Theorem 1.1(i), c ∈ Rt(E/k,Σ),
thus Cl(k)⊂Rt(k, S4), whence Rt(k, S4) = Cl(k). Now, the equality R(k, S4)
= Rt(k, S4) is obvious.

References

[A] E. Artin, Questions de base minimale dans la théorie des nombres algébriques, in:
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Département de Mathématiques
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