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On the Diophantine equation F (x) = G(y)
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Sz. Tengely (Leiden)

1. Introduction. Consider a polynomial

P (X,Y ) =
m∑

i=0

n∑

j=0

ai,jX
iY j ,

where ai,j ∈ Z and m,n > 0, which is irreducible in Q[X,Y ]. We recall
Runge’s result [14] on Diophantine equations: if there are infinitely many
(x, y) ∈ Z2 such that P (x, y) = 0 then the following conditions hold:

• ai,n = am,j = 0 for all non-zero i and j,

• for every term ai,jX
iY j of P one has ni+mj ≤ mn,

• the sum of all monomials ai,jXiY j of P for which ni+mj = mn is up
to a constant factor a power of an irreducible polynomial in Z[X,Y ],
• there is only one system of conjugate Puiseux expansions at x =∞ for

the algebraic function y = y(x) defined by P (x, y) = 0.

If at least one of the above conditions does not hold, we say that P
satisfies Runge’s condition. The last two conditions have been sharpened by
Schinzel [15] and by Ayad [1]. Runge’s method of proof is effective, that is, it
yields computable upper bounds for the sizes of the integer solutions to these
equations. Using this method upper bounds were obtained by Hilliker and
Straus [8] and by Walsh [20]. Grytczuk and Schinzel [6] applied a method
of Skolem [17] based on elimination theory to obtain upper bounds for the
solutions. Laurent and Poulakis [9] obtained an effective version of Runge’s
theorem over number fields by using interpolation determinants. Their result
extends Walsh’s result which holds for the field of rational numbers.

If P (X,Y ) = Y n − R(X) is irreducible in Q[X,Y ], R is monic and
gcd(n,degR) > 1, then P satisfies Runge’s condition. Masser [11] considered
the equation yn = P (x) in the special case n = 2,degR = 4, and Walsh [20]
gave a bound for the general case.
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In [13] Poulakis described an elementary method for computing the so-
lutions of the equation y2 = R(x), where R is a monic quartic polynomial
which is not a perfect square. Szalay [18] generalized the result of Poulakis
by giving an algorithm for solving the equation y2 = R(x) where R is a
monic polynomial of even degree. Recently, Szalay [19] established a gen-
eralization to equations yp = R(x), where R is a monic polynomial and
p |degR.

Several authors (for references see e.g. [2], [3], [5]) have studied the ques-
tion if the equation F (x) = G(y) has finitely or infinitely many solutions
in x, y ∈ Z, where F,G are polynomials with rational coefficients. Bilu and
Tichy [3] completely classified those polynomials F,G ∈ Q[X] for which the
equation F (x) = G(y) has infinitely many integer solutions. The method
used in these papers is ineffective so they do not lead to algorithms to find
all the solutions.

2. Result. We deal with the Diophantine equation

F (x) = G(y),(1)

where F,G ∈ Z[X] are monic polynomials with degF = n, degG = m,
such that F (X)− G(Y ) is irreducible in Q[X,Y ] and gcd(n,m) > 1. Then
Runge’s condition is satisfied. Let d > 1 be a divisor of gcd(n,m). Without
loss of generality we can assume m ≥ n. We denote by H(·) the classical
height, that is, the maximal absolute value of the coefficients.

In the following theorem we extend a result of Walsh [20] concerning
superelliptic equations for which Runge’s condition is satisfied.

Theorem. If (x, y) ∈ Z2 is a solution of (1) where F and G satisfy the
above mentioned conditions then

max{|x|, |y|} ≤ d2m2/d−m(m+1)3m/(2d)
(
m

d
+1
)3m/2

(h+1)(m2+mn+m)/d+2m,

where h = max{H(F ),H(G)}.
In the special case G(Y ) = Y m Walsh [20, Theorem 3] obtained a far

better result for the integer solutions of (1), viz.

|x| ≤ d2n−d
(
n

d
+ 2
)d

(h+ 1)n+d.

In [20, Corollary of Theorem 1] Walsh has shown that if P (X,Y ) satisfies
Runge’s condition, then all integer solutions of the Diophantine equation
P (X,Y ) = 0 satisfy

max{|x|, |y|} < (2m)18m7
h12m6

,
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where m = degY P and h = H(P ). Grytczuk and Schinzel [6, Corollary]
have stated that if P (X,Y ) satisfies Runge’s condition, then

max{|x|, |y|} <
{

(45H(P ))250 if m = 2,

((4m3)8m2
H(P ))96m11

if m > 2.

Here we cited corollaries from [6] and from [20] because it is easier to compare
these results with the Theorem. We note that in the special case (1) our
theorem gives a far better upper bound.

We will need the concept of resultant. The resultant of two polynomi-
als f, g ∈ C[X,Y ] of degrees r, t in Y, respectively, say f(X,Y ) = a0(X)Y r+
a1(X)Y r−1 + . . . + ar(X) with a0(X) 6≡ 0 and g(X,Y ) = b0(X)Y t +
b1(X)Y t−1 + . . . + bt(X) with b0(X) 6≡ 0, is defined to be the following
determinant of order r + t:

ResY (f(X,Y ), g(X,Y )) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0(X) . . . . . . ar(X)
. . . . . .

a0(X) . . . . . . ar(X)

b0(X) . . . bt(X)
. . . . . .

. . . . . .

b0(X) . . . bt(X)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

In the proof of the Theorem we use the following result.

Lemma. There exist Puiseux expansions

u(X) =
∞∑

i=−n/d
fiX

−i and v(X) =
∞∑

i=−m/d
giX

−i

of the algebraic functions U, V defined by Ud = F (X), V d = G(X), such that
d2(n/d+i)−1fi ∈ Z for all i > −n/d, d2(m/d+i)−1gi ∈ Z for all i > −m/d, and
f−n/d = g−m/d = 1. Furthermore |fi| ≤ (H(F ) + 1)n/d+i+1 for i ≥ −n/d
and |gi| ≤ (H(G) + 1)m/d+i+1 for i ≥ −m/d.

Proof. See [20, pp. 169–170].

Proof of the Theorem. Let (1) admit a solution (x, y) ∈ Z2. Applying
the lemma we write

F (X) =
( ∞∑

i=−n/d
fiX

−i
)d
,(2)

G(Y ) =
( ∞∑

i=−m/d
giY

−i
)d
,(3)
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where |fi| and |gi| are bounded as in the lemma. It follows from the lemma
that

∣∣∣∣
d2m/d−1fk

tk

∣∣∣∣ <
1

2k+1 for |t| > 4d2m/d−1(H(F ) + 1)n/d+2 =: x0.

Thus we have
∣∣∣
∞∑

i=1

d2m/d−1fit
−i
∣∣∣ < 1/2.

Similarly if |t| > 4d2m/d−1(H(G) + 1)m/d+2 =: y0 then
∣∣∣
∞∑

i=1

d2m/d−1git
−i
∣∣∣ < 1/2.

Since F (x) = G(y), we have u(x)d − v(y)d = 0, that is,

(u(x)− v(y))(u(x)d−1 + u(x)d−2v(y) + . . .+ v(y)d−1) = 0 if d is odd,

(u(x)2 − v(y)2)(u(x)d−2 + u(x)d−4v(y)2 + . . .+ v(y)d−2) = 0 if d is even.

First assume that d is odd and

u(x)d−1 + u(x)d−2v(y) + . . .+ v(y)d−1 = 0.(4)

Suppose v(y) 6= 0. In this case we can divide (4) by v(y)d−1 to get
(
u(x)
v(y)

)d−1

+
(
u(x)
v(y)

)d−2

+ . . .+
(
u(x)
v(y)

)
+ 1 = 0.

It suffices to observe that (tk − 1)/(t− 1) has no real root if k is odd. Thus
v(y) = 0 and u(x) = 0.

Now assume that d is even. Note that

u(x)d−2 + u(x)d−4v(y)2 + . . .+ v(y)d−2 = 0

can only happen if u(x) = v(y) = 0. By the above considerations we have

u(x) =
{
v(y) if d is odd,

±v(y) if d is even.

Let |x| > x0 and |y| > y0. Then from

0 = |u(x)± v(y)| =
∣∣∣
∞∑

i=−n/d
fix
−i ±

∞∑

i=−m/d
giy
−i
∣∣∣

we obtain
∣∣∣

0∑

i=−n/d
d2m/d−1fix

−i ±
0∑

i=−m/d
d2m/d−1giy

−i
∣∣∣ < 1.
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Since d2m/d−1fi ∈ Z for i = −n/d, . . . , 0 and d2m/d−1gi ∈ Z for i =
−m/d, . . . , 0, we have

Q(x, y) :=
n/d∑

i=0

d2m/d−1f−ixi ±
m/d∑

i=0

d2m/d−1g−iyi = 0.

Hence x satisfies

ResY (F (X)−G(Y ), Q(X,Y )) = 0

and y satisfies
ResX(F (X)−G(Y ), Q(X,Y )) = 0.

We note that these resultants are non-zero polynomials since F (X)−G(Y )
is irreducible over Q[X,Y ] of degree n in X and of degree m in Y, whereas
degX Q(X,Y ) = n/d and degY Q(X,Y ) = m/d. By applying Lemma 1 of
Grytczuk and Schinzel [6] we obtain the following bounds for |x| and |y|:

|x| ≤ (h(n+ 1)
√
m+ 1)m/d

×
(
d2m/d−1(h+ 1)(n+m)/d+2

(
n

d
+ 1
)√

m

d
+ 1

)m
,

|y| ≤ (h(m+ 1)
√
n+ 1)n/d

×
(
d2m/d−1(h+ 1)(n+m)/d+2

(
m

d
+ 1
)√

n

d
+ 1

)n
.

(5)

By combining the bounds x0, y0 and (5) obtained for |x|, |y| we get the bound
given in the Theorem.

3. Description of the algorithm. In this section we give an algorithm
to find all integral solutions of concrete Diophantine equations of the form
(1) by adapting the proof of the Theorem. Let p be the smallest prime divisor
of gcd(m,n). Let u(X) =

∑∞
i=−n/p fiX

−i and v(X) =
∑∞

i=−m/p giX
−i be

the Puiseux expansions at∞ of u(X)p = F (X), v(X)p = G(X), respectively,
with f−n/p = g−m/p = 1. We define f̂ and ĝ by

F (X) =
( n−n/p∑

i=−n/p
fiX

−i
)p

+
np−n∑

i=1

f̂iX
−i,

G(Y ) =
( m−m/p∑

i=−m/p
giY

−i
)p

+
mp−m∑

i=1

ĝiY
−i.

(6)

We will use parameters ai, bi ∈ R+ for i = 1, 2, to be chosen later. Define

Pa1(X) = a1X
np−n +

np−n−1∑

i=0

f̂np−n−iXi,
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Ra1(X) = a1X
np−n −

np−n−1∑

i=0

f̂np−n−iXi

and set S(a1) = {r ∈ R | Pa1(r) = 0 or Ra1(r) = 0}. One can apply for
example the method of Collins and Akritas [4], based on Descartes’ rule
of signs, or Schönhage’s algorithm [16], which is implemented in Magma, to
obtain the set S(a1). Denote by I(a1) the integers in the interval [minS(a1),
maxS(a1)] if S(a1) 6= ∅, otherwise I(a1) = ∅. Since np − n is even, we see
that if t 6∈ I(a1) then Pa1(t) > 0 and Ra1(t) > 0, hence |∑np−n

i=1 f̂it
−i| < a1.

For a2 define

Pa2(X) = a2X
n−n/p +

n−n/p−1∑

i=0

fn−n/p−iX
i,

Ra2(X) = a2X
n−n/p −

n−n/p−1∑

i=0

fn−n/p−iX
i

and set S(a2) = {r ∈ R | Pa2(r) = 0 or Ra2(r) = 0}. Denote by I(a2)
the integers in [minS(a2),maxS(a2)] if S(a2) 6= ∅, otherwise I(a2) = ∅.
It is easy to see that if t 6∈ I(a2) then Pa2(t) > 0 and Ra2(t) > 0, hence
|∑n−n/p

i=1 f̂it
−i| < a2. In a similar way we define the sets I(b1) and I(b2).

Suppose

∣∣∣
np−n∑

i=1

f̂ix
−i
∣∣∣ < a1,

∣∣∣
n−n/p∑

i=1

fix
−i
∣∣∣ < a2,

∣∣∣
mp−m∑

i=1

ĝiy
−i
∣∣∣ < b1,

∣∣∣
m−m/p∑

i=1

giy
−i
∣∣∣ < b2.

By (1),

( n−n/p∑

i=−n/p
fix
−i −

m−m/p∑

i=−m/p
giy
−i
)( p−1∑

k=0

( n−n/p∑

i=−n/p
fix
−i
)p−k−1( m−m/p∑

i=−m/p
giy
−i
)k)

=
mp−m∑

i=1

ĝiy
−i −

np−n∑

i=1

f̂ix
−i.

Hence at least one of the following inequalities holds:

(7)
∣∣∣
n−n/p∑

i=−n/p
fix
−i −

m−m/p∑

i=−m/p
giy
−i
∣∣∣ < p

√
a1 + b1,
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(8)
∣∣∣
p−1∑

k=0

( n−n/p∑

i=−n/p
fix
−i
)p−k−1( m−m/p∑

i=−m/p
giy
−i
)k∣∣∣ < p

√
(a1 + b1)p−1.

Denote by D the least common multiple of the denominators of fi for i ∈
{−n/p, . . . ,−1}, of gi for i ∈ {−m/p, . . . ,−1} and of f0 − g0. Similarly
denote by D̂ the least common multiple of the denominators of fi for i ∈
{−n/p, . . . ,−1}, of gi for i ∈ {−m/p, . . . ,−1} and of f0 + g0. Then from (7)
we get

∣∣∣
0∑

i=−n/p
Dfix

−i −
0∑

i=−m/p
Dgiy

−i
∣∣∣ < D( p

√
a1 + b1 + a2 + b2) =: B1,(9)

and from (8) in the case p = 2 we obtain

∣∣∣
0∑

i=−n/p
D̂fix

−i +
0∑

i=−m/p
D̂giy

−i
∣∣∣ < D̂( p

√
a1 + b1 + a2 + b2) =: B̂1.(10)

If (x, y) ∈ Z2 is a solution of (1) and (9) then there is an integer k with
|k| < B1 such that x satisfies

Rk(X) := ResY
(
F (X)−G(Y ),

n/p∑

i=0

Df−iXi −
m/p∑

i=0

Dg−iY i − k
)

= 0.

If p = 2 and x is a solution of (1) and (10), then there is an integer k̂ with
|k̂| < B̂1 such that x satisfies

R̂
k̂
(X) := ResY

(
F (X)−G(Y ),

n/p∑

i=0

D̂f−iXi +
m/p∑

i=0

D̂g−iY i − k̂
)

= 0.

Choose integers FL,FU,GL,GU such that I(a1) ∪ I(a2) ⊂ [FL,FU ] and
I(b1) ∪ I(b2) ⊂ [GL,GU ]. If p = 2 then we can apply the above arguments
to conclude that each solution (x, y) ∈ Z2 of (1) satisfies at least one of the
following equations:

Rk(X) = 0 for some k with |k| < B1,(11)

R̂k(X) = 0 for some k with |k| < B̂1,(12)

G(Y ) = F (k) for some k ∈ [FL,FU ],(13)

F (X) = G(k) for some k ∈ [GL,GU ].(14)

Suppose that p is odd and (x, y) ∈ Z2 is a solution of (1) such that
x and y satisfy (8). If

∑m−m/p
i=−m/p giy

−i = 0 then y is a zero of the poly-

nomial
∑m

i=0D1g−m+m/p−iY i, where D1 is the least common multiple of
the denominators of the coefficients gi for i = −m/p, . . . ,m − m/p. If
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∑m−m/p
i=−m/p giy

−i 6= 0 and p
√

(a1 + b1)p−1/(
∑m−m/p

i=−m/p giy
−i)p−1 < 1/2 then

from (8) we obtain

1
2
≤ |tp−1 + tp−2 + . . .+ 1| <

p
√

(a1 + b1)p−1

(
∑m−m/p

i=−m/p giy
−i)p−1

<
1
2
,

where t =
∑n−n/p

i=−n/p fix
−i/
∑m−m/p

i=−m/p giy
−i, a contradiction. It remains to

deal with the inequality
p
√

(a1 + b1)p−1

(
∑m−m/p

i=−m/p giy
−i)p−1

≥ 1
2
.

We have assumed that |∑m−m/p
i=1 giy

−i| < b2. Using this inequality we get

B2 := D( p−1
√

2 p
√
a1 + b1 + b2) ≥

∣∣∣
0∑

i=−m/p
Dgiy

−i
∣∣∣.

It therefore suffices to find the integral roots of the polynomial equations∑m/p
i=0 Dg−iY

i − k = 0 for |k| ≤ B2, k ∈ Z.
We conclude that every solution (x, y) ∈ Z2 of (1) satisfies at least one

of the following equations if p is odd:

Rk(X) = 0 for some |k| < B1,(11)

G(Y ) = F (k) for some k ∈ [FL,FU ],(13)

F (X) = G(k) for some k ∈ [GL,GU ],(14)
m/p∑

i=0

Dg−iY i − k = 0 for some |k| < B2,(15)

m∑

i=0

D1g−m+m/p−iY
i = 0.(16)

The remaining question is how we should fix the parameters a1, a2, b1, b2
such that the number of equations to be solved becomes as small as possible.
If we increase a1 then |I(a1)| will decrease and B1, B2 will become larger,
but the number of equations may become smaller. We start the algorithm
with the following initial values:

a1 = maxi∈{1,...,np−n} |f̂i|, a2 = maxi∈{1,...,n−n/p} |fi|,
b1 = maxi∈{1,...,mp−m} |ĝi|, b2 = maxi∈{1,...,m−m/p} |gi|.

(17)

In this situation, for i = 1, 2 all the zeros of Pai , Pbi and Rai , Rbi are in [−2, 2]
whence |I(a1) ∪ I(a2)| ≤ 5 and |I(b1) ∪ I(b2)| ≤ 5. However B1, B̂1, B2 are
large. Next we apply a kind of reduction to decrease the total number of
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equations if possible. In the algorithm we use the following lemma due to
Cauchy (see [12, p. 201]):

Lemma. Let P (X) be a univariate polynomial of degree n:

P (X) = Xn + c1X
n−1 + . . .+ cn

with cn 6= 0. Let cm1 , . . . , cmk with m1 > . . . > mk be the strictly negative
coefficients of P. Then all the positive real roots of P satisfy :

x ≤ max{(k|cm1|)1/m1, . . . , (k|cmk |)1/mk}.
Let us introduce the following lists:

ff := [f̂1, . . . , f̂np−n], fb := [f1, . . . , fn−n/p],

gf := [ĝ1, . . . , ĝmp−m], gb := [g1, . . . , gm−m/p].
(18)

The procedure Bound(w, s, k) starts from a list w ∈ {ff, fb, gf, gb}, a
rational number s ∈ {a1, a2, b1, b2} and a k ∈ {1, 2}. It returns the values
SR1, SR2 which are a lower bound and upper bound, respectively, for the
real zeros of the polynomials pol1(X) = Ps(X) and pol2(X) = Rs(X). If
k = 1, then the lemma is applied to obtain bounds Root[1](·). If k = 2, then
a (much slower) root finding algorithm is used for that purpose, for example
the previously mentioned algorithm of Schönhage. We denote these bounds
by Root[2](·) in the procedure. The value k = 2 is only chosen after finishing
Reduction when it is relevant to have accurate values.

The procedure NumofEq([a1, a2, b1, b2], k) with k as in Bound(w, s, k)
serves to count the number of equations corresponding to a1, a2, b1, b2. If
p = 2, then the total number of equations given by (11)–(14) is returned. If
p is odd then the output is the total number of equations given by (11) and
(13)–(16).

The procedure Reduction(a1, a2, b1, b2) is used to make the parameters
a1, a2, b1, b2 smaller and thereby reduce the number of equations which have
to be solved. At each step one of the parameters s ∈ {a1, a2, b1, b2} is re-
placed with a smaller number and the corresponding number of equations
is computed. If the maximal reduction exceeds the bound 10p, then the cor-
responding value of s is replaced by the new one. In this procedure v is a
vector which contains four numbers, the current values of the parameters.
The vector vecv consists of the next possible values of the parameters. The
current number of equations which depends on v is N0. Now assume we
are in the stage v = [a1, a2, b1, b2]; then we have the following four possi-
ble “directions”: vec1 = [vecv[1], a2, b1, b2], vec2 = [a1, vecv[2], b1, b2], vec3 =
[a1, a2, vecv[3], b2], vec4 = [a1, a2, b1, vecv[4]], where vecv[i] denotes the ith
element of vecv. We compute the number of equations for these “direc-
tions”, that is N1, N2, N3, N4. Let i be the smallest integer such that
Ni = min{N1, N2, N3, N4}. If N0−Ni > 10p then we set v = veci and we
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decrease the ith element of vecv, otherwise Reduction stops. After reducing
the parameters we decrease the number of equations further by means of a
root finding algorithm.

4. The algorithm. Input: n = degF,m = degG and the coefficients
of the monic polynomials F,G ∈ Z[X]. Output: all integer solutions of the
Diophantine equation F (X) = G(Y ).

Procedure Bound(w, s, k)
let r be the length of w
set pol1(t) := str − w[1]tr−1 − . . .− w[r] and
pol2(t) := str + w[1]tr−1 + . . .+ w[r],
if Root[k](pol1(t)) 6= ∅ or Root[k](pol2(t)) 6= ∅ then

let SR1 := [min Root[k](pol1(t)) ∪ Root[k](pol2(t))] and
SR2 := [max Root[k](pol1(t)) ∪Root[k](pol2(t))],

else
set SR1 := 0, SR2 := 0

end if
return [SR1, SR2]

Procedure NumofEq([a1, a2, b1, b2], k)
set

fL := min{Bound(ff, a1, k),Bound(fb, a2, k)},
fU := max{Bound(ff, a1, k),Bound(fb, a2, k)},
gL := min{Bound(gf, b1, k),Bound(gb, b2, k)},
gU := max{Bound(gf, b1, k),Bound(gb, b2, k)}

if p mod 2 = 1 then
return

fU − fL+ gU − gL+ 2bD( p
√
a1 + b1 + a2 + b2)c

+ 2bD( p−1
√

2 p
√
a1 + b1 + b2)c+ 4

else
return

fU − fL+ gU − gL+ 2bD( p
√
a1 + b1 + a2 + b2)c

+ 2bD̂( p
√
a1 + b1 + a2 + b2)c+ 4

end if

Procedure Reduction(a1, a2, b1, b2)
set v := [a1, a2, b1, b2] and vecv := [b p√a1c, b p

√
a2c, b p

√
b1c, b p

√
b2c],

let ja := true,N0 := NumofEq(v, 1),
while ja do

for i = 1, 2, 3, 4 do
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let veci := v, veci[i] := vecv[i]
end for
for i = 1, 2, 3, 4 do

set Ni := NumofEq(veci, 1)
end for
put N = min{N0, N1, N2, N3, N4}
if N0−N > 10p then

let i be the smallest integer such that N = Ni, let N0 := N,

set v[i] := vecv[i], vecv[i] := vecv[i]/(16p)
else

let ja := false

end if
end while
return v

Let p be the smallest prime divisor of gcd(m,n). Compute the coefficients
fi, gi, f̂i, ĝi from (6) and D, D̂ from the definitions after (8) and D1 from the
definition below (14). Define a1, a2, b1, b2 as in (17). Define ff, fb, gf, gb as
in (18). Set V := Reduction(a1, a2, b1, b2). Let

FL := min{Bound(ff, V [1], 2),Bound(fb, V [2], 2)},
FU := max{Bound(ff, V [1], 2),Bound(fb, V [2], 2)},
GL := min{Bound(gf, V [3], 2),Bound(gb, V [4], 2)},
GU := max{Bound(gf, V [3], 2),Bound(gb, V [4], 2)},
B1 := 2bD( p

√
V [1] + V [3] + V [2] + V [4])c,

B̂1 := 2bD̂( p
√
V [1] + V [3] + V [2] + V [4])c,

B2 := 2bD( p−1
√

2 p
√
V [1] + V [3] + V [4])c.

If p = 2 then solve (11)–(14) and list the resulting integer solutions. If p is
odd then solve (11) and (13)–(16) and list the resulting integer solutions.

5. Examples. I implemented the algorithm in the computer algebra
program package Magma. The program was run on an AMD-K7 550 MHz
PC with 128 MB memory.

Example 1. Consider the Diophantine equation

x2 − 3x+ 5 = y8 − y7 + 9y6 − 7y5 + 4y4 − y3.

We express F and G in the form (6):

F (X) =
(
X − 3

2
+

11
8X

)2

+
33
8X
− 121

64X2 ,
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G(Y ) =
(
Y 4 − 1

2
Y 3 +

35
8
Y 2 − 21

16
Y − 1053

128

+
289

256Y
+

36551
1024Y 2 +

4323
2048Y 3 −

6142813
32768Y 4

)2

− 3069115
32768Y

+
292534083
131072Y 2 −

141021313
262144Y 3 −

9150328067
2097152Y 4

+
1143233065
4194304Y 5 +

224451204647
16777216Y 6 +

26555380599
33554432Y 7 −

37734151552969
1073741824Y 8 .

Here we have:

ff =
[

33
8
,−121

64

]
, fb =

[
11
8

]
,

gf =
[
−3069115

32768
,

292534083
131072

,−141021313
262144

,−9150328067
2097152

,
1143233065

4194304
,

224451204647
16777216

,
26555380599

33554432
,−37734151552969

1073741824

]
,

gb =
[

289
256

,
36551
1024

,
4323
2048

,−6142813
32768

]
,

D = D̂ = 128.

In the table below we collect information on the reduction.

[a1, a2, b1, b2] [fL, fU ] [gL, gU ] B1, B̂1[
33
8 ,

11
8 ,

37734151552969
1073741824 , 6142813

32768

]
[−2, 1] [−1, 1] 48168, 48168

[
33
8 ,

11
8 , 187, 6142813

32768

]
[−2, 1] [−7, 7] 25941, 25941

[
33
8 ,

11
8 , 187, 14

]
[−2, 1] [−7, 7] 3738, 3738

[
33
8 ,

11
8 , 187, 7

16

]
[−2, 1] [−9, 16] 2002, 2002

[
33
8 ,

11
8 ,

187
32 ,

7
16

]
[−2, 1] [−64, 64] 636, 636

[
33
8 , 1,

187
32 ,

7
16

]
[−2, 1] [−64, 64] 588, 588

[
33
8 ,

1
32 ,

187
32 ,

7
16

]
[−44, 44] [−64, 64] 464, 464

[
2, 1

32 ,
187
32 ,

7
16

]
[−44, 44] [−64, 64] 418, 418

[
1
16 ,

1
32 ,

187
32 ,

7
16

]
[−132, 66] [−64, 64] 371, 371

Now we compute FL = −66, FU = 66, GL = −29, GU = 13. It remains
to solve the following equations:

ResY (F (X)−G(Y ), 128X−P (Y )+861−k) = 0 for k ∈ {−371, . . . , 371},
ResY (F (X)−G(Y ), 128X+P (Y )−1245−k) = 0 for k ∈ {−371, . . . , 371},
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where
P (Y ) = 128Y 4 − 64Y 3 + 560Y 2 − 168Y,

G(y) = F (x) for x ∈ {−66, . . . , 66},
F (x) = G(y) for y ∈ {−29, . . . , 13}.

The complete list of integral solutions of these equations turns out to be

{(−657, 5), (−3,−1), (0, 1), (3, 1), (6,−1), (660, 5)}.
Computation time in seconds: 22.84.

Example 2. We apply the method to the Diophantine equation

x3 − 5x2 + 45x− 713

= y9 − 3y8 + 9y7 − 17y6 + 38y5 − 199y4 − 261y3 + 789y2 + 234y.

As in Example 1 we express F and G by (6):

F (X) =
(
X − 5

3
+

110
9X
− 15826

81X2

)3

+ rest,

G(Y ) =
(
Y 3 − Y 2 + 2Y − 4

3

+
4
Y
− 143

3Y 2 −
1909
9Y 3 +

998
9Y 4 +

2989
3Y 5 +

61672
81Y 6

)3

+ rest,

D = D1 = 81.

In the table below we collect information on the reduction.

[a1, a2, b1, b2] [fL, fU ] [gL, gU ] B1, B2[
3963815979976

531441 , 15826
81 , 48425622648104

19683 , 2989
3

]
[−1, 1] [−1, 1] 7629, 8722

[
3963815979976

531441 , 15826
81 , 1350, 2989

3

]
[−1, 1] [−62, 68] 4161, 3818

[
3963815979976

531441 , 15826
81 , 1350, 10

]
[−1, 1] [−62, 68] 1202, 859

[
3963815979976

531441 , 6, 1350, 10
]

[−8, 6] [−62, 68] 634, 859

[195, 6, 1350, 10] [−77, 39] [−62, 68] 83, 79

Next we compute FL = −19, FU = 10, GL = −2, GU = 10. In this case we
solve the following equations:

ResY (F (X)−G(Y ), 3X−3Y 3+3Y 2−6Y−1−k) = 0 for k ∈ {−83, . . . , 83},
G(y) = F (x) for x ∈ {−19, . . . , 10},
F (x) = G(y) for y ∈ {−2, . . . , 10},

3y3 − 3y2 + 6y − 4− k = 0 for k ∈ {−79, . . . , 79},
81y9 − 81y8 + 162y7 − 108y6 + 324y5 − 3861y4

−17181y3 + 8982y2 + 80703y + 61672 = 0.
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The only integral solution of these equations is (x, y) = (−11,−2). Compu-
tation time in seconds: 12.66.

Example 3 ([7, Theorem 1a]). Consider the Diophantine equation

x(x+ 1)(x+ 2)(x+ 3) = y(y + 1) . . . (y + 5).

There are many results in the literature concerning similar equations (cf.
[2], [10]). We express F and G in the form (6):

F (X) =
(
X2 + 3X + 1− 1

2X2

)2

+ rest,

G(Y ) =
(
Y 3 +

15
2
Y 2 +

115
8
Y +

75
16
− 189

128Y
+

945
256Y 2 −

17865
1024Y 3

)2

+ rest,

D = D̂ = 16.

In the table below we collect information on the reduction.

[a1, a2, b1, b2] [fL, fU ] [gL, gU ] B1, B̂1[
3, 1, 7615179

16384 , 17865
1024

]
[−2, 2] [−2, 2] 641, 641

[
3, 1, 22, 17865

1024

]
[−2, 2] [−39, 31] 375, 375

[3, 1, 22, 4] [−2, 2] [−39, 31] 160, 160[
3, 1, 22, 1

8

]
[−2, 2] [−39, 31] 98, 98

Now we compute FL = −1, FU = 1, GL = −15, GU = 10. It remains to
solve the following equations:

ResY (F (X)−G(Y ), 16X2 + 48X − P (Y )− 59− k) = 0

for k ∈ {−98, . . . , 98},
ResY (F (X)−G(Y ), 16X2 + 48X + P (Y ) + 91− k) = 0

for k ∈ {−98, . . . , 98},
where

P (Y ) = 16Y 3 + 120Y 2 + 230Y,

G(y) = F (x) for x ∈ {−1, . . . , 1},
F (x) = G(y) for y ∈ {−15, . . . , 10}.

The complete list of non-trivial integral solutions of these equations is

{(−10,−7), (−10, 2), (7,−7), (7, 2)}.
Computation time in seconds: 8.35.

The following examples are from [19]. The method described in that
paper is similar to ours in the sense that one has to find all the integral
solutions of polynomial equations P (x) = 0, where P ∈ Z[X]. We compare
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both methods by comparing the number of equations which have to be
solved. We remark that our algorithm works for equations F (x) = G(y),
where F,G ∈ Z[X] are monic polynomials with degF = n, degG = m,
such that F (X)− G(Y ) is irreducible in Q[X,Y ] and gcd(n,m) > 1, while
Szalay’s algorithm can be applied only for the special case G(y) = ym.

Equation 1: x2 = y4 − 99y3 − 37y2 − 51y + 100,

Equation 2: x2 = y8 − 7y7 − 2y4 − y + 5,

Equation 3: x2 = y8 + y7 + y2 + 3y − 5,

Equation 4: x3 = y9 + 2y8 − 5y7 − 11y6 − y5 + 2y4 + 7y2 − 2y − 3.

Equation 1 20761 985360
Equation 2 14866 118546
Equation 3 355 16
Equation 4 849 420

Here we did not use Cauchy’s lemma in the procedures Bound, NumofEq
and Reduction, but a root finding algorithm to get even fewer equations
to solve. In the second column the numbers of equations to be solved by
applying our method are stated, and in the third column the numbers of
equations to be solved by applying the method described in [19]. In the
first two cases one has to solve fewer equations by using our algorithm. The
reason is that if the coefficient of the one but largest power of y (−99 and
−7, respectively) is not “small” in absolute value, the reduction helps a lot.

Acknowledgements. I thank my supervisor Robert Tijdeman and
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