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1. Introduction. It is partly known [1], partly easy to prove that for
the divisor function

(1) d(n) ==Y _1,
djn
it is true that for all w > 0 there is an n € N such that
(2) d(n) > w+ max(d(n —1),d(n+ 1))
and also there is an m € N such that
(3) d(m) 4+ w < min(d(m — 1),d(m + 1)).
P. Erd6s [1] proved (2) in the following stronger form: for all & € N there

are infinitely many n € N such that
k
(4) d(n) > [ [ d(n —)d(n +1).
i=1
We will extend these theorems to generalized divisor functions d(.A,n) de-
fined for any set A C N as

(5) d(A,n) = Z 1.

a€A,aln

These functions were introduced by Erdds and Sarkozy [2]. Among other
results they proved that for any infinite A the large values of d(A,n) are
much greater than its average:

(6) lim sup maxn<n d(A,n) =
N—o0 ZaEA,aSN 1/CL

A. Sarkozy posed the following three related problems in [5] (Problems
25-27):
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PROBLEM 1. Is it true that |d(A,n+1)—d(A,n)| cannot be bounded for
an infinite set A C N?

PROBLEM 2. Is it true that for any infinite set A C N there are infinitely
many n with

d(A,n) > max(d(A,n+1),d(A,n—1))?
PROBLEM 3. What assumption is needed to ensure that
d(A,n) <min(d(A,n —1),d(A,n+1))
for infinitely many n?

This article solves these problems and also generalizes Erdés’s theorem.

2. Notation and the lemma. Following [4], we will use the following
notations: Let B C N be an arbitrary finite sequence, X := |B|. Let P C N
be an arbitrary set of primes. Set

(7) Pi)= ][] »p

pEP,p<z

(8) S(B,P,z):=|{b:be B, (b, P(z)) =1}|.

Let w be a multiplicative arithmetical function such that w(n) = 0 if n is
not squarefree and also if n has a prime factor not in P, and w(1) := 1. Let
~ be Euler’s constant and I" be the well-known Gamma function, p be the
Mobius function, and v(d) be the number of distinct prime divisors of d. We
define

9) W) =[] <1 - #).

Pz
1 gn ¢ " f 2
=27 f i <u<

(10) o (u) F(K+1)u if 0 <u<2,
(11) (u "o (u)) == —ru "o (u—2) ifu>2,
with o, required to be continuous at © = 2. We set

(12) M (u) := mu‘“osot“_l _ 1)dt (u>1).

M ox(t—1)
d
(13) R, ::]{bGB:d\b}]—#X if u(d) # 0.

Let us now define four properties as in [4]:

(€1): There exists A; such that 0 < w(p)/p <1 —1/A; for all primes p.
(Q2(k, Ag, A3)): There exist £ > 0 and Ay, A3 > 1 such that
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(14) —Ax< Z M—mlogigflg if2<w<z.
D w

w<p<z prime
(R): |R4| <w(d) if p(d) #0, and (d,p) =1 for all p & P.
(R(k,@)): There exist constants 0 < a < 1 and A4, A5 > 1 such that if
X > 2 then

» X
d<X*/(log X)44
VpeP (d,p)=1

It is not difficult to see that (R(k,«)) is less restrictive than (R) beside
(©1) (see [4]). The strongest lower bound for S(B, P, z) in [4] is the following:

LEMMA 1 (see [4, p. 219]). If (1), (Q2(k, A2, A3)) and (R(k,a)) hold
and
22 < X%/(log X)A (X >2),

then

S(B,P,z) > XW(z) <1 . <a

log X'\ 4 As(loglog 3X)3r+2
log z log X
where Ag > 1 is a constant which depends only on k,a, A1, As, A3, Ay, As.

3. The results

THEOREM 1. Let A={a1 <az <...} CNand k € N. Then there exist
infinitely many n € N such that

k
d(A,n) > [[d(A,n —i)d(A,n+1).
i=1
Proof. We are going to prove that there exists a constant C' = C(k) > 0
such that there are infinitely many n for which

k
(16) [TdAn-idAn+i)<C
i=1
and d(A,n) can be arbitrarily large for these n’s. Define

N
(17) X= [ p*esi]]a;,
j=1

p<2k+1 prime

k
(18) B:= {H(jX—i)(jX—i—i) e {1,...,X}},
(19) P:={p:(p,X) =1 prime},

(20) wlp) =2k ifpeP,
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and extend w multiplicatively to squarefree d’s for which (d,p) = 1if p € P.
It is easy to see that |B| = X. Now we should check the conditions we need
for the lemma:

(€1): Since 0 < w(p) <2k and p > 2k + 1 if w(p) # 0, we have

w(p) 1
21 < —=<1- .
(21) 0= p 2k +1
(Q2(k, Ag, A3)): This condition is trivial by the following well-known
statement:

(22) Z logp _ log (%) +0(1) if2<w<z

p

w<p<z prime
because 0 < w(p) < 2k, and w(p) =2k if p > 2k + 1.

(R(k,a)): It is enough to prove (R) because it is more restrictive beside
(€21). Suppose that d = Hizl p, where p,. € P are distinct primes. We can
get [{b € B : d|b}| by counting how many j € {1,..., X} there exist such
that p, | j X + i, for fixed i, € {1,...,k,—1,=2,...,—k} forall 1 <r <.
Now (X, d) = 1 and this condition holds for j if and only if it does for j +d,
so there are [X/d] or [X/d] + 1 pieces of such j’s. Hence if we take it X/d
then the bias is at most 1. There are (2k)! = w(d) choices for the i,’s and
therefore |Ry| < w(d).

Now we can use the lemma. Let z = X'/¢ and choose ¢ such that

Xa
2 I
(23) == (log X)A4’
log X
(24) Tk <a og 2 ) = nr(ac) <1

for X large enough. Such a c exists because 7, is a decreasing function with
limit 0 at +00. Now we choose N large enough and

N > (24’cc II @lk/plfog, k] + 1))%.

p<k prime
Then N _—
log X log 1 X)°F
(25) 1—n| o8 — A 2(loglog 3X) > 0.
log z log X

So we can conclude from the lemma that S(B,P,z) > 0, which means
that there exists b € B with (b,p) = 1 if p € P and p < 2, and b =
Hle(jX —1i)(jX +1) for some j € {1,..., X }. In view of the lemma below,
n = jX is a good choice for the theorem.

LEMMA 2. We have

d(A, jX i) < d(A,b) < dd) <2 [ @lk/plllog, k] +1).

p<k prime
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Proof. The first two inequalities are trivial. For the third one we use the
formula d([ ;2 pi") = [T2 (0 + 1):
1. If p < k then p'*l°8:#1 | X so only 2[k/p] factors in
k
b=T[UX-DGX+1)
i=1
are divisible by p and all of them contain at most [log,, k] factors p because
p1+[10gp k] > k.
2. If k <pandp|X then (p,b) = 1.
3. If k < pand (p,X) =1 then p € P. So if p < z then (p,b) = 1 else
these primes give at most a multiplier of 24*¢ in d(b) because b < X*¢ =

Z4kc < p4kc' -

Now the proof of the theorem can be completed: For n = j X,
n 2k
(26) d(An) = N> (2% TT (@lk/pllog, K]+ 1)

p<k prime
k
H (An—9)d(An+i). »

From this theorem we know that the generalized divisor functions have
isolated large values. One may ask: what about the isolated small values?
The set A= {a:a €N, 3|a} shows that it may occur that

(27) d(A,n) < min(d(A,n —1),d(A,n+ 1))

never holds. The following two theorems answer the question by giving a
necessary and sufficient condition on A.

THEOREM 2. There are infinitely many n € N such that
d(A,n) < min(d(A,n —1),d(A,n+1))

if and only if there exist a,b € A (not necessarily distinct) such that a,b > 1
and (a,b) <2

Proof. One direction is trivial because if there exists an n € N such
that (27) holds then n — 1 and also n + 1 must have a divisor in A; the two
divisors are greater than 1 and their greatest common divisor is at most 2.

For the other direction assume that a,b € A are such that a,b > 1 and
(a,b) < 2. From the Chinese Remainder Theorem we know that there is
a residue-class mod]a, b] which is congruent to 1 (moda) and —1 (modb).
From Dirichlet’s theorem we see that there are infinitely many prime num-
bers in this residue-class. If infinitely many of these primes do not belong
to A then we are done. If all but finitely many of these primes belong to .4
then let p1 < ps < p3 < pg be such primes from the set A.
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Applying again the Chinese Remainder Theorem and Dirichlet’s theorem
we find that there are infinitely many primes p such that p = 1 (mod pip2)
and p = —1 (mod p3p4) and for these primes n = p satisfies (27). m

THEOREM 3. For all w > 0 there are infinitely many n € N such that
(28) d(A,n) +w < min(d(A,n —1),d(A,n+ 1))
if and only if for all k € N there exist ay,...,a,b1,...,by € A so that
a; # a; and b; # b; fori # j, ([a1,...,ak),[b1,...,bk]) <2 and all a;,b; > 1.

Proof. One direction is trivial: if (28) holds for all w with some n € N
then we choose k = [w] 4+ 1, the numbers n + 1 and n — 1 have at least k
divisors (> 1) in A, and these 2k elements satisfy the condition.

To prove the other direction we use the Chinese Remainder Theorem and
Dirichlet’s theorem to deduce that there are infinitely many prime numbers p
for which the following two relations hold for all i,j € {1,...,k}:

(30) bj|p+1.

Now n = p satisfies (28) with w = k—1, and since k was an arbitrary natural
number, the proof is complete. m

4. Corollaries

COROLLARY 1 (Theorem of Erdds, see [1] and [3, p. 277]). For the divi-
sor function d(n), for all k € N there are infinitely many n € N with
k

d(n) > [ [ d(n —4)d(n+1).
i=1
Proof. Choose A =N and apply Theorem 1. m

COROLLARY 2. For all w > 0 there are infinitely many n € N with
d(n) +w < min(d(n — 1),d(n + 1)).
Proof. Choose A =N and apply Theorem 3. u

COROLLARY 3. For the number v(n) of distinct prime divisors, for all
k € N there are infinitely many n € N with

k
v(n) > H v(in—i)v(n+1).

Proof. Choose A = {p € N: prime} and apply Theorem 1. u
COROLLARY 4. For all w > 0 there are infinitely many n € N with
v(n) +w < min(rv(n —1),v(n+1)).

Proof. Choose A = {p € N : prime} and apply Theorem 3. =
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COROLLARY 5. For the total number 2(n) of prime divisors, for all
k € N there are infinitely many n € N with

k
2(n) > [[ 20— )2(n+1).
i=1

Proof. Choose A = {¢q € N : prime or power of a prime} and apply
Theorem 1. u

COROLLARY 6. For all w >0 there are infinitely many n € N with
2(n) +w <min(2(n — 1), 2(n +1)).

Proof. Choose A = {¢q € N : prime or power of a prime} and apply
Theorem 3. u

COROLLARY 7 (Problem of Sarkozy, see [5, Problem 25]). For every in-
finite set A C N, the sequence |d(A,n+ 1) —d(A,n)| cannot be bounded.

Proof. Apply Theorem 1 for the set AU {1}. =

COROLLARY 8. For every infinite set A C N and any w > 0 there are
nfinitely many n with

d(A,n) > w+ max(d(A,n—1),d(A,n+1)).
Proof. Apply Theorem 1 for the set AU {1}. =

Acknowledgements. Andras Sarkozy has played an important role
in the writing of this paper. I also thank him for his problem article [5].
Furthermore, I gratefully acknowledge help from Mihdly Szalay.

References

[1] P. Erd8s, Remarks on two problems, Mat. Lapok 11 (1960), 26-33 (in Hungarian).
[2] P.Erdés and A. Sirkozy, Some asymptotic formulas on generalized divisor functions,
in: Studies in Pure Mathematics, Akadémiai Kiad4, Budapest, 1983, 165-179.

[3] P.Erdds and J. Surdnyi, Selected Topics from Number Theory, Polygon, Szeged, 1996

(in Hungarian).
[4] H. Halberstam and H.-E. Richert, Sieve Methods, Academic Press, London, 1974.
[6] A. Sarkozy, Unsolved problems in number theory, Period. Math. Hungar. 42 (2001),
17-35.

Ronay J. u. 11
H-9026 Gyor, Hungary
E-mail: zger@bolyail.elte.hu

Received on 8.7.2002
and in revised form on 16.1.2003 (4324)



