On non-intersecting arithmetic progressions

by

ERNEST S. CROOT III (Berkeley, CA)

I. Introduction. Suppose that $a_1 \pmod{q_1}, a_2 \pmod{q_2}, \ldots, a_k \pmod{q_k}$ is a collection of arithmetic progressions, where $2 \le q_1 < \ldots < q_k \le x$, with the property that

$$\{a_i \pmod{q_i}\} \cap \{a_j \pmod{q_j}\} = \emptyset \quad \text{if } i \neq j.$$

We say that such a collection of arithmetic progressions is *disjoint* or *non-intersecting*. Let f(x) be the maximum value for k, maximized over all choices of progressions $a_i \pmod{q_i}$. Define

$$L(c, x) := \exp(c\sqrt{\log x \log \log x}),$$

$$\psi(x, y) := \#\{n \le y : p \text{ prime}, \ p \mid n \Rightarrow p \le y\},$$

$$\psi^*(x, y) := \#\{n \le y : p \text{ prime}, \ p^a \mid n \Rightarrow p^a \le y\}.$$

In [3], Erdős and Szemerédi prove that

$$\frac{x}{\exp((\log x)^{1/2+\varepsilon})} < f(x) < \frac{x}{(\log x)^c}$$

for some constant c > 0. (This result is also mentioned in [2].) Their lower bound can be refined by using more exact estimates for $\psi(x, L(c, x))$ than was used in their paper. Specifically, as direct consequence of [1, Lemma 3.1], we have the following estimate:

LEMMA 1. For any constant c > 0,

(1)
$$\psi(x, L(c, x)) = \frac{x}{L(1/(2c) + o(1), x)}.$$

We also have the same estimate for $\psi^*(x, L(c, x))$, since

(2)
$$\psi(x, L(c, x)) > \psi^*(x, L(c, x))$$

> $\psi(x, L(c, x)) - \sum_{n^2 > L(c, x)} \psi(x/n^2, L(c, x))$

2000 Mathematics Subject Classification: Primary 11B25.

E. S. Croot III

$$= \psi(x, L(c, x)) - O\left(\frac{x}{L(c/2 + 1/(2c) + o(1), x)}\right).$$

Now, let p be the largest prime number less than or equal to $L(1/\sqrt{2}, x)$. Let q_1, \ldots, q_t be the collection of all integers $\leq x$ which are divisible by p, and whose prime power factors are all < p. From (1) and (2), we deduce that

$$t = \frac{x}{pL(1/\sqrt{2} + o(1), x)} = \frac{x}{L(\sqrt{2} + o(1), x)}$$

For each $q_i = p l_r^{h_r} l_{r-1}^{h_{r-1}} \dots l_1^{h_1}$, where $p > l_r^{h_r} > l_{r-1}^{h_{r-1}} > \dots > l_1^{h_1}$ are the powers of the distinct primes dividing q_i , we choose the residue class $a_i \pmod{q_i}$ using the Chinese Remainder Theorem as follows:

$$a_i \equiv l_r^{h_r} \pmod{p}; \quad a_i \equiv l_{j-1}^{h_{j-1}} \pmod{l_j^{h_j}} \quad \text{for } 2 \le j \le r;$$
lv.

and finally,

$$a_i \equiv 0 \pmod{l_1^{h_1}}.$$

This is exactly the construction which appears in [3] (except that their progressions were all square-free), and it is easy to see that our progressions $a_i \pmod{q_i}$ are disjoint. Thus, we have

$$f(x) > \frac{x}{L(\sqrt{2} + o(1), x)}$$

In this paper we will prove the following results:

THEOREM 1. If $a_1 \pmod{q_1}, \ldots, a_k \pmod{q_k}$ are a collection of disjoint arithmetic progressions, where the q_i 's are square-free and $2 \le q_1 < \ldots < q_k \le x$, then

$$k < \frac{x}{L(1/2 - o(1), x)}$$

Corollary to Theorem 1.

$$f(x) < \frac{x}{L(1/6 - o(1), x)}.$$

Thus, we will have shown that

$$\frac{x}{L(\sqrt{2} + o(1), x)} < f(x) < \frac{x}{L(1/6 - o(1), x)}.$$

To see how the Corollary follows from Theorem 1, let $b_1 \pmod{r_1}, \ldots, b_{f(x)} \pmod{r_{f(x)}}$ be a maximal collection of disjoint arithmetic progressions with $2 \leq r_1 < \ldots < r_{f(x)} \leq x$. Suppose, for proof by contradiction, that for some $\varepsilon < 1/6$,

(3)
$$f(x) > \frac{x}{L(1/6 - \varepsilon, x)}.$$

Write each $r_i = \alpha_i \beta_i$, where β_i is square-free, $gcd(\alpha_i, \beta_i) = 1$, and every prime dividing α_i divides to a power ≥ 2 . (Note: we may have α_i or $\beta_i = 1$.)

234

Now, at least half of α_i 's must be $\leq L(1/3, x)$, for if not we would deduce from our assumption (3) that

$$\frac{x}{2L(1/6-\varepsilon,x)} < f(x)/2 < \#\{r_i : \alpha_i > L(1/3,x)\} < x \sum_{n^2 > L(1/3,x)} \frac{1}{n^2} \prod_{p \text{ prime}} \left(1 + \frac{1}{p^2} + \frac{1}{p^3} + \dots\right) \ll \frac{x}{L(1/6,x)},$$

which is impossible for x large enough in terms of ε . Thus, there must exist an $\alpha < L(1/3, x)$ for which at least f(x)/(2L(1/3, x)) of the r_i 's have $\alpha_i = \alpha$. Let $R(\alpha) \subseteq \{r_1, \ldots, r_{f(x)}\}$ be such a collection of r_i 's, where

$$|R(\alpha)| > \frac{f(x)}{2L(1/3,x)} > \frac{x}{2L(1/2 - \varepsilon, x)};$$

this last inequality follows from our assumption (3). Now there must exist a residue class $b \pmod{\alpha}$ for which at least $|R(\alpha)|/\alpha$ of the progressions $b_i \pmod{r_i}$ satisfy

(4)
$$r_i \in R(\alpha) \text{ and } b_i \equiv b \pmod{\alpha}.$$

Thus, the arithmetic progressions $b_i \pmod{r_i/\alpha}$, where r_i satisfies (4), form a collection of $\geq |R(\alpha)|/\alpha \gg x/(\alpha L(1/2 - \varepsilon, x))$ disjoint progressions, with distinct square-free moduli $\leq x/\alpha$. This contradicts Theorem 1 for x sufficiently large in terms of ε . We must conclude, therefore, that the bound in (3) is false for all $\varepsilon < 1/6$ and $x > x_0(\varepsilon)$, and so the Corollary to Theorem 1 follows.

II. Proof of Theorem 1. Before we prove Theorem 1, we will need the following lemma:

LEMMA 2. There are at most x/L(c/2 + o(1), x) positive integers $n \le x$ such that $\omega(n) > c\sqrt{\log x}/\log \log x$ (recall: $\omega(n) = \sum_{p|n, p \text{ prime}} 1$), where c is some positive constant.

Proof. We observe that

$$\begin{split} \#\{n \le x : \omega(n) > c\sqrt{\log x/\log\log x}\} < x \sum_{\substack{j > c\sqrt{\frac{\log x}{\log\log x}}}} \frac{\left(\sum_{p^a \le x, p \text{ prime }} 1/p^a\right)^j}{j!} \\ &= \frac{x}{(c\sqrt{\log x/\log\log x})^{\{c+o(1)\}}\sqrt{\log x/\log\log x}} \\ &= \frac{x}{L(c/2+o(1),x)}. \end{split}$$

We now resume the proof of Theorem 1. Consider the collection of all the q_i 's with the properties:

(A) $\omega(q_i) < \sqrt{\log x / \log \log x}$.

(B) There exists a prime p > L(1, x) such that $p | q_i$.

Let $\{r_1, \ldots, r_{k'}\}$ be the collection of all q_i 's satisfying (A) and (B), and let $\{b(r_1), \ldots, b(r_{k'})\}$ be their corresponding residue classes.

To prove our theorem, we start with the set $S_0 = \{r_1, \ldots, r_{k'}\}$, and construct a sequence of subsets $S_0 \supseteq S_1 \supseteq S_2 \supseteq \ldots$, and a sequence of primes p_1, p_2, \ldots (and let $p_0 = 1$), such that for each $i \ge 1$, the following three properties hold:

1. Each member of S_i is divisible by the primes p_1, \ldots, p_i .

2. There exists an integer A_i such that for each $r_j \in S_i$, we have $b(r_j) \equiv A_i \pmod{p_1 \dots p_i}$.

3.
$$|S_i| > |S_{i-1}| / (p_i \sqrt{\log x / \log \log x}).$$

We continue constructing these subsets until we reach a subset S_t which has the additional property:

4. There exists a prime $p \neq p_1, \ldots, p_t, p \geq L(1, x)$, such that at least $|S_t|/\sqrt{\log x/\log \log x}$ of the elements of S_t are divisible by p.

Let us suppose for the time being that we can construct these sets S_1, \ldots, S_t . Applying property 3 iteratively, together with property 4, we find that the number of elements of S_t which are divisible by p (which are already divisible by $p_1 \ldots p_t$ by property 1) is at least

$$\frac{|S_0|}{p_1 \dots p_t (\sqrt{\log x / \log \log x})^{t+1}} \ge \frac{|S_0|}{p_1 \dots p_t L(1/2 + o(1), x)}$$

(*Note*: By property (A) above we have $t \leq \sqrt{\log x/\log \log x}$ since every element of S_0 has at most $\sqrt{\log x/\log \log x}$ prime factors.) From this, together with the fact that p > L(1, x), we have

$$\frac{x}{p_1 \dots p_k L(1, x)} \ge \#\{n \le x : pp_1 \dots p_t \mid n\} > \#\{q \in S_t : p \mid q\}$$
$$\ge \frac{|S_0|}{p_1 \dots p_t L(1/2 + o(1), x)}.$$

It follows that

$$|S_0| < \frac{x}{L(1/2 - o(1), x)}.$$

From this, together with Lemmas 1 and 2 and the fact that the elements of

 S_0 satisfy (A) and (B) above, we have

$$\frac{x}{L(1/2 - o(1), x)} > |S_0| > k - \#\{n \le x : \omega(n) \ge \sqrt{\log x/\log \log x}\} - \psi(x, L(1, x)) > k - \frac{x}{L(1/2 - o(1), x)},$$
so

and so

$$k<\frac{x}{L(1/2-o(1),x)},$$

which proves our theorem.

To construct our sets S_i , we apply the following iterative procedure: suppose we have constructed the sets S_1, \ldots, S_i which satisfy 1 through 3 above. To construct S_{i+1} , first pick any element $r \in S_i$. Now let e_1, \ldots, e_j be all those primes dividing $r/(p_1 \ldots p_i)$ (note: $j < \sqrt{\log x/\log \log x}$). Each element $s \in S_i$, $s \neq r$, is divisible by at least one of these primes, since otherwise $gcd(r, s) = p_1 \ldots p_i$ and so we would have $b(r) \equiv A_i \equiv b(s)$ (mod gcd(r, s)), which would mean that $\{b(r) \pmod{r}\} \cap \{b(s) \pmod{s}\} \neq \emptyset$.

Now, there must be at least $|S_i|/j > |S_i|/\sqrt{\log x/\log \log x}$ of the elements of S_i which are divisible by one of these primes e_h . Let $C_i \subseteq S_i$ be the collection of all elements S_i divisible by this prime e_h . There exists at least one residue class $B \pmod{e_h}$ for which more than $|C_i|/e_h >$ $|S_i|/(e_h\sqrt{\log x/\log \log x})$ of the elements $r \in C_i$ satisfy $b(r) \equiv B \pmod{e_h}$. Now let S_{i+1} be the collection of all such $r \in C_i$, set $p_{i+1} = e_h$, and let $A_{i+1} \equiv A_i \pmod{p_1 \dots p_i}$ and $A_{i+1} \equiv B \pmod{p_{i+1}}$ by the Chinese Remainder Theorem. Then properties 1, 2, and 3 above follow immediately for this set S_{i+1} .

If there exists a prime p > L(1, x) which divides more than

$$\frac{|S_{i+1}|}{\sqrt{\log x / \log \log x}}$$

of the elements of S_{i+1} , then we set t = i + 1 and we are finished. If not, we continue constructing these sets S_j . We are guaranteed to eventually hit upon such a prime p since all our r_j 's are divisible by at least one prime p > L(1, x) by property (B).

References

- [1] E. R. Canfield, P. Erdős, and C. Pomerance, On a problem of Oppenheim concerning "factorisatio numerorum", J. Number Theory 17 (1983), 1–28.
- [2] P. Erdős and R. L. Graham, Old and New Problems and Results in Combinatorial Number Theory, Monograph. Enseign. Math. 28, Univ. Genève, 1980.

[3] P. Erdős and E. Szemerédi, On a problem of P. Erdős and S. Stein, Acta Arith. 15 (1968), 85–90.

Department of Mathematics U. C. Berkeley 1067 Evans Hall Berkeley, CA 94720, U.S.A. E-mail: ecroot@math.berkeley.edu

Received on 3.1.2002

(4178)

238