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An application of a lower bound for linear forms
in two logarithms to the Terai–Jeśmanowicz conjecture

by

Zhenfu Cao and Xiaolei Dong (Shanghai)

1. Introduction. Let Z and N be the sets of integers and positive
integers respectively. The Terai–Jeśmanowicz conjecture is stated as follows
(see [CD]):

Conjecture. For given coprime integers a, b, c > 1, the Diophantine
equation

(1) ax + by = cz, x, y, z ∈ N,
has at most one solution in integers x, y, z > 1.

It is known (see Lemma 14) that if a, b, c satisfy a2 + b2 = c3, then there
exist integers m,n such that a = m3 − 3mn2, b = 3m2n− n3, c = m2 + n2.
A similar result holds if a2 + b2 = c5. In this paper we consider the case
n = 1.

(A) Suppose

(2) a = m3 − 3m, b = 3m2 − 1, c = m2 + 1,

where 2 |m ∈ N. It has been proved that the Terai–Jeśmanowicz conjecture
holds in the following cases:

(A.1) if b is an odd prime and there is a prime l such that m2 − 3 ≡ 0
(mod l) and e ≡ 0 (mod 3), where e is the order of 2 modulo l (see [T1]);

(A.2) if b is an odd prime and 4 -m (see [L1]);
(A.3) if b is an odd prime (see [DC]) and if c is a prime (see [C1]

and [DC]).
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jecture, linear forms in two logarithms, lower bound.
This project was supported by China Postdoctoral Science Foundation and the Na-

tional Natural Science Foundation of China under Grant No. 60072018 and No. 60225007.

[153]



154 Z. F. Cao and X. L. Dong

(B) Suppose

(3) a = m|m4 − 10m2 + 5|, b = 5m4 − 10m2 + 1, c = m2 + 1,

where 2 |m ∈ N. It has been proved that the Terai–Jeśmanowicz conjecture
holds in the following cases:

(B.1) if b is an odd prime and there is an odd prime l such that ab ≡ 0
(mod l) and e ≡ 0 (mod 5), where e is the order of c modulo l (see [T2]);

(B.2) if b is an odd prime (see [DC]) and if c is a prime (see [C1] and
[DC]).

(C) Suppose that the positive integers a, b, c satisfy a2 + b2 = cr, where
2 - r ≥ 3. It has been proved that the Terai–Jeśmanowicz conjecture holds
in the following cases:

(C.1) if c ≡ 5 (mod 8), b ≡ 3 (mod 4) and c is a prime power (see [C1];
in a recent paper [L2], Le only got a special case of the result of [C1]);

(C.2) if b ≡ 3 (mod 8), 2 ‖ a,
(
a
l

)
= −1 and b ≥ 30a, where l > 1 is a

divisor of b and
(∗
∗
)

denotes the Jacobi symbol (see [T3]; recently, in [CD]
we improved the result of Terai [T3], by proving that if b ≡ 3 (mod 4), 2 ‖ a
and b ≥ 25.1a, then the Terai–Jeśmanowicz conjecture holds).

In this paper, using a lower bound for linear forms in two logarithms
and some recent results on Diophantine equations, we prove the following
further results.

Theorem 1. For a, b, c as in (2) and (3), the Terai–Jeśmanowicz con-
jecture holds. That is, if m ∈ N with 2 |m, then the equation

(4) (m3 − 3m)x + (3m2 − 1)y = (m2 + 1)z

has only the solution (x, y, z) = (2, 2, 3), and if m ∈ N with 2 |m, then the
equation

(5) (m|m4 − 10m2 + 5|)x + (5m4 − 10m2 + 1)y = (m2 + 1)z

has only the solution (x, y, z) = (2, 2, 5).

Theorem 2. Let m, r ∈ N with 2 |m, 2 - r, r > 5. Define the integers
Ur, Vr by (m +

√
−1)r = Vr + Ur

√
−1. If a = |Vr|, b = |Ur|, c = m2 + 1

with m ≡ 2 (mod 4), b ≡ 3 (mod 4), and if r < m/
√

825 log(m2 + 1)− 1
and m ≥ 200, then equation (1) has only the solution (x, y, z) = (2, 2, r).

Remark. In [CD], we also proved that Theorem 2 holds when “r <
m√

825 log(m2+1)−1
and m ≥ 200” is replaced by “b is a prime”. In addition, it

is easy to check that for every odd r > 5, if m > 80r
√

log r, then
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m√
825 log(m2 + 1)− 1

>
80r
√

log r√
825 log(802r2 log r + 1)− 1

> r

√
6400 log r

825 log(2 · 802r2 log r)
> r.

Hence, Theorem 2 also holds when “r < m√
825 log(m2+1)−1

and m ≥ 200” is

replaced by “m > 80r
√

log r”.

In the course of the proofs we derive some results on Diophantine equa-
tions which may be of independent interest. Lemma 7 implies that the equa-
tion x5 +y5 = 12z2 has no integer solutions with x and y coprime and z 6= 0.
Lemma 10 says that for every integer k > 1 the equation x2k + y4 = z2 has
no solutions in positive coprime integers x, y, z.

2. A lower bound for linear forms in two logarithms and its
applications

Lemma 1. Let Λ = X logA − Y logB, where X,Y,A,B ∈ N satisfy
min{A,B} > 4. If Λ 6= 0, then

log |Λ| ≥ − 15.41761(h+ 1.677)2 logA logB(6)

− 9.9(h+ 1.677)(logA+ logB)

− 22.2118(h+ 1.59)3/2(logA logB)1/2

− log((h+ 1.59)2 logA logB)− 2h− 5.424,

where

h = max
{

log
(

Y

logA
+

X

logB

)
+ 0.17, 7.2

}
.

Proof. In a result of Mignotte [M] (see Lemma 1 of Terai [T3]), just as
in [T3, pp. 19–20], put % = 4.9, λ = log %,

a1 = (%− 1) logA+ 2 logA = (%+ 1) logA > λ,

a2 = (%− 1) logB + 2 logB = (%+ 1) logB > λ,

C = 4.5, K0 = 177 and f(K0) = 1.2879. Since

log
(
b1
a2

+
b2
a1

)
= log

(
X

logB
+

Y

logA

)
− log(%+ 1),

we can also take

h = max
{

log
(

Y

logA
+

X

logB

)
+ 0.17, 7.2

}
.

Hence, Lemma 1 of [T3] proves (6).
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Lemma 2. Suppose that min(b, c) ≥ 2002 and b > a2/n, where n ∈ N
and n ≤ 422. If equation (1) has a solution with x = 2, then

y < 1650 log c.

Proof. Let Λ = z log c− y log b. By Lemma 1, we obtain

log |Λ| ≥ − 15.41761(h+ 1.677)2 log c log b(7)

− 9.9(h+ 1.677)(log c+ log b)

− 22.2118(h+ 1.59)3/2(log c log b)1/2

− log((h+ 1.59)2 log c log b)− 2h− 5.424,

where

h = max
{

log
(

y

log c
+

z

log b

)
+ 0.17, 7.2

}
.

On the other hand, if equation (1) has solution with x = 2, then

(8) z log c = log(by + a2) = y log b+ log
(

1 +
a2

by

)
< y log b+

a2

by
.

From (8), we see that

(9) log |Λ| < 2 log a− y log b.

Hence, from (7) and (9), we get

y

log c
<

2 log a
log b log c

+ 15.41761(h+ 1.677)2(10)

+ 9.9(h+ 1.677)
(

1
log b

+
1

log c

)

+
22.2118(h+ 1.59)3/2

(log b log c)1/2
+

log((h+ 1.59)2 log b log c)
log b log c

+
2h+ 5.424
log b log c

.

If h = 7.2, then log
(

y
log c + z

log b

)
≤ 7.03. Since cz > by, we get

2y
log c

<
y

log c
+

z

log b
≤ e7.03 = 1130.03061018 . . .

So, the assertion holds. If h = log
(

y
log c + z

log b

)
+ 0.17, since n ≤ 422 we can

suppose that y ≥ n, then by (8), bn > a2 and min(b, c) ≥ 2002, we obtain

h = log
(

y

log c
+

z

log b

)
+ 0.17 < log

(
2y

log c
+

a2

by log b log c

)
+ 0.17(11)

< log
(

2y
log c

+
1

log b log c

)
+ 0.17 < log

(
2y

log c
+ 0.009

)
+ 0.17,
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and we have 2 log a
log b log c <

n
log c < 39.824. So, from (10) and (11) we get y <

1650 log c.

Lemma 3. Let m, r ∈ N with 2 |m, 2 - r, r > 1. Define the integers Ur,
Vr by (m +

√
−1)r = Vr + Ur

√
−1. If a = |Vr|, b = |Ur|, c = m2 + 1 with

m ≥ 200, and if equation (1) has the solution (x, y, z) with x = 2, 2 | y and
y ≥ 4, then

r >
m√

825 log(m2 + 1)− 1
.

Proof. It is clear that if m ≥ 200 then min(b, c) ≥ 2002 and b > a2/n,
where n ≤ 422 is some positive integer (for example, n = 4). Hence, by
Lemma 2 we get

(12) y < 1650 log(m2 + 1).

On the other hand, taking (1) mod m4, we have

r2m2 +
(

1− y · 1
2
r(r − 1)m2

)
≡ (1 + zm2) (modm4),

i.e. 1
2r(r − 1)y + z ≡ r2 (modm2), and so

(13)
1
2
r(r − 1)y + z ≥ r2 +m2,

since y ≥ 4 and 1
2r(r − 1)y + z > r2. Now, we prove that z < 1

2ry. Suppose
z ≥ 1

2ry. Since z > r, we have

crz = (a2 + b2)z =
z∑

j=0

(
z

j

)
(a2)j(b2)z−j >

r∑

j=0

(
r

j

)
(a2)j(b2)ry/2−j

>

r∑

j=0

(
r

j

)
(a2)jbry−yj = (a2 + by)r = czr,

which is impossible. Thus, z < 1
2ry and from (13) we get

(14) y > 2 +
2
r2 m

2.

By (12) and (14), we get the assertion.

3. Some results on Diophantine equations

Lemma 4. Suppose that p is an odd prime and D > 0 is not divisible by
primes of the form 2kp+ 1. If the Diophantine equation

xp + yp = Dz2, x, y, z ∈ Z, gcd(x, y) = 1,

has a solution with 2 | z, then 2p | z.

Proof. For the case D = 2 see Cao [C2] and for the case D > 2 see [C3].
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Lemma 5. If p is an odd prime with p ≥ 7, then the Diophantine equa-
tion

xp + yp = 3z2, x, y, z ∈ Z, gcd(x, y) = 1,

has no solution with z 6= 0.

Proof. This is a recent result of Bennett and Skinner [BS].

Lemma 6. The Diophantine equation

(15) 125x4 − 25x2y2 + y4 = z2, x, y, z ∈ N, gcd(x, y) = 1,

has no solution.

Proof. It is clear that 2 -x+y and we may suppose that xy has the least
possible value. From (15), we have

(2y2 − 25x2)2 − 125x4 = 4z2,

and so

(16) (|2y2 − 25x2| − 2z)(|2y2 − 25x2|+ 2z) = 125x4.

Suppose that 2 | y. We have 2 -x. As is easily seen, gcd(|2y2−25x2|−2z,
|2y2 − 25x2|+ 2z) = 1. Hence, from (16) we get

|2y2 − 25x2| ± 2z = 125x4
1, |2y2 − 25x2| ∓ 2z = x4

2,

and so either

(17) 4y2 = 125x4
1 + x4

2 + 50x2
1x

2
2,

or

(18) −4y2 = 125x4
1 + x4

2 − 50x2
1x

2
2,

where x = x1x2, x1, x2 ∈ N with gcd(x1, x2) = 1 and 2 -x1x2. Reducing
mod 16, we see that (18) is impossible since 2 | y. For (17), write

(
x2

2 + 25x2
1

2

)2

− 53x4
1 = y2,

and so

(19)
(
x2

2 + 25x2
1

2
+ y

)(
x2

2 + 25x2
1

2
− y
)

= 53x4
1.

Since gcd
(x2

2+25x2
1

2 + y,
x2

2+25x2
1

2 − y
)

= 1, from (19) we get

(20)
x2

2 + 25x2
1

2
± y = 53x4

3,
x2

2 + 25x2
1

2
∓ y = x4

4,

where x1 = x3x4, x3, x4 ∈ N with gcd(x3, x4) = 1 and 2 -x3x4. From
x1 = x3x4 and (20), we have

125x4
3 − 25x2

3x
2
4 + x4

4 = x2
2

which is impossible by reduction mod 8 and 2 -x3x4.



Terai–Jeśmanowicz conjecture 159

Suppose that 2 - y. We have 2 |x. As is easily seen, gcd(|2y2−25x2|−2z,
|2y2 − 25x2|+ 2z) = 4. Hence, from (16) we get

|2y2 − 25x2| ± 2z = 4 · 125x4
1, |2y2 − 25x2| ∓ 2z = 4x4

2,

and so

(21) y2 = 125x4
1 + x4

2 + 50x2
1x

2
2,

or

(22) −y2 = 125x4
1 + x4

2 − 50x2
1x

2
2,

where x = 2x1x2, x1, x2 ∈ N with gcd(x1, x2) = 1 and 2 |x1x2. Reducing
mod 4, we see that (22) is impossible since 2 |x1x2. For (21), reducing mod 8,
we see that 2 |x1, 2 -x2. Write

(x2
2 + 25x2

1)2 − 4 · 53x4
1 = y2,

and so

(23)
(
x2

2 + 25x2
1 + y

2

)(
x2

2 + 25x2
1 − y

2

)
= 53x4

1.

Since gcd
(x2

2+25x2
1+y

2 ,
x2

2+25x2
1−y

2

)
= 1, from (23) we get

(24) x2
2 + 25x2

1 ± y = 2 · 53x4
3, x2

2 + 25x2
1 ∓ y = 2x4

4,

where x1 = x3x4, x3, x4 ∈ N with gcd(x3, x4) = 1 and 2 |x3x4. From x1 =
x3x4 and (24), we have

125x4
3 − 25x2

3x
2
4 + x4

4 = x2
2

which is impossible by the method of descent since x3x4 = x1 < x ≤ xy.

Lemma 7. The Diophantine equation

(25) x5 + y5 = 3z2, x, y, z ∈ Z, gcd(x, y) = 1,

has no solution with 2 | z and z 6= 0.

Proof. Suppose that equation (25) has a solution with 2 | z and z 6= 0.
We may assume that z ∈ N. Then by Lemma 4, we have 10 | z. Hence, (25)
gives

(26) x+ y = 60z2
1 , x4 − x3y + x2y2 − xy3 + y4 = 5z2

2 ,

where z = 10z1z2, z1, z2 ∈ N with gcd(z1, z2) = 1 and 2 - z2. Without loss of
generality, we may assume that x > y. Let x + y = 10a, x − y = 2b, where
a = 6z2

1 and b ∈ N with gcd(a, b) = 1. Then from (26), we have

(27) 125a4 + 50a2b2 + b4 = z2
2 , a, b ∈ N.

By the same argument as in the proof of (21), we deduce from (27) that
equation (15) has a solution. This is impossible by Lemma 6.
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Lemma 8 ([DM]). If n ∈ N with n ≥ 4, then the equation

xn + yn = z2, x, y, z ∈ Z, xyz 6= 0, gcd(x, y) = 1,

has no solution.

Lemma 9 ([CD, Theorem 3]). Suppose that k ∈ N with k > 1. If 2 |A,
then the Diophantine equation

A2k +B2 = C4, A,B,C ∈ Z, gcd(A,B) = 1,

has no solution with AB 6= 0.

Lemma 10. If k ∈ N with k > 1, then the Diophantine equation

(28) A2k +B4 = C2, A,B,C ∈ Z, gcd(A,B) = 1,

has no solution with AB 6= 0.

Proof. If 2 | k, then it is clear that the conclusion holds (see [R] or [C4]).
If k = 3, then it also holds (see [B, Theorem 1.3.1]).

Now, we suppose that 2 - k > 3 and equation (28) has a solution with
AB 6= 0.

If 2 -B, then from (28), we have

(29) |A|k = 2uv, B2 = u2 − v2,

where u, v ∈ N with gcd(u, v) = 1, 2 -u + v. Then from the second equality
of (29), we see that 2 | v. So, from the first equality of (29), we get

(30) 2v = Ak1 , u = Ak2 ,

where A1, A2 ∈ N with gcd(A1, A2) = 1, 2 -A2. From the second equality of
(29), we get

(31) u+ v = B2
1 , u− v = B2

2 , B = B1B2,

where B1, B2 ∈ N with B1 > B2, gcd(B1, B2) = 1, 2 -B1B2. From (30) and
(31), we have

(32) Ak1 = B2
1 −B2

2 , 2Ak2 = B2
1 +B2

2 .

Notice that gcd(B1, B2) = 1, 2 -B1B2. From the first equality of (32), we get

(33) B1 ±B2 = 2Ak3 , B1 ∓B2 = 2k−1Ak4 ,

where A3, A4 ∈ N with gcd(A3, A4) = 1. Clearly, from (33) we have

B1 = Ak3 + 2k−2Ak4 , ±B2 = Ak3 − 2k−2Ak4 .

Substituting these into the second equality of (32), we have

Ak2 = A2k
3 + (2k−2Ak4)2,

which is impossible by Lemma 8.
If 2 |B, then from (28), we have

(34) |A|k = u2 − v2, B2 = 2uv,
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where u, v ∈ N with gcd(u, v) = 1, 2 -u + v. Then from the first equality of
(34), we get

u+ v = Ak1 , u− v = Ak2 ,

and so

(35) 2u = Ak1 + Ak2 , 2v = Ak1 − Ak2 ,
where A1, A2 ∈ N with gcd(A1, A2) = 1. From the second equality of (34),
we get 2u = B2

1 or 2v = B2
1 , where B1 ∈ N. Hence,

(36) Ak1 + Ak2 = B2
1 or Ak1 − Ak2 = B2

1 .

By Lemma 8, (36) is impossible since k > 3.

4. Proof of theorems. We also need the following lemmas to prove
our theorems.

Lemma 11 ([CD, Lemma 2]). Let a, b, c ∈ N satisfy a2 + b2 = cr with
gcd(a, b) = 1 and r odd ≥ 3. Suppose that b ≡ 3 (mod 4), 2 ‖ a. If equation
(1) has solutions (x, y, z), then x = 2, 2 | y, 2 - z.

Lemma 12 ([DC, Lemmas 2.1 and 2.2]). If either equation (4) or (5) has
a solution, then 2 |x, 2 | y.

Lemma 13 ([DC, Lemma 2.7]). Let m, r ∈ N with 2 |m, 2 - r, r > 1.
Define the integers Ur, Vr by (m +

√
−1)r = Vr + Ur

√
−1. If a = |Vr|,

b = |Ur|, c = m2 + 1, and if equation (1) has a solution (x, y, z) with 2 | y,
2 - z, then x = 2.

Lemma 14 ([T1]). The positive integer solutions of the equation a2 + b2

= c3 with gcd(a, b) = 1 are given by

a = m|m2 − 3n2|, b = n|3m2 − n2|, c = m2 + n2,

where m,n ∈ N are such that gcd(m,n) = 1 and m 6≡ n (mod 2).

Proof of Theorem 1. By Lemma 12, we have 2 |x, 2 | y. There are two
cases.

Case (i): 2 - z. By Lemma 13, we know that x = 2. First consider equa-
tion (4). If y = 2 then there is the only solution (x, y, z) = (2, 2, 3). For
y ≥ 4, Lemma 3 shows that if m ≥ 200 then 3 > m/

√
825 log(m2 + 1)− 1.

This is impossible if m ≥ 300. If m < 300, then by Claim 1 of [T3] and by
computer calculations, we have 3 | z. Using the method of [T3], we verify
that equation (4) has no solution.

Remark. Using the results of [C1] and [DC], ifm2+1 or 3m2−1 is prime,
then the conclusion of the theorem holds. By computing, if both m2 +1 and
3m2 − 1 are not primes, then the first values of m are 32, 38, 42, 46, 62, . . .
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By a similar method, we can find that equation (5) has only the solution
(x, y, z) = (2, 2, 5).

Case (ii): 2 | z. Put x = 2x1, y = 2y1, z = 2z1, where x1, y1, z1 ∈ N.
Then by taking equation (1) mod m4, we see that if x1 = 1, then

(37) 1
2r(r − 1) · 2y1 + 2z1 ≡ r2 (modm2), r ∈ {3, 5},

and if x1 > 1, then

(38) 1
2r(r − 1) · 2y1 + 2z1 ≡ 0 (modm2), r ∈ {3, 5}.

Clearly, (37) is impossible since 2 |m. So x1 > 1 and (38) holds. By Lemma 9,
z1 is odd. We see that (38) is impossible if r = 5.

Now, we consider the case r = 3. By Lemma 11, it suffices to prove
the theorem if 4 |m. From (38), we know that 2 - y1 since 2 - z1. Notice that
equation (4) implies

(39) (m3−3m)2x1 = ((m2 +1)z1−(3m2−1)y1)((m2 +1)z1 +(3m2−1)y1).

Clearly,

((m2 + 1)z1 − (3m2 − 1)y1) ≡ 2 (modm2),

((m2 + 1)z1 + (3m2 − 1)y1) ≡ 0 (modm2)

since 2 - y1z1. So, from (39) we get

(40)
(m2 + 1)z1 − (3m2 − 1)y1 = 2u2x1 ,

(m2 + 1)z1 + (3m2 − 1)y1 = 1
2m

2x1v2x1 ,

where u, v ∈ N with

(41) gcd(u, v) = 1, uv = m2 − 3.

By (40), we have (m2 + 1)z1 − (3m2 − 1)y1 ≡ 0 (modu) and (m2 + 1)z1 +
(3m2 − 1)y1 ≡ 0 (mod v). Since (41) gives m2 ≡ 3 (modu) and m2 ≡ 3
(mod v), we infer, using Jacobi’s symbol, that

(
2
u

)
= 1 and

(−2
v

)
= 1. Thus,

from 4 |m and (41), we get u ≡ 7 (mod 8) and v ≡ 3 (mod 8). If 2 |x1, then
from Lemma 10 and equation (4), we have y1 = 1. By (40), we have

3m2 − 1 = (3m2 − 1)y1 = 1
4m

2x1v2x1 − u2x1

=
(

1
2m

x1vx1 + ux1
)(

1
2m

x1vx1 − ux1
)
≥ 1

2m
x1vx1 + ux1 .

It follows that 3m2 − 1 > 1
2m

2 · 32 + 1 > 3m2 − 1, a contradiction. Hence,
we get 2 -x1y1z1 and x1 > 1, y1 > 1.

Also, by the second equality of (40), we have 3 |m. From this and (38),
we see that 3 | z1. Let z1 = 3z2, z2 ∈ N. Hence, (40) implies that

(42) u2x1 + 1
4m

2x1v2x1 = (m2 + 1)3z2 .

By Lemma 14, from (42) we get

(43) 1
2m

x1vx1 = s|s2 − 3t2|, ux1 = t|t2 − 3s2|,
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where s, t ∈ N with gcd(s, t) = 1 and 2 - s + t. Since 3 |m, we know from
(43) that 3 | s. Hence, gcd(t, t2 − 3s2) = 1 since gcd(s, t) = 1. Thus, by the
second equality of (43), we have t = ux1

1 , |t2 − 3s2| = ux1
2 , and so

(44) u2x1
1 + (±u2)x1 = 3s2,

where u1, u2 ∈ N with gcd(u1, u2) = 1 and 2 -u1u2. Since 2 -x1 > 1, we have
p |x1, where p is an odd prime. If p = 3, then equation (4) is impossible by
Lemma 8 and 6 |x, 6 | z. If p = 5, then (44) is impossible by Lemma 7. If
p ≥ 7, then (44) is also impossible by Lemma 5.

Proof of Theorem 2. It is clear that 2 ‖ a when m ≡ 2 (mod 4). Then
from Lemma 11, we get x = 2, y = 2y1 and 2 - z, where y1 ∈ N. Assume
that y1 > 1. By Lemma 3, we have r > m/

√
825 log(m2 + 1)− 1. This

contradicts the assumption. Thus y1 = 1 and from (1) we obtain z = r.
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