
ACTA ARITHMETICA
109.4 (2003)

Average multiplicative orders of elements modulo n

by

Florian Luca (Morelia) and Igor E. Shparlinski (Sydney)

1. Introduction and notation. Let n be a positive integer. In [8], the
function α(n) which gives the average additive order of elements modulo n
has been considered, and several of its properties have been investigated,
such as mean value, minimal and maximal order, and so on. The behaviour of
this function restricted only to shifted primes (say, only to positive integers n
of the form p− 1 with p a prime number), or to numbers of the form 2n− 1
has been investigated in [8] and [13].

In this paper, we take a positive integer n and denote by u(n) the average
multiplicative order of invertible elements modulo n. That is, let Un :=
U(Zn) denote the group of invertible elements modulo n. This is an abelian
group of order ϕ(n), where ϕ is the Euler function. The exponent of Un, that
is, the maximal order of elements in Un, is the Carmichael function λ(n). If

n :=
∏

pα‖n
pα

then
λ(n) := lcm(λ(pα) | pα ‖n),

where λ(pα) = ϕ(pα) = pα−1(p− 1) if p is odd, and λ(2) = 1, λ(4) = 2, and
λ(2α) = 2α−2 when α ≥ 3, and as usual pα ‖n means pα |n but pα+1 -n.

For every d |λ(n) we write a(d) for the number of elements of Un whose
order is precisely d. Then

u(n) :=
1

ϕ(n)

∑

d|λ(n)

da(d).

For any positive integer n we also use σ(n), ω(n), Ω(n) with their usual
meanings, as the sum of all positive integer divisors of n, the number of
distinct prime divisors of n, and the total number of prime divisors of n
(that is, counted with multiplicities), respectively.
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For every positive integer n we let rad(n) stand for the radical of n, that
is,

rad(n) =
∏

p|n
p

is the largest square-free divisor of n. We also use the Landau symbols O and
o as well as the Vinogradov symbols � and � with their usual meanings.

Moreover, for any positive integer k and any positive real number x, we
define recursively the function logk x as being log1 x := max{log x, 1} and
logk x := max{log(logk−1 x), 1}, where log x stands for the natural logarithm
of x. We write log1 x as log x and thus we always have log x ≥ 1.

We use some basic properties of prime numbers as well as their asymp-
totic growth. We also need a couple of more advanced tools.

One of them is Chen’s theorem which we present in the form in which it
appears in [9]:

Let k be an even positive integer. Then there exists x0(k) so that
for x > x0(k) the interval [x, 2x] contains at least T � x/log2 x
prime numbers p such that p−1 = kl and l is divisible by at most
two distinct primes, each exceeding x1/4.

The other one is Linnik’s theorem which we present in the explicit form
given in [10]:

Let k ≥ 1 and a ≥ 1 be coprime integers. Then there exists a
prime number p ≡ a (modk) which satisfies p = O(k5.5).

Moreover, for one of our results we need Theorem 2.1 of [1] showing that
for most of the progressions the constant 5.5 can be replaced with 12/5 + ε
for any fixed ε > 0.

Acknowledgements. The authors would like to thank Joachim von zur
Gathen whose question initiated this work. A substantial part of this work
was done during a visit by the second author to UNAM, whose hospitality
and excellent working conditions are very much appreciated. The first author
acknowledges support from Grant SEP-CONACyT 37259-E.

2. Average orders in arbitrary finite abelian groups. In this sec-
tion, we aim at giving a general formula for the average order of elements in
an arbitrary finite abelian group, and in the next section we shall specialize
this result to the case of the group Un.

Let G be a finite abelian group (written multiplicatively); we use 1 to
refer to the identical element in G. We also use #G to denote the order of G,
and λ(G) for the exponent of G, that is, the maximal order of elements in
G. For every d |λ(G) we write bG(d) for the number of elements in G of
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exponent d (that is, the number of elements x ∈ G such that xd = 1), and
aG(d) for the number of elements of order precisely d. We find it useful
to extend the two functions d 7→ bG(d) and d 7→ aG(d) to the set of all
positive integers by setting for an arbitrary positive integer n, bG(n) :=
bG(gcd(λ(G), n)) and aG(n) := 0 if n -λ(G). It is now clear that

bG(n) =
∑

d|n
aG(d)(1)

for all positive integers n. Finally, we use u(G) for the average order of
elements in G:

u(G) :=
1

#G

∑

d|λ(G)

daG(d).

Lemma 1. Both functions aG and bG are multiplicative.

Proof. The formula (1) shows that bG is the convolution of aG with the
function which associates to any positive integer n the constant value 1.
Thus, it suffices to show that bG is multiplicative. Let m and n be two co-
prime positive integers and to any pair (x, y) of elements in G, x of exponent
m and y of exponent n, we associate the element xy. Clearly, xy has expo-
nent mn and so it is counted by bG(mn). It is clear that this association is
injective. Indeed, if (X,Y ) is another pair of such elements so that XY = xy,
then f := Xx−1 = Y −1y, and therefore the order of f divides both the order
of Xx−1 (which divides m) as well as the order of Y −1y (which divides n);
hence, f = 1. Thus, X = x and Y = y. To see that this association is also
surjective, let z be any element whose exponent is mn, construct two inte-
gers u and v such that um+ vn = 1 (which is possible because m and n are
coprime), set x := zvn and y := zum and notice that z = z1 = zum+vn = xy.
Moreover, since zmn = 1, it follows that xm = (zvn)m = zvmn = 1 and
yn = (zum)n = zumn = 1, which shows that x and y have exponents m
and n respectively. So, this association is surjective as well, and therefore
we deduce that bG(mn) = bG(m)bG(n); hence, bG is multiplicative.

Lemma 2. For every prime number p |#G let Gp be the p-Sylow sub-
group of G. Then bG(pα) = bGp(p

α) and aG(pα) = aGp(p
α) for all α ≥ 0, and

u(G) =
∏

p|#G
u(Gp).

Proof. It is clear that bG(1) = aG(1) = 1 for all groups G, so we may
consider only the case α ≥ 1. If p |#G and x is an element counted by
either bG(pα) or aG(pα), then xp

α
= 1, therefore x ∈ Gp. Conversely, every

element of exponent (or order) pα in Gp can be regarded as an element of the
same exponent (or order) in G. This shows that both bG(pα) = bGp(p

α) and
aG(pα) = aGp(p

α). We now assume that p1 < . . . < pt are all the distinct
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primes dividing #G. Since aG is multiplicative, and aG(n) = 0 if there is no
element of order n in G, we have

u(G) =
1

#G

∑

d|#G
daG(d) =

1
#G

∑

β1≥0,...,βt≥0

( t∏

i=1

pβi
)
aG

( t∏

i=1

pβi
)

=
1

#G

∑

β1≥0,...,βt≥0

t∏

i=1

pβii aGpi (p
βi) =

t∏

i=1

(
1

#Gpi

∑

βi≥0

pβiaGpi (p
βi)
)

=
∏

p|#G
u(Gp),

which concludes the proof.

Lemma 2 reduces the problem of understanding u(G) for an arbitrary
finite abelian group to a finite abelian p-group. From now on we write Gp

for a finite abelian p-group. We also write

Gp := Zpα1 × . . .× Zpαt ,(2)

where 1 ≤ α1 ≤ . . . ≤ αt. This representation is not unique, but the num-
bers t and α1, . . . , αt are uniquely determined by Gp. We think of x ∈ Gp
as a vector x := (x1, . . . , xt) where xi ∈ Zpαi . It is clear that the order of x
is the maximum of the orders of all xi in the cyclic groups Zpαi . Moreover,
λ(Gp) = pαt and #G = pα, where α :=

∑t
i=1 αi.

Lemma 3. With the previous notations we have

u(Gp) = λ(Gp)
(

1− p− 1
λ(Gp)#Gp

αt−1∑

β=0

pβ
t∏

i=1

pmin{β,αi}
)
.

Proof. Clearly, aGp(1) = bGp(1) = 1 and

aGp(p
β) = bGp(p

β)− bGp(pβ−1), β = 1, . . . , αt.

Thus,

u(Gp) =
1

#Gp

∑

d|λ(Gp)

daGp(d) =
1

#Gp

αt∑

β=0

pβaGp(p
β)

=
1

#Gp

(
1 +

αt∑

β=1

pβ(bGp(p
β)− bGp(pβ−1))

)

=
1

#Gp

(
λ(Gp)#Gp − (p− 1)

αt−1∑

β=0

pβbGp(p
β)
)

= λ(Gp)
(

1− p− 1
λ(Gp)#Gp

αt−1∑

β=0

pβbGp(p
β)
)
.
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It remains to compute bGp(p
β) for 0 ≤ β < αt. Fix such a β and look at

x = (x1, . . . , xt) such that xp
β

= 1. Clearly, if αi ≤ β, then xi can be any
element in Zpαi , while if αi > β, then xi ∈ pαi−βZpαi and for such i there
are only pβ possibilities for xi. This shows that

bGp(p
β) =

t∏

i=1

pmin{β,αi},

and we have concluded the proof.

Let us see how Lemma 3 compares with the formula from [8] which gives
the average order of elements in a cyclic group Zn. Write n =

∏
p|n p

α; if
G := Zn, then Gp := Zpα for all primes p |n. In this case, Gp is cyclic, so
t = 1, #Gp = λ(Gp) = pα, and Lemma 3 asserts that

u(Gp) = pα
(

1− p− 1
p2α

α−1∑

β=0

p2β
)

= pα
(

1− (p− 1)(p2α − 1)
p2α(p− 1)

)
= pα

(
1− p2α − 1

(p+ 1)p2α

)
.

The last expression can be rewritten as

u(Gp) =
pα+1

p+ 1
+

1
pα(p+ 1)

and in this form it appears as Lemma 1 in [8].
Lemma 3 could be a convenient tool for studying various questions about

the behaviour of u(G). For example, let G be a finite abelian group. Then
λ(G) represents the size of the largest cyclic subgroup of G. One can ask how
u(G) compares to u(Zλ(G)). Or fix n and let G run over all the finite abelian
groups of order n. Clearly, the cyclic group is the unique one realizing the
maximum of λ(G) (which is λ(G) = n), but one can ask about the maximum
of u(G) whenG runs over these subgroups. The next statement answers some
of these questions.

Let En be the elementary abelian group of order n ≥ 1. That is, if
n = pγ1

1 . . . pγss , then En = Zγ1
p1 × . . . × Zγsps . Equivalently, En is the unique

abelian group G of order n having λ(G) = rad(n).

Theorem 1. (i) u(G) ≥ u(Zλ(G)) for all finite abelian groups G, with
equality if and only if G is cyclic.

(ii) u(Zn) ≥ u(G) for every abelian group G of order n, with equality if
and only if G is cyclic.

(iii)
u(En)
λ(En)

≥ u(G)
λ(G)

≥ u(Zn)
λ(Zn)
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for all abelian groups G of order n, with equality on the left or on the right
if and only if G coincides with the corresponding group.

Proof. Both u and λ are multiplicative at the level of Sylow subgroups,
meaning that

u(G) =
∏

p|#G
u(Gp) and λ(G) =

∏

p|#G
λ(Gp).

Thus, with the Chinese Remainder Theorem to deal with the cases of equal-
ities, it suffices to prove the theorem for p-groups. So, from now on we work
with a p-group Gp given by (2).

(i) From Lemma 3 we obtain

u(Gp) = λ(Gp)
(

1− p− 1
λ(Gp)#Gp

αt−1∑

β=0

pβ
t∏

i=1

pmin{β,αi}
)

= λ(Gp)
(

1− p− 1
p2

αt−1∑

β=0

1
p2(αt−1−β)

t−1∏

i=1

1
pαi−min{β,αi}

)
.

Clearly,
t−1∏

i=1

1
pαi−min{β,αi} ≤ 1

for all β ≤ αt − 1, and if t > 1 then this inequality is strict for at least one
β (for example, for β = 0). This shows that

u(Gp) ≥ λ(Gp)
(

1− p− 1
p2

αt−1∑

β=0

1
p2(αt−1−β)

)

= λ(Gp)
(

1− p2αt − 1
(p+ 1)p2αt

)
= u(Zλ(Gp)),

and the above inequality is strict unless t = 1, that is, unless Gp is cyclic.
(ii) Assume that pγ ‖n and let Gp be the p-group given by (2) of order

pα and let λ(Gp) = pαt . Clearly, αt < γ is equivalent to t ≥ 2. We may also
assume that γ > 1, otherwise Gp is cyclic anyway. By (i), we have

pαt = λ(Gp) > u(Gp) ≥ u(Zpαt ) =
pαt+1

p+ 1
+

1
pαt(p+ 1)

.

Since
pk+1

p+ 1
+

1
pk(p+ 1)

> pk−1

for all primes p and for any positive integer k, it follows that if αt < γ, then
choosing G̃p to be any p-group of order pγ and exponent λ(G̃p) = pαt+1, we
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have

u(G̃p) ≥
pαt+2

p+ 1
+

1
pαt+1(p+ 1)

> pαt = λ(Gp) > u(Gp),

so Gp cannot realize the maximum of u among all the p-groups of order pγ .
This shows that u(Zpγ ) ≥ u(Gp), with equality if and only if Gp is cyclic.

(iii) By (i), we have
u(G)
λ(G)

≥
u(Zλ(G))

λ(G)

and reducing the problem again to G = Gp where Gp is given by (2) we
have

u(Gp)
λ(Gp)

≥
uZpαt
pαt

= 1− p2αt − 1
p2αt(p+ 1)

≥ 1− p2γ − 1
p2γ(p+ 1)

=
u(Zpγ )
λ(Zpγ )

.

Finally, suppose again that G = Gp is the p-group (2) and let τ denote
the number of integers αi such that αi = αt. That is, α1 ≤ α2 ≤ . . . ≤
αt−τ < αt−τ+1 = αt−τ+2 = . . . = αt. Lemma 3 shows that

u(Gp)
λ(Gp)

≤ 1− p− 1
pτ+1 ,

with equality if and only if τ = t and αt = 1. Since clearly,

u(Epγ )
λ(Epγ )

= 1− p− 1
pγ+1 ≥ 1− p− 1

pτ+1

the left inequality asserted at (iii) follows.

We now denote by γ(G) the number of elements of maximal order λ(G)
in G. In [8], together with the function α(n), which gives the average value
of additive orders of elements modulo n, the function α(n)/ϕ(n) has also
been investigated. To understand this function in a more general context,
let us look at the ratios α(n)/n and ϕ(n)/n. The first measures how far
away the average value of additive orders of elements modulo n is from
the maximal order n, while the second represents the proportion of all
elements of maximal additive order modulo n to all the elements in the
group. For arbitrary groups, the natural analogues of α(n)/n and ϕ(n)/n
are u(G)/λ(G) and γ(G)/#G, respectively. Thus, the analogue of the func-
tion β(n) = α(n)/ϕ(n) seems to be

v(G) =
u(G)#G
λ(G)γ(G)

.

In what follows the following constant plays an important role:

A :=
ζ(2)ζ(3)
ζ(6)

=
315ζ(3)

2π4
∼= 1.94359 . . .(3)

Here, we prove an analogue of Theorem 1 from [8] for the general setting:
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Theorem 2. Let A be given by (3).

(i) lim inf#G→∞ v(G) = 1.
(ii) lim sup#G→∞ v(G) = A.

(iii) 1 < v(G) < A for any group G with #G > 1.

Proof. To establish the minimal and maximal orders, we need some ana-
lytic arguments. Clearly γ(G) = aG(λ(G)) is also multiplicative at the level
of Sylow subgroups, that is, γ(G) =

∏
p‖#G γ(Gp), and so it is again enough

to study γ(Gp), where Gp is the p-group (2). It is known that if we denote
again by τ the number of integers αi such that αi = αt, then

γ(Gp)
#Gp

= 1− 1
pτ
.(4)

This formula appears, for example, in [3, 11, 15]. From Lemma 3 and (4),
we get

v(Gp) =
u(Gp)#Gp
λ(Gp)γ(Gp)

=
(

1− 1
pτ

)−1(
1− p− 1

λ(Gp)#Gp

αt−1∑

β=0

pβ
t∏

i=1

pmin{β,αi}
)
.

To see that v(G) can tend to 1 choose a large number τ and consider the
group G := Gp = Epτ = Zτp . Then

v(G) =
(

1− 1
pτ

)−1(
1− p− 1

pτ+1

)
,

and letting τ tend to infinity (and keeping p fixed), we obtain (i). We point
out that the fact that the lower limit in (i) is exactly 1 (once we know that
it is at least 1) follows also from Theorem 1 of [8] where it is shown that the
limit value 1 can be achieved for cyclic groups. We also notice that

v(Gp) ≤
(

1− 1
pτ

)−1(
1− p− 1

pτ+1

)
.(5)

Indeed, (5) follows from Lemma 3 by noticing that

u(Gp)
λ(Gp)

≤ 1− p− 1
λ(Gp)#Gp

· pαt−1 ·
t∏

i=1

pmin{αt−1,αi}

= 1− (p− 1)p(αt−1)+τ(αt−1)+
∑
αi<αt

αi

pαt+ταt+
∑
αi<αt

αi
= 1− p− 1

pτ+1 .

Moreover, from what we have previously said, the equality in (5) occurs for
the elementary abelian group G with pτ elements. It is easily checked that
for any fixed p ≥ 2, the right hand side of (5) is decreasing as a function of
τ , and therefore

v(Gp) ≤
(

1− 1
p

)−1(
1− p− 1

p2

)
,
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with equality, of course, for the cyclic group of order p. Thus,

v(G) ≤
∏

p|#G

(
1− 1

p

)−1(
1− p− 1

p2

)

=
∏

p|#G

(
1− 1

p2

)−1(
1− 1

p3

)−1(
1− 1

p6

)
.

In particular,

v(G) <
∏

p≥2

(
1− 1

p2

)−1(
1− 1

p3

)−1(
1− 1

p6

)
=
ζ(2)ζ(3)
ζ(6)

,

and the limit in (ii) can be achieved by setting G := G(r) = ×p<rZp and
letting r tend to infinity.

The fact that v(G) > 1 if #G > 1 is trivial to see from∑

d|λ(G)

daG(d) > λ(G)aG(λ(G)) = λ(G)γ(G),

therefore

u(G) >
λ(G)γ(G)

#G
,

which is equivalent to v(G) > 1. Because the identity element is never of
maximal order in G if G is non-trivial, we have v(G) < A and thus (iii) is
established.

3. Multiplicative orders of elements of Zn. Here, we apply our
previous results to the function giving the average order of all invertible
elements modulo n. For any n, we write λ(n) for the Carmichael function
of n, and u(n) for the average multiplicative order of elements inG := U(Zn).
To keep with the notation from [8], we also write α(n) for the average
additive order of elements modulo n. From Theorem 1 we immediately derive

Theorem 3. For any positive integer n we have

α(λ(n)) ≤ u(n) ≤ λ(n).

Because of Theorem 3, it makes sense to look at u(n)/λ(n) and to ask
about the properties of this function. In the next statement, we find the
minimal and maximal order of this function, as well as its range. We re-
mark that Theorem 7(iii) below implies that u(n)/λ(n) does not have a
distribution function.

Theorem 4.

(i) lim inf
n→∞

u(n) log2 n

λ(n)
=
e−γπ2

6
and lim sup

n→∞

u(n)
λ(n)

= 1.

(ii) The sequence u(n)/λ(n) is dense in [0, 1].
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Proof. (i) By Theorem 3 and the formula for α, which can be recovered
from Lemma 3 and from the fact that α(n) = u(Zn), we have

u(n) log2 n

λ(n)
≥ α(λ(n)) log2 λ(n)

λ(n)

= log2 λ(n)
∏

pβp‖λ(n)

(
p

p+ 1
+

1
p2βp(p+ 1)

)

≥ log2(rad(λ(n)))
∏

p|λ(n)

(
p

p+ 1

)
.

This shows that

lim inf
n→∞

u(n) log2 n

λ(n)
≥ lim inf

n→∞
|µ(n)|=1

n log2 n

σ(n)
=
e−γπ2

6
,

where the last limit follows easily from
∏

p≤z

(
1− 1

p2

)
→ ζ(2)−1 =

6
π2 as z →∞

and the Mertens formula
∏

p≤z

(
1− 1

p

)
=

e−γ

log z
+O(log−2 z).

To see that this is in fact an equality, for sufficiently large x define
t := b2 log xc+ 1, set

Rx :=
∏

p<x

p and Qx := (Rx)t,

and choose Px to be the first prime in the arithmetic progression 1 (modQx).
By Linnik’s theorem, Px = O(Q11/2

x ) and clearly Px > Qx. Thus log2 Px =
log2Qx +O(1). We also have

log2Qx = log(t log(Rx)) = log t+ log2Rx = log x+ o(log x)

because logRx = x+ o(x). Therefore

log2 Px
log x

= 1 + o(1).(6)

We shall show that

u(Px) log2 Px
λ(Px)

→ e−γπ2

6
as x→∞.

Since U(ZPx) = ZPx−1 is cyclic, it follows that u(Px) = α(Px − 1) and
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λ(Px) = Px − 1, and using (6) we conclude that it suffices to show that

lim
x→∞

α(Px − 1) log x
Px − 1

=
e−γπ2

6
.

Now

α(Px − 1)
Px − 1

=
∏

pβ‖Px−1

(
p

p+ 1
+

1
p2β(p+ 1)

)
= VW,(7)

where

V :=
∏

pβ‖Px−1
p<x

(
p

p+ 1
+

1
p2β(p+ 1)

)
=
∏

p<x

(
p

p+ 1
+

1
p2β(p+ 1)

)
,

W :=
∏

pβ‖Px−1
p≥x

(
p

p+ 1
+

1
p2β(p+ 1)

)
.

We have

V =
∏

p<x

(
p

p+ 1

)
(1 +O(p−2t−1)) =

∏

p<x

(
p

p+ 1

)
(1 +O(2−2t))

= exp(O(π(x)2−2t))
∏

p<x

p

p+ 1
= (1 + o(1))

∏

p<x

p

p+ 1
.

On the other hand,

W =
∏

pβ‖Px−1
p≥x

(
p

p+ 1

)
(1 +O(p−3))

= exp
(
O
(∑

p≥x
p−3
)) ∏

pβ‖Px−1
p≥x

p

p+ 1
= (1 + o(1))

∏

pβ‖Px−1
p≥x

p

p+ 1
.

Since Px − 1 < Px = O(Q11/5
x ) < exp(O(xt)), it follows that

ω(Px)� logPx
log2 Px

� xt

log x
� x.

In particular, from the prime number theorem, we derive that for some
constant C > 0 we have

∑

p|Px−1
p>x

1
p
<

∑

x<p<Cx log x

1
p

= log2(Cx log x)− log2 x+ o(1)

= log(log x+ log(C log2 x))− log(logx) + o(1) = o(1).
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Therefore ∏

p|Px−1
p>x

p

p+ 1
= 1 + o(1),

and we see that W = 1 + o(1). Putting everything into (7) we get

α(Px − 1)
Px − 1

= (1 + o(1))
∏

p<x

p

p+ 1
.

Thus,

lim
x→∞

α(Px − 1) log2 Px
Px − 1

= lim
x→∞

α(Px − 1) log x
Px − 1

= lim
x→∞

log x
∏

p<x

p

p+ 1

= lim
x→∞

log x
∏

p<x

(
1− 1

p

)∏

p<x

(
1− 1

p2

)−1

= e−γζ(2) = e−γπ2/6.

Notice that u(n)/λ(n) ≤ 1, and so the right limit in (i) can be at most 1
and (ii) would imply that it is exactly 1.

(ii) Here we use the well known (and easy to prove) fact that for every
δ ∈ [0, 1] there exists a sequence (mk)k of odd square-free numbers with
ω(mk)→∞ such that

lim
k→∞

mk

σ(mi)
= lim

k→∞

∏

p|mk

p

p+ 1
= δ(8)

(see [16] for a quantitative form of this statement). We fix δ, select an odd
square-free number m = p1 . . . pt belonging to the sequence (mk)k, and let s
be a large integer.

For each i = 1, . . . , t we apply Chen’s theorem for k := ki = 2psi to find a
number x0(psi ) so that for x > x0(psi ) the interval [x, 2x] contains a prime qi
so that qi−1 = 2psi li, where li is divisible by at most two primes, each larger
than x1/4. Set x0(s) := max{x0(psi ), i = 1, . . . , t} and assume that x is so
large that x > p4

i for all i = 1, . . . , t. So, all the primes qi are in [x, 2x], and
they are also distinct. Construct the number

n :=
t∏

i=1

qi.

For the group G(n) := U(Zn) we certainly have

G(n) = U(Zn) = Zq1−1 × . . .× Zqt−1

= (Z2 × Zps1 × Zl1)× . . .× (Z2 × Zpst × Zlt).
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We also notice that:

• G2(n) = Zt2.
• Gpi(n) = Zpsi for i = 1, . . . , t.
• Except for the primes 2 and pi for i = 1, . . . , t, all the other primes

that divide #G exceed x1/4, and there are at most 2t of them.

From the above remarks and Lemma 3 we get
u(G2(n))
λ(G2(n))

= 1− 1
2t+1 ,

u(Gpi(n))
λ(Gpi(n))

=
pi

pi + 1
+

1
p2s
i (pi + 1)

,

and
u(Gq(n))
λ(Gq(n))

= 1 +O

(
1
x1/4

)
for q 6= 2, pi with i = 1, . . . , t.

So,
u(n)
λ(n)

=
∏

p|λ(G(n))

u(Gp(n))
λ(Gp(n))

=
(

1− 1
2t+1

)(
1 +O

(
1
x1/4

))2t t∏

i=1

(
pi

pi + 1
+

1
p2s
i (pi + 1)

)
.

We first keep s and m fixed and let x → ∞ to find that the set of cluster
points of {u(n)/λ(n)}n contains points of the form

(
1− 1

2t+1

) t∏

i=1

(
pi

pi + 1
+

1
p2s
i (pi + 1)

)
.

Now the limit with respect to s→∞ shows that the set of cluster points of
{u(n)/λ(n)}n contains points of the form

(
1− 1

2t+1

) t∏

i=1

pi
pi + 1

.

Finally, we consider the limit for the sequence (mk)k of odd square-free
numbers with ω(mk) → ∞ and such that (8) holds to conclude that δ is
indeed a cluster point of {u(n)/λ(n)}n, which finishes the proof of (ii).

For every n, we now use v(n) to denote v(U(Zn)).

Theorem 5. Let A be given by (3).

(i) lim infn→∞ v(n) = 1.
(ii) lim supn→∞ v(n) = A.

(iii) 1 < v(n) < A for any n > 1.

Proof. The proof is based again on Chen’s theorem. To see the lower
limit, choose a large x and apply Chen’s theorem to find at least T �
x/log2 x primes p in [x, 2x] so that p−1 = 2l, where l is divisible by at most
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two primes, each exceeding x1/4. In particular, taking t := blog xc ≤ T , we
find p1 < . . . < pt such primes. Take n := p1 . . . pt and look at G := U(Zn).
It is clear that G2 = Zt2, all the odd primes dividing #G exceed x1/4, and
there are at most 2t of them. We now get

v(G) = v(G2)
∏

p|λ(n)
p>2

v(Gp) =
(

1− 1
2t

)−1(
1− 1

2t+1

)(
1 +O

(
1
x1/4

))2t

=
(

1− 1
2t

)−1(
1− 1

2t+1

)
exp

(
O

(
log x
x1/4

))
.

Letting x → ∞ we get (i). For the upper limit, we let x > 0 be large, we
write Qx :=

∏
p<x p, and we use Linnik’s theorem to construct a prime Px

congruent to Qx+1 modulo Q2
x, and which is O(Q11

x ). It is then immediately
checked (by more or less the same arguments) that

v(Px) =
α(Px − 1)
ϕ(Px − 1)

tends to A as x→∞, and the result follows.

Notice that while Theorem 5 might seem to follow from Theorem 2, in
the latter the limits are taken over all possible groups. In fact, Theorem 5
says that they are achieved if we consider only those groups G which can be
the multiplicative groups modulo n for some n.

Using Theorems 4 and 5, we can reformulate most of the questions re-
garding the behaviour of u(n) in terms of the behaviour of λ(n), and the
behaviour of u(n)/λ(n) in terms of the behaviour of r(n) := γ(n)/ϕ(n), the
ratio of the number of multiplicative elements of maximal order modulo n to
the number of invertible elements modulo n. In particular, from Theorem 4
we see that Theorems 1, 2 and 3 of [6] hold for u(n) in place of λ(n). More
precisely, we obtain the following result.

Theorem 6. (i) For any large real number x,

u(n) ≥ x/(log x)log3 x+a+o(1)

for all positive integers n < x except maybe for o(x) of them, where

a := −1 +
∑

p prime

log p
(p− 1)2 = 0.2269 . . .

(ii) For any ε > 0,

u(n) > (logn)(1/2−ε) log3 n

for all sufficiently large n. However , there exists a constant c such that

u(n) < (logn)c log3 n

for infinitely many n.



Average multiplicative orders of elements modulo n 401

(iii) For any large real number x,

1
x

∑

n≤x
u(n) =

x

log x
exp

(
b

log2 x

log3 x
(1 + o(1))

)
,

where

b := e−γ
∏

p prime

(
1− 1

(p− 1)2(p+ 1)

)
= 0.3453 . . .

One can also replace λ(n) with u(n) in Theorem 5 of [7].
Similarly, Theorem 5 can be combined with some results of [11].

Theorem 7. (i) For any large positive number x,
u(n)
λ(n)

� 1
log3 x

for all positive integers n < x except for o(x) of them.
(ii) There exists a constant b > 0 so that

lim inf
x→∞

1
x

#
{
n ≤ x

∣∣∣ u(n)
λ(n)

> log−b5 x

}
= 0.

(iii) For all real numbers w and x put

∆(x,w) :=
1
x

#
{
n ≤ x

∣∣∣ u(n)
λ(n)

≤ w
}
.

Then there exists w0 > 0 such that limx→∞∆(x,w) does not exist for all
0 < w < w0.

Proof. (i) Since u(n)/λ(n) � r(n), it suffices to show that r(n) �
1/log3 x for all n < x with at most o(x) exceptions. This has almost been
done in [12] where it is shown that there is a positive constant x0 such that

∑

n≤x
r(n)� x

log3 x

for x>x0 (this follows by combining Lemma 2.1 with Theorem 2.3 from [12]).
Here, we slightly improve on the above result from [12]. Let x be a large
real number and let c be a small constant to be chosen later. Let S(x) be
the set of those n < x such that the following two conditions are satisfied:

(1) λ(n) is divisible by all primes p ≤ g(x), where g(x) := c log2 x/log3 x
for some constant c > 0;

(2)
∑

p>g(x)
p|λ(n)

1
p
<

log4 x

log3 x
.

In [14], it is shown that for appropriate c the set S(x) contains all positive
integers n < x except for o(x) of them (see Lemmas 2 and 3 in [14]). Now
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if n is in S(x), then

r(n) ≥ ϕ(λ(n))
λ(n)

=
∏

p|λ(n)

(
1− 1

p

)
= VW,

where

V :=
∏

p≤g(x)
p|λ(n)

(
1− 1

p

)
and W :=

∏

p>g(x)
p|λ(n)

(
1− 1

p

)
.

Clearly,

V � exp
(
−
∑

p<g(x)

1
p

)
= exp(− log2(g(x)) +O(1))

= exp(− log4 x+O(1))� 1
log3 x

,

while

W � exp
(
−

∑

p>g(x)
p|λ(n)

1
p

)
> exp

(
− log4 x

log3 x

)
= 1 + o(1),

and we have therefore shown that r(n)� 1/log3 x whenever n ∈ S(x).
(ii) Theorem 1.2 of [12] says that there exists a constant b0 > 0 so that

lim inf
x→∞

1
x

#{n ≤ x | r(n) > log−b05 x} = 0,

so Theorem 5 now shows that

lim inf
x→∞

1
x

#
{
n ≤ x

∣∣∣ u(n)
λ(n)

>
1
A

log−b05 x

}
= 0,

which implies that (ii) holds with any constant b < b0.
(iii) From Theorem 5 and Corollary 5.2 of [11] we derive that for infinitely

many x,

∆(x,w)� 1
|log(w)| for 0 ≤ w ≤ 1/2.

Comparing this with (ii), as in [11], we derive the desired statement.

4. Arithmetic properties of the average order. Given two integer-
valued arithmetic functions f(n) and g(n) it is natural to ask for the values
of n for which f(n)/g(n) is an integer. For example, the numbers n so that
σ(n)/n is an integer are called multiply perfect , while the composite numbers
n for which (n− 1)/λ(n) is an integer are called Carmichael numbers. Since
u(n) is always a rational number, it makes sense to ask for the values of n
so that u(n) is an integer. Moreover, studying the smallest possible positive
denominator Qn of u(n) is a natural question as well, and we address it in
this section. To be more precise, for any finite abelian group G we write S(G)
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for the sum of the orders of all elements in G, that is, S(G) := #G · u(G).
Accordingly, S(n) := u(n)ϕ(n). In this section, we obtain various estimates
on Dn = gcd(S(n), ϕ(n)). In fact, our technique can be applied to the values
of u(G) for several other families of groups.

We start with a very simple statement describing all possible integer
values of u(n).

Theorem 8. For n ≥ 1, u(n) is integer if and only if n ≤ 2.

Proof. Clearly, u(1) = u(2) = 1. We also remark that S(G) is always
odd. Indeed,

S(G) =
∏

p|#G
S(Gp),

and thus it suffices to show that S(G) is odd when G := Gp is a p-group.
We assume that Gp is given by formula (2). When p = 2,

S(G2) =
∑

d|#G2

daG2(d) = 1 +
∑

β≥1

2βaG2(2β)

is obviously odd. For p > 2, the formula from Lemma 3 shows that

S(Gp) = λ(Gp)#Gp − (p− 1)
αt−1∑

β=0

pβ
t∏

i=1

pmin{β,αi},

which is obviously odd because p−1 is even and α(Gp)#Gp = pα+αt is odd.
Specializing now to G := U(Zn), we conclude that u(n) = S(U(Zn))/ϕ(n)
cannot be an integer when n > 2 because S(U(Zn)) is odd and ϕ(n) is
even.

It is easy to see that the proof of Theorem 8 shows that Qn is divisible
by the full power with which 2 appears in ϕ(n), which immediately implies
that Qn � logn for almost all n. In fact, our next result shows that typically
Qn is much larger than logn. In particular, it implies that for almost all n
we have

Qn = ϕ(n)/Dn > n exp(−(8 + o(1)) log2 n log3 n log4 n).

Theorem 9. The inequality Dn < exp((8 + o(1)) log2 n log3 n log4 n)
holds on a set of positive integers n of asymptotic density 1.

Proof. We make use of the bound
∑

p>y

1
pη
� 1

yη−1 log y
,

which holds for any fixed η > 1 (and which we apply only with η = 2 and
η = 3/2). Indeed, putting l0 = blog yc and using the prime number theorem
we obtain
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∑

p>y

1
pη
≤
∑

l≥l0

∑

el+1>p≥el

1
pη
�
∑

l≥l0
e−lη

∑

el+1>p≥el
1�

∑

l≥l0
e−lη

el

l

�
∑

l≥l0

1
el(η−1)l

� 1
e(η−1)l0l0

� 1
yη−1 log y

.

We also use the estimate ∑

q≡a (mod k)
k≤q<x

1
q
� log2 x

ϕ(k)

for any integers a and k ≥ 1, which follows from the Brun–Titchmarsh
theorem after simple calculations. When a = 1 it is the bound (3.1) in [4]
(see also Lemma 1 of [2]) in which case the condition q ≥ k is redundant, of
course. The general case can be proved completely analogously.

It suffices to show that Dn < exp((8 + o(1)) log2 n log3 n log4 n) for all
n ∈ N except for o(x) of them, where N is the set of integers in the interval
[x1/2, x].

Let E1 be the set of integers n ∈ N for which there exists p > log2 x such
that p2 |n. Obviously,

#E1 ≤
∑

p>log2 x

x

p2 �
x

log2 x log3 x
= o(x).

Therefore, #E1 = o(x).
Let E2 be the set of n ∈ N\E1 for which there exists p > log2

2 x such that
p2 |ϕ(n). If n is such a number, then since p2 does not divide n, we conclude
that either q |n for some prime q ≡ 1 (mod p2), or there exist two distinct
primes q and r such that qr |n and q ≡ 1 (mod p) and r ≡ 1 (modp). In the
first case, the total number of such n’s is at most

∑

p>log2
2 x

∑

q≡1 (mod p2)
q<x

x

q
� x log2 x

∑

p>log2
2 x

1
p2 �

x

log3 x
= o(x).

In the second case, the total number of such n’s is at most
∑

p>log2
2 x

∑

q≡r≡1 (mod p)
q 6=r
qr<x

x

qr
� x

∑

p>log2
2 x

( ∑

q≡1 (mod p)
q<x

1
q

)2

� x log2
2 x

∑

p>log2
2 x

1
p2 �

x

log3 x
= o(x).

Therefore, #E2 = o(x).
Let E3 be the set of n ∈ N \ (E1 ∪ E2) for which there exist two primes p

and q with p > log4
2 x, pq |ϕ(n) and p | q2−q+1. The congruence a2−a+1 ≡ 0

(modp) has either no solution (this happens precisely if−3 is not a quadratic
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residue modulo p, that is, if p ≡ 2 (mod 3)), or exactly two distinct solutions
p > a2(p) > a1(p) ≥ p1/2 > log2

2 x. So, if q is a prime such that q2−q+1 ≡ 0
(modp), then either q = a1(p), or q = a2(p), or q > p and q ≡ ai(p) (mod p)
for i = 1 or 2. Since pq |ϕ(n), it follows that either n is a multiple of a prime
r ≡ 1 (modpq), or a multiple of two distinct primes r and s with r ≡ 1
(modp) and s ≡ 1 (mod q) (this is because n 6∈ E1, thus neither p2 nor q2

can divide n). In the first case, the total number of such numbers is at most

∑

p>log4
2 x

2∑

i=1

∑

q≡ai(p) (mod p)
q≤x/p

∑

r≡1 (mod pq)
r<x

x

r

� x log2 x
∑

p>log4
2 x

1
p

2∑

i=1

∑

q≡ai(p) (mod p)
q≤x/p

1
q

≤ x log2 x
∑

p>log4
2 x

1
p

(
1

a1(p)
+

1
a2(p)

+
2∑

i=1

∑

q≡ai(p) (mod p)
ai(p)<q<x/p

1
q

)

� x log2 x
∑

p>log4
2 x

1
p

(
1
p1/2

+
log2 x

p

)
� x log2 x

∑

p>log4
2 x

1
p3/2

� x

log2 x log3 x
= o(x).

In the second case, the total number of such n’s is at most

∑

p>log4
2 x

2∑

i=1

∑

q≡ai(p) (mod p)
q≤x/p

∑

r≡1 (mod p)
s≡1 (mod q)

rs<x

x

rs

� x
∑

p>log4
2 x

2∑

i=1

∑

q≡ai(p) (mod p)
q≤x/p

( ∑

r≡1 (mod p)
r<x

1
r

)( ∑

s≡1 (mod q)
s<x

1
s

)

� x log2
2 x

∑

p>log4
2 x

1
p

(
1

a1(p)
+

1
a2(p)

+
2∑

i=1

∑

q≡ai(p) (mod p)
ai(p)<q<x/p

1
q

)

� x log2
2 x

∑

p>log4
2 x

1
p

(
1
p1/2

+
log2 x

p

)
� x log2

2 x
∑

p>log4
2 x

1
p3/2

� x

log3 x
= o(x).

Therefore, #E3 = o(x).
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Finally, for 3 ≤ y < x and an integer n ≥ 2 write Ωy(n) for the number
of prime divisors p ≤ y of n, counted with multiplicity. In the proof of
Theorem 3.2 of [5], it is shown that there exist functions

Ey(x) := log2 x log2 y − 1
2 log2

2 y +O(log2 x),

Dy(x) := log2 x log2
2 y − 2

3 log3
2 y +O(log2 x log2 y),

such that ∑

n≤x
(Ωy(ϕ(n))−Ey(x))2 ≤ 32xDy(x)

uniformly in y ≤ x. From the above inequality, we infer that uniformly for
y ≤ x the inequality

(Ωy(ϕ(n))−Ey(x))2 ≥ log1/2
2 xDy(x)

holds for at most O(x log−1/2
2 x) positive integers n < x. Therefore

Ωy(ϕ(n)) ≤ (1 +O(log−1/4
2 x)) log2 x log2 y(9)

for all positive integers n < x except at most O(x log−1/2
2 x) of them, uni-

formly in the range y ≤ x.
Let E4 be the set of n ∈ N \ (E1 ∪ E2 ∪ E3) for which (9) fails either with

y := log2
2 x or with y := log4

2 x. Thus, #E4 = o(x).
We now define the setM = N\(E1 ∪ E2 ∪ E3 ∪ E4) of cardinality #M =

x+ o(x). For n ∈M, we have

Φ :=
∏

pαp‖ϕ(n)
p>log2

2 x

pαp =
∏

p|ϕ(n)
p>log2

2 x

p

because n 6∈ E1.
For every prime p |ϕ(n) we also write Gp for the p-Sylow subgroup of

U(Zn). Since n 6∈ E2, we obtain

U :=
∏

p|Φ
S(Gp) =

∏

p|Φ
(p2 − p+ 1).

Since n 6∈ E3, we have gcd(U, Ψ) = 1, where

Ψ :=
∏

pαp‖ϕ(n)
p>log4

2 x

pαp .

Therefore,

Dn

∣∣∣∣
ϕ(n)
Ψ
· S(n)
U

.
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Thus, logDn � log(ϕ(n)/Ψ) + log(S(n)/U). Clearly,

log(ϕ(n)/Ψ) =
∑

pαp‖ϕ(n)
p≤log4

2 x

αp log p ≤ 4 log3 x
∑

pαp‖ϕ(n)
p≤log4

2 x

αp

≤ 4Ωlog4
2 x

(ϕ(n)) log3 x ≤ 4(1 + o(1)) log2 x log3 x log4 x

because n 6∈ E4.
It is obvious that S(G) ≤ #G2 for any group G, therefore,

log(S(n)/U) =
∑

p|ϕ(n)
p≤log2

2 x

logS(Gp) ≤ 2
∑

pαp‖ϕ(n)
p≤log2

2 x

αp log p ≤ 4 log3 x
∑

pαp‖ϕ(n)
p≤log2

2 x

αp

= 4Ωlog2
2 x

(ϕ(n)) log2 x ≤ 4(1 + o(1)) log2 x log3 x log4 x

because n 6∈ E4, which finishes the proof.

It is obvious that one can obtain explicit bounds on the size of the
exceptional set.

We now turn our attention to lower bounds on Dn. Here, we adapt some
arguments from [4] to show that, for almost all n, S(n) contains a large
smooth factor.

Theorem 10. There exists an absolute constant c > 0 such that for
large x the number S(n) is a multiple of all the prime numbers

p <
c log2

2 x

log3 x

with p ≡ 1 (mod 3), for all numbers n < x with o(x) exceptions.

Proof. We set y := log2 x and z := exp(log1/3 x). For a prime r ≡ 1
(mod 3) we write Pr for the product of all primes q in the interval [y, z] with
q2 − q + 1 ≡ 0 (mod r). Because the congruence a2 − a + 1 ≡ 0 (mod r) is
solvable for r ≡ 1 (mod 3) it is obvious that Pr > 1 for sufficiently large x.
For every integer 1 ≤ n ≤ x write

f(n) :=
∏

q|ϕ(n)
q>y

(q2 − q + 1),

and consider the sum

S(r, x) :=
∑

p≤x
r|f(p)

1
p

=
∑

p≤x
gcd(p−1,Pr)>1

1
p
.

The arguments from Lemmas 3.1–3.3 and Theorem 3.4 of [4] now show that

S(r, x)� min
(

log2 x,
log2

2 x

r

)
.(10)
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Moreover, with Brun’s method (see Theorem 4.1 of [4]),
∑

n≤x
r-f(n)

1� x
∏

p≤x
r|f(p)

(
1− 1

p

)
� x exp(−S(r, x)).(11)

The inequality (10) shows that for an appropriate constant c > 0 and

r < w :=
c log2

2 x

log3 x

we have
S(r, x) ≥ 2 log3 x,

and now the inequality (11) yields
∑

r-f(n)
n≤x

1� x

exp(2 log3 x)
=

x

log2
2 x
.

Thus, the number of integers n < x for which there exists r < w such that
f(n) is not a multiple of r is at most

∑

r<w

∑

r-f(n)
n≤x

1� xw

log2
2 x

= O

(
x

log3 x

)
= o(x).

It remains to notice that as in the proof of Theorem 9 we derive that f(n)
divides S(n) for all n < x with at most o(x) exceptions.

Theorem 11. The inequalities

logDn �
log2 n

log3 n
and Dn � n24/67−ε

hold for a set of positive integers n of asymptotic density 1 and for infinitely
many positive integers n, respectively.

Proof. From Theorem 10 we see that S(n) is a multiple of all primes
p < log2 x, where p ≡ 1 (mod 3). Lemma 2 of [14] shows that there exists
an absolute constant c2 such that ϕ(n) is a multiple of all the prime powers
pβ < y := (c2 log2 x)/(log3 x) for all n < x with o(x) exceptions. Thus, Dn

is a multiple of all primes p < y with p ≡ 1 (mod 3), and therefore

logDn ≥
∑

p≡1 (mod 3)
p<y

log p� y � log2 x

log3 x
,

which implies the first inequality.
To see that Dn can be large infinitely often, we recall that Theorem 2.1

of [1] implies that for any δ > 0 and for all primes p except O(1) of them
and for any integers a and k > 0 with gcd(a, p) = 1 there exists a prime
q ≡ a (modpk) such that q = O(p(12/5+δ)k).
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Without loss of generality we can assume that ε < 1/3 is sufficiently
small. Select the smallest prime p ≡ 1 (mod 3) for which the above estimate
holds with δ > 0 defined by the equation

24
67 + 30δ

=
24
67
− ε.

Since p ≡ 1 (mod 3), the congruence a2 − a+ 1 ≡ 0 (modp) is solvable.
Because p does not divide the discriminant −3 of a2 − a + 1, using Hensel
lifting we conclude that for any positive integer k there is a solution 1 ≤
a < pk of the congruence a2 − a + 1 ≡ 0 (modpk). Choose a prime q =
O(p(12/5+δ)k) with q ≡ a (modpk) and define m from the equation

q2 − q + 1 = pkm.

We assume that k ≥ 3, which implies that q - p− 1 (for otherwise pkm =
q2 − q + 1 < p2, which is impossible for k ≥ 3).

We now distinguish two cases:

Case 1: q |ϕ(m). Set n := pk+1m2. Because m < q2 we have q ‖ϕ(m),
therefore pkm = q2−q+1 |S(n). On the other hand, we also have pkm |ϕ(n)
thus Dn ≥ pkm > n1/2.

Case 2: q -ϕ(m). Set n := pk+1m2q2. Then pkm |ϕ(n) and q ‖ϕ(n),
therefore pkm = q2 − q + 1 |S(n). Thus, Dn ≥ pkm� q2. We also have

n = pk+1m2q2 � q6p−k � q6−5/(12+5δ).

Therefore

logDn

log n
≥ 2

6− 5/(12 + 5δ)
=

24 + 5δ
67 + 30δ

≥ 24
67 + 30δ

=
24
67
− ε.

Thus, the second inequality has been established.

5. Concluding remarks and open problems. It would be very in-
teresting to study the distribution of multiplicative orders of elements of Zn,
in particular to obtain estimates for their higher moments (rather than just
for the average value as we have done in this paper).

Another attractive line of research is to study orders of points on elliptic
curves over finite fields. For example, given an elliptic curve E overQ, one can
choose a random prime p and a random Fp-rational point P on the reduction
of E modulo p and study the order of P . One can also fix the prime p first,
and then choose a random elliptic curve over Fp and ask similar questions
about the average order of its points.

It is definitely tempting to suggest that Qn → ∞ as n → ∞, but we
believe that in fact Qn = 2 infinitely often. Here we present some heuristic
arguments to support this conjecture.
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We believe (and it is supported by some heuristic counting arguments)
that there are infinitely many finite sequences of distinct primes p1, . . . , pm
such that

• p1 = 2;
• p2

j − pj + 1 ≡ 0 (modpj+1) for every j = 1, 2, . . . ;
• n = p1p2 . . . pm + 1 is a prime.

For each such sequence we have Qn = 2.
Here are some numerical examples of integers n produced by this con-

struction:

n = 2,

n = 2 · 3 + 1 = 7,

n = 2 · 3 · 7 + 1 = 43,

n = 2 · 3 · 7 · 43 · 13 · 157 · 3499 · 337 · 113233 · 674821003 · 14724403 + 1

= 4890281893321969242411591581864107,

n = 2 · 3 · 7 · 43 · 139 · 19183 · 2766679 · 7654509922363 · 93967 · 1747

· 3050263 · 769 + 1

= 39269659021529619029657646415283590328626879483,

n = 2 · 3 · 7 · 43 · 139 · 19183 · 2766679 · 7654509922363 · 93967 · 8581 · 163

· 26407 · 247183 · 19 + 1

= 1662330489101343797227411323388048325379545079999067,

which all have Qn = 2.
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