The integral mean of the sum-of-digits function of the Ostrowski expansion

by

Luís Roçadas (Vila Real)

1. Introduction and statement of results. Let $G = (G_j)_{j\geq 0}$ be a strictly increasing sequence of integers with $G_0 = 1$. Then every nonnegative integer N has a unique G-ary expansion $N = \sum_{j\geq 0} b_j(N)G_j$ with integer digits $b_j(N)$ provided that $\sum_{j < k} b_j(N)G_j < G_k$. The sum-of-digits function $t_G(N)$ is given by

$$t_G(N) = \sum_{j \ge 0} b_j(N).$$

There are several papers concerning the distribution of $t_G(N)$ for fixed G, e.g. [1] and [2]. In [3] this function is studied by fixing N and considering the average values of $H^{-1}\sum_{g=2}^{H} t_G(N)$ with $G = (g^j)_{j\geq 0}$.

Let Ω be the set of all irrational numbers in the interval [0, 1]. Then every $\alpha \in \Omega$ has a unique continued fraction expansion $\alpha = [0, a_1(\alpha), a_2(\alpha), \ldots]$ with convergents $p_n(\alpha)/q_n(\alpha)$. Given N, using the sequence $G = (q_j(\alpha))_{j\geq 0}$, we can obtain uniquely determined integers $m(N, \alpha)$ and $b_i(N, \alpha)$ (if it is clear from the context we omit the dependence on α in q_i, m and b_i and the dependence on N in m and b_i), $0 \leq i \leq m$, with the following properties:

- (1) $N = \sum_{i=0}^{m} b_i q_i$.
- (2) $b_m > 0$ and $0 \le b_i \le a_{i+1}$ for $0 \le i \le m$.
- (3) If $0 < i \le m$ and $b_i = a_{i+1}$ then $b_{i-1} = 0$. Furthermore $b_0 < a_1$.

The expansion $N = \sum_{i=0}^{m} b_i q_i$ is called the *Ostrowski expansion* of N to base α . In analogy with the classical situation in [3] we study, for fixed N, the sum-of-digits function $s_N(\alpha)$ defined by $s_N(\alpha) = \sum_{i=0}^{m} b_i$ and the corresponding mean $\int_0^1 s_N(\alpha) d\alpha$. More precisely, our main goal is to prove, using some techniques and ideas from [5], the following theorem.

²⁰⁰⁰ Mathematics Subject Classification: Primary 11K16, 11K50, 11K55, 11A55.

THEOREM. For $N \in \mathbb{N}$,

$$\int_{0}^{1} s_N(\alpha) \, d\alpha = \frac{3}{\pi^2} \log^2 N + O((\log N)^{3/2} \log \log N).$$

For the proof of the Theorem we proceed as follows: We start by proving, for $b_i > 0$, the formulas $b_i = a_{i+1}\{Nq_i\alpha\} + O(1)$ for 2|i, and $b_i = a_{i+1}(1 - \{Nq_i\alpha\}) + O(1)$ for $2\nmid i$. As $b_i = 0$ only for α in a small set $A_{N,i}$, by integrating these formulas we get the relation

$$\int_{0}^{1} b_i(\alpha) \, d\alpha = \frac{1}{2} \int_{0}^{1} \left(1 + \frac{q_{i-1}(\alpha)}{q_i(\alpha)} \right) \log^+\left(\frac{N}{q_i(\alpha)}\right) d\alpha + O(1).$$

Note that in contrast to $\int_0^1 a_{i+1}(\alpha) d\alpha = \infty$ the corresponding integral over $b_i(\alpha)$ is finite. Finally we calculate $\int_0^1 s_N(\alpha) d\alpha$ using the asymptotic relation

$$\sum_{i\geq 0} \int_{0}^{1} \left(1 + \frac{q_{i-1}(\alpha)}{q_i(\alpha)}\right) \log^+\left(\frac{N}{q_i(\alpha)}\right) d\alpha$$
$$= \frac{6}{\pi^2} \log^2 N + O((\log N)^{3/2} \log \log N).$$

2. Definitions and notations. For $\mathbf{a} = (a_n)_{n \in \mathbb{N}} \in \mathbb{N}^{\mathbb{N}}$ define sequences $(P_n(\mathbf{a}))_{n \in \mathbb{Z}_+}$ and $(Q_n(\mathbf{a}))_{n \in \mathbb{Z}_+}$ by $P_0(\mathbf{a}) = 0$, $Q_0(\mathbf{a}) = 1$, $P_1(\mathbf{a}) = 1$, $Q_1(\mathbf{a}) = a_1$, and

$$P_{k+1}(\mathbf{a}) = a_{k+1}P_k(\mathbf{a}) + P_{k-1}(\mathbf{a}), \quad Q_{k+1}(\mathbf{a}) = a_{k+1}Q_k(\mathbf{a}) + Q_{k-1}(\mathbf{a}), \quad k \ge 1.$$

Then $P_k(\mathbf{a})$ and $Q_k(\mathbf{a})$ depend at most on a_1, \ldots, a_k ; hence we may write $P_k(a_1, \ldots, a_k)$ for $P_k(\mathbf{a})$ and $Q_k(a_1, \ldots, a_k)$ for $Q_k(\mathbf{a})$. If $\alpha = [0; a_1, \ldots]$, then for $k \ge 0$, $p_k(\alpha) = P_k(a_1, \ldots, a_k)$ and $q_k(\alpha) = Q_k(a_1, \ldots, a_k)$.

For $k \in \mathbb{Z}_+$ and $\mathbf{a} \in \mathbb{N}^{k+1}$ let $J(\mathbf{a}) := \{ \alpha \in \Omega : 1 \le j \le k+1 \Rightarrow a_j(\alpha) = a_j \}$. Then

$$J(\mathbf{a}) = \begin{cases} \left(\frac{P_{k+1}(\mathbf{a}) + P_k(\mathbf{a})}{Q_{k+1}(\mathbf{a}) + Q_k(\mathbf{a})}, \frac{P_{k+1}(\mathbf{a})}{Q_{k+1}(\mathbf{a})}\right) & \text{if } k \text{ is even,} \\ \left(\frac{P_{k+1}(\mathbf{a})}{Q_{k+1}(\mathbf{a})}, \frac{P_{k+1}(\mathbf{a}) + P_k(\mathbf{a})}{Q_{k+1}(\mathbf{a}) + Q_k(\mathbf{a})}\right) & \text{if } k \text{ is odd,} \end{cases}$$

but in any case, if λ denotes the Lebesgue measure on Ω ,

$$\lambda(J(\mathbf{a})) = \frac{1}{Q_{k+1}(\mathbf{a})(Q_{k+1}(\mathbf{a}) + Q_k(\mathbf{a}))}$$

For x > 0 we define $\log^+ x = \max\{\log x, 0\}$. For a real number x let $\{x\} := x - [x]$ be the fractional part of x.

3. Auxiliary results. We start by proving, for $b_i > 0$, the formulas

$$b_{i} = \begin{cases} a_{i+1}\{Nq_{i}\alpha\} + O(1) & \text{if } 2 \mid i, \\ a_{i+1}(1 - \{Nq_{i}\alpha\}) + O(1) & \text{if } 2 \nmid i. \end{cases}$$

These formulas are valid for $\alpha \in \Omega$ except for $\alpha \in A_{N,i} = \{\alpha \in \Omega : A_i < 0\}$ if *i* is even, and except for $\alpha \in A_{N,i} = \{\alpha \in \Omega : A_i > 0\}$ if *i* is odd. Then we calculate the integral of $a_{i+1}\{Nq_i\alpha\}$ and $a_{i+1}(1 - \{Nq_i\alpha\})$ over [0, 1]. The rest of the section is devoted to obtaining an upper bound of the integral of $a_{i+1}(\alpha)$ over $A_{N,i}$.

For $i, j \in \mathbb{N}$, we define

$$s_{i,j} := q_{\min(i,j)} (q_{\max(i,j)} \alpha - p_{\max(i,j)}), \quad A_i := \sum_{j=0}^{\infty} b_j s_{i,j}.$$

Noting that $a_{i+1}s_{i,j} = s_{i+1,j} - s_{i-1,j} + (-1)^i \delta_{i,j}$ for $i, j \ge 0$, we get

(1)
$$a_{i+1}A_i = A_{i+1} - A_{i-1} + (-1)^i b_i$$
 for all $i \ge 0$.

LEMMA 1. For $1 \le i \le m$ we have:

- (i) ∑_{j=0}ⁱ⁻¹ b_jq_j < q_i.
 (ii) |∑_{j=i}^m b_j(q_jα p_j)| ≤ 1/q_i, and if b_i ≠ 0, then sgn(∑_{j=i}^m b_j(q_jα p_j)) = (-1)ⁱ.
 (iii) |A_i| < 1.
 (iv) If 2 | i and b_i > 0, then A_i > 0.
- (v) If $2 \nmid i$ and $b_i > 0$, then $A_i < 0$.

Proof. (i) We omit the simple proof.

(ii) and (iii). For a proof see [4, Section 3, Proposition 1], and note that the A_i there has to be replaced by A_i/q_i .

(iv) We have

$$A_{i} = \sum_{j=0}^{i-1} b_{j} q_{j} (q_{i} \alpha - p_{i}) + q_{i} \sum_{j=i}^{m} b_{j} (q_{j} \alpha - p_{j}).$$

The first sum is non-negative since $q_i \alpha - p_i \ge 0$ if 2 | i, and using (ii) we find that the second sum is positive, giving $A_i > 0$.

(v) Similarly to (iv) noting that $q_i \alpha - p_i \leq 0$ if $2 \nmid i$.

LEMMA 2. For $i \in \mathbb{N}$ we have:

- (i) If $A_i \ge 0$ then $A_i = \{Nq_i\alpha\}$.
- (ii) If $A_i < 0$ then $1 + A_i = \{Nq_i\alpha\}.$

Proof. We have

$$A_i - Nq_i\alpha = \sum_{j=0}^i b_j q_j (q_i\alpha - p_i) + \sum_{j=i+1}^m b_j q_i (q_j\alpha - p_j) - \sum_{j=0}^m b_j q_j q_i\alpha$$
$$= -\sum_{j=0}^i b_j q_j p_i - \sum_{j=i+1}^m b_j q_i p_j \in \mathbb{Z}.$$

Hence, as $|A_i| < 1$, we get $A_i = \{Nq_i\alpha\}$ if $A_i \ge 0$, and $A_i + 1 = \{Nq_i\alpha\}$ if $A_i < 0$.

PROPOSITION 1. (i) If $2 \mid i$ and $b_i > 0$ then $b_i = a_{i+1}\{Nq_i\alpha\} + O(1)$. (ii) If $2 \nmid i$ and $b_i > 0$ then $b_i = a_{i+1}(1 - \{Nq_i\alpha\}) + O(1)$.

In both cases the O-constants do not depend on α .

Proof. Define $\alpha_i(\alpha) = [a_i(\alpha); a_{i+1}(\alpha), a_{i+2}(\alpha), \ldots]$. It follows that $\alpha_i = a_i + 1/\alpha_{i+1}$.

(i) For $2 \mid i$, we have

$$\sum_{j=0}^{i-1} s_{i,j} b_j = \sum_{j=0}^{i-1} (q_i \alpha - p_i) q_j b_j \le (q_i \alpha - p_i) q_i \le \frac{q_i}{q_{i+1}} \le \frac{1}{a_{i+1}},$$
$$\Big| \sum_{j=i+1}^{\infty} s_{i,j} b_j \Big| \le \frac{q_i}{q_{i+1}},$$

hence $\sum_{j=i+1}^{\infty} s_{i,j} b_j = O(1/a_{i+1})$ and furthermore

$$s_{i,i} = q_i(q_i\alpha - p_i) = \frac{(-1)^i q_i}{q_i\alpha_{i+1} + q_{i-1}} = \frac{q_i}{q_ia_{i+1} + q_i/\alpha_{i+2} + q_{i-1}} = \frac{1}{a_{i+1}} + O(1).$$

So, $A_i = b_i/a_{i+1} + O(1/a_{i+1}) + O(1/a_{i+1})$ and hence by Lemmas 1 and 2,
(2) $b_i = a_{i+1}\{Nq_i\alpha\} + O(1).$

(ii) Similarly, $-A_i = b_i/a_{i+1} + O(1/a_{i+1})$, and again from Lemmas 1 and 2,

(3)
$$b_i = a_{i+1}(1 - \{Nq_i\alpha\}) + O(1).$$

By Proposition 1 we have explicit formulas for b_i except in the case 2 | iand $A_i < 0$ and the case $2 \nmid i$ and $A_i > 0$. Therefore we define the exceptional sets

$$A_{N,i} = \begin{cases} \{\alpha \in \Omega : A_i < 0\} & \text{for } 2 \mid i, \\ \{\alpha \in \Omega : A_i > 0\} & \text{for } 2 \nmid i. \end{cases}$$

Note that if $2 \mid i$ and $A_i < 0$, then $1 + A_i = \{Nq_i\alpha\}$, hence $0 < 1 - \{Nq_i\alpha\} = -A_i < 1/a_{i+1}$. Therefore, $A_{N,i} \subseteq \{\alpha \in \Omega : 1 - \{Nq_i\alpha\} < 1/a_{i+1}\}$ for $2 \mid i$. Analogously, $A_{N,i} \subseteq \{\alpha \in \Omega : \{Nq_i\alpha\} < 1/a_{i+1}\}$ if $2 \nmid i$. For $x \in \mathbb{R}$, consider $B(x) = (\{x\} - \{x\}^2)/2$. Then we have

LEMMA 3. If a and $i \neq 0$ are real numbers, we have:

(i)
$$\int_{0}^{a} \{i\alpha\} d\alpha = a/2 - i^{-1}B(ia).$$

(ii) $\int_{0}^{a} (1 - \{i\alpha\}) d\alpha = a/2 + i^{-1}B(-ia).$

We omit the simple proof.

LEMMA 4. (i) For even i, we have

$$\int_{J(\mathbf{a})} \{Nq_i(\alpha)\alpha\} d\alpha = \frac{1}{2Q_{i+1}(\mathbf{a})(Q_{i+1}(\mathbf{a}) + Q_i(\mathbf{a}))} - \frac{1}{NQ_i(\mathbf{a})} \left(B\left(\frac{N}{Q_{i+1}(\mathbf{a})}\right) - B\left(\frac{N}{Q_{i+1}(\mathbf{a}) + Q_i(\mathbf{a})}\right)\right).$$
(ii) For odd *i*, we have

(ii) For odd i, we have

$$\int_{J(\mathbf{a})} (1 - \{Nq_i(\alpha)\alpha\}) \, d\alpha = \frac{1}{2Q_{i+1}(\mathbf{a})(Q_{i+1}(\mathbf{a}) + Q_i(\mathbf{a}))}$$

$$\frac{1}{2Q_{i+1}(\mathbf{a})(Q_{i+1}(\mathbf{a}) + Q_i(\mathbf{a}))} = 0$$

$$-\frac{1}{NQ_i(\mathbf{a})}\left(B\left(\frac{N}{Q_{i+1}(\mathbf{a})}\right) - B\left(\frac{N}{Q_{i+1}(\mathbf{a}) + Q_i(\mathbf{a})}\right)\right)$$

Proof. We note that

(4)
$$NQ_i(\mathbf{a}) \frac{P_{i+1}(\mathbf{a})}{Q_{i+1}(\mathbf{a})} = N \frac{(-1)^i + P_i(\mathbf{a})Q_{i+1}(\mathbf{a})}{Q_{i+1}(\mathbf{a})} \equiv (-1)^i \frac{N}{Q_{i+1}(\mathbf{a})} \pmod{1}$$

and

(5)
$$NQ_{i}(\mathbf{a}) \frac{P_{i+1}(\mathbf{a}) + P_{i}(\mathbf{a})}{Q_{i+1}(\mathbf{a}) + Q_{i}(\mathbf{a})} = N \frac{(-1)^{i} + P_{i}(\mathbf{a})Q_{i+1}(\mathbf{a}) + P_{i}(\mathbf{a})Q_{i}(\mathbf{a})}{Q_{i+1}(\mathbf{a}) + Q_{i}(\mathbf{a})}$$

$$\equiv (-1)^{i} \frac{N}{Q_{i+1}(\mathbf{a}) + Q_{i}(\mathbf{a})} \pmod{1}.$$

Consider the case of even i. From Lemma 3 we get

$$\begin{split} &\int_{J(\mathbf{a})} \{Nq_{i}(\alpha)\alpha\} \, d\alpha \\ &= \int_{Q_{i+1}(\mathbf{a})}^{\frac{P_{i+1}(\mathbf{a})}{Q_{i+1}(\mathbf{a})}} \{Nq_{i}(\alpha)\alpha\} \, d\alpha - \int_{Q_{i+1}(\mathbf{a})+P_{i}(\mathbf{a})}^{\frac{P_{i+1}(\mathbf{a})+P_{i}(\mathbf{a})}{Q_{i+1}(\mathbf{a})+Q_{i}(\mathbf{a})}} \{Nq_{i}(\alpha)\alpha\} \, d\alpha \\ &= \frac{P_{i+1}(\mathbf{a})}{2Q_{i+1}(\mathbf{a})} - \frac{1}{NQ_{i}(\mathbf{a})} B\left(NQ_{i}(\mathbf{a}) \frac{P_{i+1}(\mathbf{a})}{Q_{i+1}(\mathbf{a})}\right) \\ &- \left[\frac{P_{i+1}(\mathbf{a})+P_{i}(\mathbf{a})}{2(Q_{i+1}(\mathbf{a})+Q_{i}(\mathbf{a}))} - \frac{1}{NQ_{i}(\mathbf{a})} B\left(NQ_{i}(\mathbf{a}) \frac{P_{i+1}(\mathbf{a})+P_{i}(\mathbf{a})}{Q_{i+1}(\mathbf{a})+Q_{i}(\mathbf{a})}\right)\right]. \end{split}$$

So, from formulas (4) and (5),

$$B\left(NQ_{i}(\mathbf{a}) \frac{P_{i+1}(\mathbf{a})}{Q_{i+1}(\mathbf{a})}\right) = B\left(\frac{N}{Q_{i+1}(\mathbf{a})}\right),$$
$$B\left(NQ_{i}(\mathbf{a}) \frac{P_{i+1}(\mathbf{a}) + P_{i}(\mathbf{a})}{Q_{i+1}(\mathbf{a}) + Q_{i}(\mathbf{a})}\right) = B\left(\frac{N}{Q_{i+1}(\mathbf{a}) + Q_{i}(\mathbf{a})}\right).$$

Thus

$$\int_{J(\mathbf{a})} \{Nq_i(\alpha)\alpha\} d\alpha = \frac{1}{2Q_{i+1}(\mathbf{a})(Q_{i+1}(\mathbf{a}) + Q_i(\mathbf{a}))} - \frac{1}{NQ_i(\mathbf{a})} \left(B\left(\frac{N}{Q_{i+1}(\mathbf{a})}\right) - B\left(\frac{N}{Q_{i+1}(\mathbf{a}) + Q_i(\mathbf{a})}\right)\right).$$

This proves (i). The proof of (ii) is completely similar. \blacksquare

PROPOSITION 2. (i) For even i we have

(6)
$$\int_{0}^{1} a_{i+1}(\alpha) \{ Nq_i(\alpha)\alpha \} d\alpha = \frac{1}{2} \int_{0}^{1} \left(1 + \frac{q_{i-1}(\alpha)}{q_i(\alpha)} \right) \log^+\left(\frac{N}{q_i(\alpha)}\right) d\alpha + O(1).$$

(ii) For odd i we have

(7)
$$\int_{0}^{1} a_{i+1}(\alpha) (1 - \{Nq_i(\alpha)\alpha\}) d\alpha$$
$$= \frac{1}{2} \int_{0}^{1} \left(1 + \frac{q_{i-1}(\alpha)}{q_i(\alpha)}\right) \log^+\left(\frac{N}{q_i(\alpha)}\right) d\alpha + O(1).$$

Proof. For $\alpha \in \mathbb{N}^i$ and $a \in \mathbb{N}$ let $J(\mathbf{a}, a) := \{\alpha \in J(\mathbf{a}) : a_{i+1}(\alpha) = a\}$. Then $J(\mathbf{a}) = \bigcup_{a=1}^{\infty} J(\mathbf{a}, a)$ and therefore

(8)
$$\int_{J(\mathbf{a})} a_{i+1}(\alpha) \{ Nq_i(\alpha)\alpha \} \, d\alpha = \sum_{a=1}^{\infty} a \int_{J(\mathbf{a},a)} \{ Nq_i(\alpha)\alpha \} \, d\alpha,$$

since, when α runs through $J(\mathbf{a}, a)$, $a_{i+1}(\alpha) = a$ does not depend on α . Analogously,

$$\int_{J(\mathbf{a})} a_{i+1} (1 - \{Nq_i(\alpha)\alpha\}) \, d\alpha = \sum_{a=1}^{\infty} a \int_{J(\mathbf{a},a)} (1 - \{Nq_i(\alpha)\alpha\}) \, d\alpha.$$

Furthermore, if we put $\mathbf{a}' = (\mathbf{a}, a)$ then $Q_k(\mathbf{a}') = Q_k(\mathbf{a})$ for $0 \le k \le i$ and $Q_{i+1}(\mathbf{a}') = aQ_i(\mathbf{a}) + Q_{i-1}(\mathbf{a})$. In order to calculate the sum in (8), we use Lemma 4 and the Abel summation formula. Note also that if $N \ge Q_i(\mathbf{a})$

and
$$T = \left[\frac{N-Q_{i-1}(\mathbf{a})}{Q_{i}(\mathbf{a})}\right]$$
, then

$$\sum_{a=T+1}^{\infty} \frac{1}{(aQ_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a}))^{2}} = \left[(T+1)Q_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a})\right]^{-2} + \sum_{a=T+2}^{\infty} \int_{a-1}^{a} \frac{dx}{(aQ_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a}))^{2}} \le \left[\frac{N-Q_{i-1}(\mathbf{a})}{Q_{i}(\mathbf{a})} \cdot Q_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a})\right]^{-2} + \sum_{a=T+2}^{\infty} \int_{a-1}^{a} \frac{dx}{(aQ_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a}))^{2}} \le N^{-2} + \sum_{a=T+2}^{\infty} \int_{a-1}^{a} \frac{dx}{(xQ_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a}))^{2}} \le N^{-1}Q_{i}^{-1}(\mathbf{a}) + \left[\frac{-1}{Q_{i}(\mathbf{a})(xQ_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a}))}\right]_{T+1}^{\infty} = O\left(\frac{1}{NQ_{i}(\mathbf{a})}\right).$$
If $Q_{i-1}(\mathbf{a}) < N < Q_{i}(\mathbf{a})$, we have $T = 0$, so
$$\sum_{a=1}^{\infty} \frac{1}{(aQ_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a}))^{2}} = \left[Q_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a})\right]^{-2} + \sum_{a=2}^{\infty} \int_{a-1}^{a} \frac{dx}{(aQ_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a}))^{2}} \le Q_{i}(\mathbf{a})^{-2} + \sum_{a=2}^{\infty} \int_{a-1}^{a} \frac{dx}{(xQ_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a}))^{2}} \le N^{-1}Q_{i}(\mathbf{a})^{-1} + \left[\frac{-1}{Q_{i}(\mathbf{a})(xQ_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a}))}\right]_{1}^{\infty} = O\left(\frac{1}{NQ_{i}(\mathbf{a})}\right).$$

Next we estimate the sum (8) from a = T + 1 to ∞ from above. As $a \ge T + 1$ we get

$$a > \frac{N - Q_{i-1}(\mathbf{a})}{Q_i(\mathbf{a})}$$
 and hence $0 \le \frac{N}{aQ_i(\mathbf{a}) + Q_{i-1}(\mathbf{a})} < 1$,

which implies that $N/Q_{i+1}(\mathbf{a})$ and $N/(Q_{i+1}(\mathbf{a}) + Q_i(\mathbf{a}))$ lie in the interval (0, 1). Note also that for $x \in (0, 1)$, $B(x) = (x - x^2)/2$. It follows that

$$\sum_{a=T+1}^{\infty} a \int_{J(\mathbf{a},a)} \{Nq_i(\alpha)\alpha\} d\alpha$$
$$= \sum_{a=T+1}^{\infty} a\left(\frac{1}{2(aQ_i(\mathbf{a}) + Q_{i-1}(\mathbf{a}))((a+1)Q_i(\mathbf{a}) + Q_{i-1}(\mathbf{a}))}\right)$$

$$\begin{split} &-\sum_{a=T+1}^{\infty} a \bigg(\frac{1}{NQ_{i}(\mathbf{a})} \bigg(B\bigg(\frac{N}{aQ_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a})} \bigg) \\ &- B\bigg(\frac{N}{(a+1)Q_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a})} \bigg) \bigg) \bigg) \\ &= \sum_{a=T+1}^{\infty} \frac{aN}{2Q_{i}(\mathbf{a})} \bigg(\frac{1}{(aQ_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a}))^{2}} - \frac{1}{((a+1)Q_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a}))^{2}} \bigg) \\ &= \frac{N}{2Q_{i}(\mathbf{a})} \bigg(\sum_{a=T+1}^{\infty} \frac{1}{(aQ_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a}))^{2}} + \frac{T}{((T+1)Q_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a}))^{2}} \bigg) \\ &= O\bigg(\frac{N}{Q_{i}(\mathbf{a})} \bigg(\frac{1}{NQ_{i}(\mathbf{a})} + \frac{N/Q_{i}(\mathbf{a})}{N^{2}} \bigg) \bigg) = O\bigg(\frac{1}{Q_{i}(\mathbf{a})^{2}} \bigg) = O(\lambda(J(\mathbf{a}))). \end{split}$$

Furthermore

$$\sum_{a=1}^{T} \frac{a}{NQ_{i}(\mathbf{a})} \left(B\left(\frac{N}{aQ_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a})}\right) - B\left(\frac{N}{(a+1)Q_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a})}\right) \right)$$
$$= \frac{1}{NQ_{i}(\mathbf{a})} \left(\sum_{a=1}^{T} B\left(\frac{N}{aQ_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a})}\right) - TB\left(\frac{N}{(T+1)Q_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a})}\right) \right)$$
$$= O\left(\frac{T}{NQ_{i}(\mathbf{a})}\right) = O\left(\frac{1}{Q_{i}(\mathbf{a})^{2}}\right) = O(\lambda(J(\mathbf{a}))).$$

Therefore

$$\begin{split} &\int_{J(\mathbf{a})} a_{i+1}(\alpha) \{ Nq_i(\alpha)\alpha \} \, d\alpha \\ &= \frac{1}{2} \sum_{a=1}^{T} \frac{a}{Q_i(\mathbf{a})} \left(\frac{1}{aQ_i(\mathbf{a}) + Q_{i-1}(\mathbf{a})} - \frac{1}{(a+1)Q_i(\mathbf{a}) + Q_{i-1}(\mathbf{a})} \right) \\ &\quad - \sum_{a=1}^{T} \frac{a}{NQ_i(\mathbf{a})} \left(B \left(\frac{N}{aQ_i(\mathbf{a}) + Q_{i-1}(\mathbf{a})} \right) - B \left(\frac{N}{(a+1)Q_i(\mathbf{a}) + Q_{i-1}(\mathbf{a})} \right) \right) \\ &\quad + \sum_{a=T+1}^{\infty} a \int_{J(\mathbf{a},a)} \{ Nq_i(\alpha)\alpha \} \, d\alpha \\ &= \frac{1}{2Q_i(\mathbf{a})} \sum_{a=1}^{T} \frac{1}{aQ_i(\mathbf{a}) + Q_{i-1}(\mathbf{a})} - \frac{T}{2Q_i(\mathbf{a})} \frac{1}{(T+1)Q_i(\mathbf{a}) + Q_{i-1}(\mathbf{a})} \\ &\quad + O(\lambda(J(\mathbf{a}))) \end{split}$$

 $Sum\-of\-digits\ function\ of\ the\ Ostrowski\ expansion$

$$= \frac{1}{2Q_{i}(\mathbf{a})} \left(\sum_{a=1}^{T} \frac{1}{aQ_{i}(\mathbf{a})} - \sum_{a=1}^{T} \frac{Q_{i-1}(\mathbf{a})}{aQ_{i}(\mathbf{a})(aQ_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a}))} \right)$$
$$- \frac{T}{2Q_{i}(\mathbf{a})} \frac{1}{(T+1)Q_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a})} + O(\lambda(J(\mathbf{a})))$$
$$= \frac{1}{2Q_{i}(\mathbf{a})} \sum_{a=1}^{T} \frac{1}{aQ_{i}(\mathbf{a})}$$
$$+ O\left(\frac{1}{Q_{i}(\mathbf{a})} \sum_{a=1}^{T} \frac{Q_{i-1}(\mathbf{a})}{aQ_{i}(\mathbf{a})(aQ_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a}))} + \lambda(J(\mathbf{a}))\right)$$
$$= \frac{1}{2Q_{i}(\mathbf{a})^{2}} \sum_{a=1}^{T} \frac{1}{a} + O\left(\frac{1}{Q_{i}(\mathbf{a})^{2}} + \lambda(J(\mathbf{a}))\right).$$

Observe that

$$\sum_{a \le T} \frac{1}{a} = \sum_{aQ_i(\mathbf{a}) \le N} \frac{1}{a} - \sum_{N-Q_{i-1}(\mathbf{a}) < aQ_i(\mathbf{a}) \le N} \frac{1}{a} = \sum_{aQ_i(\mathbf{a}) \le N} \frac{1}{a} + O(1),$$

as the condition $N - Q_{i-1}(\mathbf{a}) < a \leq N$ is satisfied for at most one a. Then

$$(9) \qquad \int_{J(\mathbf{a})} a_{i+1}(\alpha) \{ Nq_i(\alpha)\alpha \} d\alpha$$

$$= \frac{1}{2Q_i(\mathbf{a})^2} \sum_{a=1}^T \frac{1}{a} + O\left(\frac{1}{Q_i(\mathbf{a})^2} + \lambda(J(\mathbf{a}))\right)$$

$$= \frac{1}{2Q_i(\mathbf{a})^2} \sum_{aQ_i(\mathbf{a}) \le N} \frac{1}{a} + O(\lambda(J(\mathbf{a})))$$

$$= \frac{1}{2Q_i(\mathbf{a})(Q_i(\mathbf{a}) + Q_{i-1}(\mathbf{a}))} \left(1 + \frac{Q_{i-1}(\mathbf{a})}{Q_i(\mathbf{a})}\right) \sum_{aQ_i(\mathbf{a}) \le N} \frac{1}{a} + O(\lambda(J(\mathbf{a})))$$

$$= \frac{1}{2} \int_{J(\mathbf{a})} \left(1 + \frac{q_{i-1}(\alpha)}{q_i(\alpha)}\right) \sum_{aQ_i(\mathbf{a}) \le N} \frac{1}{a} d\alpha + O(\lambda(J(\mathbf{a})))$$

$$= \frac{1}{2} \int_{J(\mathbf{a})} \left(1 + \frac{q_{i-1}(\alpha)}{q_i(\alpha)}\right) \left(\log^+\left(\frac{N}{q_i(\alpha)}\right) + O(1)\right) d\alpha + O(\lambda(J(\mathbf{a})))$$

$$= \frac{1}{2} \int_{J(\mathbf{a})} \left(1 + \frac{q_{i-1}(\alpha)}{q_i(\alpha)}\right) \log^+\left(\frac{N}{q_i(\alpha)}\right) d\alpha + O(\lambda(J(\mathbf{a}))).$$

If $N \leq Q_{i-1}(\mathbf{a})$ we have

$$\frac{N}{Q_{i+1}(\mathbf{a})} \le 1, \quad \frac{N}{Q_{i+1}(\mathbf{a}) + Q_i(\mathbf{a})} \le 1.$$

Hence

$$\begin{split} \sum_{a=1}^{\infty} a \int_{J(\mathbf{a},a)} \{Nq_i(\alpha)\alpha\} \, d\alpha &= \frac{N}{2Q_i(\mathbf{a})} \sum_{a=1}^{\infty} \frac{1}{(aQ_i(\mathbf{a}) + Q_{i-1}(\mathbf{a}))^2} \\ &\leq \frac{N}{2Q_i(\mathbf{a})} \sum_{a=1}^{\infty} \frac{1}{a^2 N Q_i(\mathbf{a})} = \frac{1}{2Q_i(\mathbf{a})^2} \sum_{a=1}^{\infty} \frac{1}{a^2} \\ &= O(\lambda(J(\mathbf{a}))). \end{split}$$

As $N \leq Q_{i-1}(\mathbf{a})$ we have $\log^+(N/q_i(\alpha)) = 0$ and formula (9) is valid in this case also. By summing up in (9) over all $\mathbf{a} \in \mathbb{N}^i$ we get (6). Analogously we obtain (7) for odd i.

PROPOSITION 3. There exists a constant C > 0 such that for all N and i,

$$\int_{A_{N,i}} a_{i+1}(\alpha) \, d\alpha \le C.$$

Proof. First we treat the case of i odd. We have

$$\int_{A_{N,i}} a_{i+1}(\alpha) \, d\alpha = \sum_{\mathbf{a} \in \mathbb{N}^i} \sum_{a=1}^{\infty} \int_{A_{N,i} \cap J(\mathbf{a},a)} a_{i+1}(\alpha) \, d\alpha$$
$$= \sum_{\mathbf{a} \in \mathbb{N}^i} \sum_{a=1}^{\infty} \int_{A_{N,i} \cap J(\mathbf{a},a)} a \, d\alpha = \sum_{\mathbf{a} \in \mathbb{N}^i} \sum_{a=1}^{\infty} a\lambda (A_{N,i} \cap J(\mathbf{a},a)).$$

Now, for odd i,

$$A_{N,i} \cap J(\mathbf{a}, a) \subseteq \{\alpha \in [0, 1] : \{Nq_i(\alpha)\alpha\} < 1/a\} \cap J(\mathbf{a}, a)$$

Consider the set

$$M_k(\mathbf{a}) = \{ \alpha \in J(\mathbf{a}) : k = [Nq_i(\alpha)\alpha] \}.$$

Then

$$A_{N,i} \cap J(\mathbf{a}, a) = \bigcup_{k=0}^{NQ_i(\mathbf{a})-1} (A_{N,i} \cap J(\mathbf{a}, a) \cap M_k(\mathbf{a}))$$

and hence

$$\int_{A_{N,i}} a_{i+1}(\alpha) \, d\alpha = \sum_{\mathbf{a} \in \mathbb{N}^i} \sum_{a=1}^{\infty} a \sum_{0 \le k \le NQ_i(\mathbf{a})} \lambda(A_{N,i} \cap J(\mathbf{a}, a) \cap M_k(\mathbf{a})).$$

If $\alpha \in A_{N,i} \cap J(\mathbf{a}, a) \cap M_k(\mathbf{a})$ then

$$\frac{k}{NQ_i(\mathbf{a})} < \alpha < \frac{k}{NQ_i(\mathbf{a})} + \frac{1}{aNQ_i(\mathbf{a})}$$

and

$$\frac{aP_i(\mathbf{a}) + P_{i-1}(\mathbf{a})}{aQ_i(\mathbf{a}) + Q_{i-1}(\mathbf{a})} \le \alpha \le \frac{(a+1)P_i(\mathbf{a}) + P_{i-1}(\mathbf{a})}{(a+1)Q_i(\mathbf{a}) + Q_{i-1}(\mathbf{a})}$$

We now define, omitting the dependence on \mathbf{a} in P_i and Q_i ,

$$E_{1}(\mathbf{a},a) = \left\{ k \in \mathbb{Z}_{+} : \frac{k}{NQ_{i}} \leq \frac{aP_{i} + P_{i-1}}{aQ_{i} + Q_{i-1}} \leq \frac{(a+1)P_{i} + P_{i-1}}{(a+1)Q_{i} + Q_{i-1}} \leq \frac{k}{NQ_{i}} + \frac{1}{aNQ_{i}} \right\},$$

$$E_{2}(\mathbf{a},a) = \left\{ k \in \mathbb{Z}_{+} : \frac{aP_{i} + P_{i-1}}{aQ_{i} + Q_{i-1}} \leq \frac{k}{NQ_{i}} \leq \frac{k}{NQ_{i}} + \frac{1}{aNQ_{i}} \leq \frac{(a+1)P_{i} + P_{i-1}}{(a+1)Q_{i} + Q_{i-1}} \right\},$$

$$E_{3}(\mathbf{a},a) = \left\{ k \in \mathbb{Z}_{+} : \frac{k}{NQ_{i}} \leq \frac{aP_{i} + P_{i-1}}{aQ_{i} + Q_{i-1}} \leq \frac{k}{NQ_{i}} + \frac{1}{aNQ_{i}} \leq \frac{(a+1)P_{i} + P_{i-1}}{(a+1)Q_{i} + Q_{i-1}} \right\},$$

$$E_{4}(\mathbf{a},a) = \left\{ k \in \mathbb{Z}_{+} : \frac{aP_{i} + P_{i-1}}{aQ_{i} + Q_{i-1}} \leq \frac{k}{NQ_{i}} \leq \frac{(a+1)P_{i} + P_{i-1}}{(a+1)Q_{i} + Q_{i-1}} \leq \frac{k}{NQ_{i}} + \frac{1}{aNQ_{i}} \right\}.$$

Then

(10)
$$\int_{A_{N,i}} a_{i+1}(\alpha) \, d\alpha \leq \sum_{\mathbf{a} \in \mathbb{N}^i} \sum_{a=1}^{\infty} a \sum_{j=1}^{4} \sum_{k \in E_j(\mathbf{a},a)} \lambda(A_{N,i} \cap J(\mathbf{a},a) \cap M_k(\mathbf{a})).$$

We first derive an upper bound for

$$\sum_{a=1}^{\infty} a \sum_{k \in E_1(\mathbf{a}, a)} \lambda(A_{N,i} \cap J(\mathbf{a}, a) \cap M_k(\mathbf{a}))$$

From the conditions for k in $E_1(\mathbf{a}, a)$ we obtain

$$k \le NQ_i(\mathbf{a}) \frac{aP_i(\mathbf{a}) + P_{i-1}(\mathbf{a})}{aQ_i(\mathbf{a}) + Q_{i-1}(\mathbf{a})}, \quad k \ge NQ_i(\mathbf{a}) \frac{(a+1)P_i(\mathbf{a}) + P_{i-1}(\mathbf{a})}{(a+1)Q_i(\mathbf{a}) + Q_{i-1}(\mathbf{a})} - \frac{1}{a}.$$

Thus

$$k \in \left[NQ_{i}(\mathbf{a}) \frac{(a+1)P_{i}(\mathbf{a}) + P_{i-1}(\mathbf{a})}{(a+1)Q_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a})} - \frac{1}{a}, NQ_{i}(\mathbf{a}) \frac{aP_{i}(\mathbf{a}) + P_{i-1}(\mathbf{a})}{aQ_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a})} \right],$$

which is an interval of length

(11)
$$\frac{NQ_i(\mathbf{a})}{(aQ_i(\mathbf{a}) + Q_{i-1}(\mathbf{a}))((a+1)Q_i(\mathbf{a}) + Q_{i-1}(\mathbf{a}))} + \frac{1}{a}.$$

If $E_1(\mathbf{a}, a)$ is not empty we have

$$\frac{1}{aNQ_{i}(\mathbf{a})} = \frac{k}{NQ_{i}(\mathbf{a})} + \frac{1}{aNQ_{i}(\mathbf{a})} - \left(\frac{k}{NQ_{i}(\mathbf{a})}\right)$$
$$\geq \frac{(a+1)P_{i}(\mathbf{a}) + P_{i-1}(\mathbf{a})}{(a+1)Q_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a})} - \frac{aP_{i}(\mathbf{a}) + P_{i-1}(\mathbf{a})}{aQ_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a})}$$
$$= \frac{1}{(aQ_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a}))((a+1)Q_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a}))}$$

and hence

L. Roçadas

(12)
$$N \leq \frac{(aQ_i(\mathbf{a}) + Q_{i-1}(\mathbf{a}))((a+1)Q_i(\mathbf{a}) + Q_{i-1}(\mathbf{a}))}{aQ_i(\mathbf{a})}$$
$$\leq \frac{(a+1)Q_i(\mathbf{a})(a+2)Q_i(\mathbf{a})}{aQ_i(\mathbf{a})} \leq \frac{(a+a)Q_i(\mathbf{a})(a+2a)Q_i(\mathbf{a})}{aQ_i(\mathbf{a})}$$
$$\leq 6aQ_i(\mathbf{a}).$$

We have $P_i(\mathbf{a})Q_{i-1}(\mathbf{a}) - P_{i-1}(\mathbf{a})Q_i(\mathbf{a}) = 1$. It follows for $k \in E_1(\mathbf{a}, a)$ that

$$\begin{aligned} k &\leq NQ_i(\mathbf{a}) \frac{aP_i(\mathbf{a}) + P_{i-1}(\mathbf{a})}{aQ_i(\mathbf{a}) + Q_{i-1}(\mathbf{a})} \\ &= N \frac{aP_i(\mathbf{a})Q_i(\mathbf{a}) + P_{i-1}(\mathbf{a})Q_i(\mathbf{a})}{aQ_i(\mathbf{a}) + Q_{i-1}(\mathbf{a})} \\ &= N \frac{aP_i(\mathbf{a})Q_i(\mathbf{a}) - 1 + Q_{i-1}(\mathbf{a})P_i(\mathbf{a})}{aQ_i(\mathbf{a}) + Q_{i-1}(\mathbf{a})} \\ &= NP_i(\mathbf{a}) \frac{aQ_i(\mathbf{a}) + Q_{i-1}(\mathbf{a})}{aQ_i(\mathbf{a}) + Q_{i-1}(\mathbf{a})} - \frac{N}{aQ_i(\mathbf{a}) + Q_{i-1}(\mathbf{a})} \\ &= NP_i(\mathbf{a}) - \frac{N}{aQ_i(\mathbf{a}) + Q_{i-1}(\mathbf{a})}. \end{aligned}$$

Similarly, using

$$k \ge NQ_i(\mathbf{a}) \frac{(a+1)P_i(\mathbf{a}) + P_{i-1}(\mathbf{a})}{(a+1)Q_i(\mathbf{a}) + Q_{i-1}(\mathbf{a})} - \frac{1}{a},$$

we have

$$k \ge NP_i(\mathbf{a}) - \frac{N}{(a+1)Q_i(\mathbf{a}) + Q_{i-1}(\mathbf{a})} - \frac{1}{a}$$

and hence

(13)
$$NP_{i}(\mathbf{a}) - \frac{N}{(a+1)Q_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a})} - \frac{1}{a} \le k$$
$$\le NP_{i}(\mathbf{a}) - \frac{N}{aQ_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a})}.$$

Therefore $|E_1(\mathbf{a}, a)| \leq 1$. Now, if

$$\frac{2N}{Q_i(\mathbf{a})} < a, \qquad \frac{N}{aQ_i(\mathbf{a}) + Q_{i-1}(\mathbf{a})} < \frac{1}{2}$$

we directly get, for a > 1,

$$\frac{N}{(a+1)Q_i(\mathbf{a}) + Q_{i-1}(\mathbf{a})} + \frac{1}{a} < \frac{1}{a} + \frac{1}{2} < 1,$$

which means that the interval (13) does not contain an integer in this case.

Furthermore

$$\begin{split} \lambda(J(\mathbf{a}, a)) &= \frac{1}{(aQ_i(\mathbf{a}) + Q_{i-1}(\mathbf{a}))((a+1)Q_i(\mathbf{a}) + Q_{i-1}(\mathbf{a}))} \\ &\leq \frac{1}{a^2(Q_i(\mathbf{a}))^2} = \frac{2}{2a^2(Q_i(\mathbf{a}))^2} \\ &\leq \frac{2}{a^2Q_i(\mathbf{a})(Q_i(\mathbf{a}) + Q_{i-1}(\mathbf{a}))} = 2\frac{\lambda(J(\mathbf{a}))}{a^2}. \end{split}$$

Thus, since for positive integers k and m,

$$\sum_{a=k}^{mk} \frac{1}{a} \le \sum_{a=k}^{mk} \frac{1}{k} = (mk - k + 1) \frac{1}{k} \le m,$$

we have

$$\sum_{a=1}^{\infty} a \sum_{k \in E_{1}(\mathbf{a},a)} \lambda(A_{N,i} \cap J(\mathbf{a},a) \cap M_{k}(\mathbf{a})) \leq \sum_{a=1}^{\infty} a \sum_{k \in E_{1}(\mathbf{a},a)} \lambda(J(\mathbf{a},a))$$

$$\leq 2\lambda(J(\mathbf{a},1)) + \sum_{N/(6Q_{i}(\mathbf{a})) \leq a \leq 2N/Q_{i}(\mathbf{a})} a\lambda(J(\mathbf{a},a))$$

$$\leq \frac{2}{(Q_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a}))(2Q_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a}))} + \sum_{N/(6Q_{i}(\mathbf{a})) \leq a \leq 2N/Q_{i}(\mathbf{a})} 2 \frac{\lambda(J(\mathbf{a}))}{a}$$

$$\leq \frac{2}{(Q_{i}(\mathbf{a}))^{2}} + 2 \cdot 12 \cdot \lambda(J(\mathbf{a})) = O(\lambda(J(\mathbf{a}))).$$

We have established

$$\sum_{a=1}^{\infty} a \sum_{k \in E_1(\mathbf{a}, a)} \lambda(A_{N,i} \cap J(\mathbf{a}, a) \cap M_k(\mathbf{a})) = O(\lambda(J(\mathbf{a}))).$$

In order to estimate

$$\sum_{a=1}^{\infty} a \sum_{k \in E_2(\mathbf{a}, a)} \lambda(A_{N,i} \cap J(\mathbf{a}, a) \cap M_k(\mathbf{a})),$$

we start by observing that for k in $E_2(\mathbf{a}, a)$ we have

(14)

$$k \ge NQ_{i}(\mathbf{a}) \frac{aP_{i}(\mathbf{a}) + P_{i-1}(\mathbf{a})}{aQ_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a})},$$

$$k \le NQ_{i}(\mathbf{a}) \frac{(a+1)P_{i}(\mathbf{a}) + P_{i-1}(\mathbf{a})}{(a+1)Q_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a})} - \frac{1}{a},$$

so it follows that

$$k \in \left[NQ_{i}(\mathbf{a}) \frac{aP_{i}(\mathbf{a}) + P_{i-1}(\mathbf{a})}{aQ_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a})}, NQ_{i}(\mathbf{a}) \frac{(a+1)P_{i}(\mathbf{a}) + P_{i-1}(\mathbf{a})}{(a+1)Q_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a})} - \frac{1}{a} \right],$$

which is an interval of length

L. Roçadas

(15)
$$\frac{NQ_i(\mathbf{a})}{(aQ_i(\mathbf{a}) + Q_{i-1}(\mathbf{a}))((a+1)Q_i(\mathbf{a}) + Q_{i-1}(\mathbf{a}))} - \frac{1}{a}.$$

As

$$A_{N,i} \cap J(\mathbf{a}, a) \cap M_k(\mathbf{a}) \subseteq \left[\frac{k}{NQ_i(\mathbf{a})}, \frac{k}{NQ_i(\mathbf{a})} + \frac{1}{aNQ_i(\mathbf{a})}\right],$$

we get

$$\lambda(A_{N,i} \cap J(\mathbf{a}, a) \cap M_k(\mathbf{a})) \le \frac{1}{aNQ_i(\mathbf{a})}.$$

If $E_2(\mathbf{a}, a)$ is not empty we have

$$\frac{1}{aNQ_i(\mathbf{a})} \le \frac{1}{(aQ_i(\mathbf{a}) + Q_{i-1}(\mathbf{a}))((a+1)Q_i(\mathbf{a}) + Q_{i-1}(\mathbf{a}))}$$

and hence $2N \ge aQ_i(\mathbf{a})$. Moreover, from (14) we get

(16)
$$NP_i(\mathbf{a}) - \frac{N}{aQ_i(\mathbf{a}) + Q_{i-1}(\mathbf{a})} \le k$$

$$\le NP_i(\mathbf{a}) - \frac{N}{(a+1)Q_i(\mathbf{a}) + Q_{i-1}(\mathbf{a})} - \frac{1}{a}$$

From this we infer that $|E_2(\mathbf{a}, a)|$ is at most

(17)
$$\frac{N}{aQ_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a})} - \frac{N}{(a+1)Q_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a})} - \frac{1}{a} + 1$$
$$= O\left(\frac{NQ_{i}(\mathbf{a})}{(aQ_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a}))((a+1)Q_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a}))} + 1\right)$$
$$= O\left(\frac{N}{a^{2}Q_{i}(\mathbf{a})} + 1\right).$$

Consider the set

$$A(\mathbf{a}) = \left\{ a \in \mathbb{N} : \frac{NQ_i(\mathbf{a})}{(aQ_i(\mathbf{a}) + Q_{i-1}(\mathbf{a}))((a+1)Q_i(\mathbf{a}) + Q_{i-1}(\mathbf{a}))} \ge \frac{1}{2} \right\}.$$

In the case $a \in \mathbb{N} \setminus A(\mathbf{a})$, there is no k satisfying (16), which means that in this case $E_2(\mathbf{a}, a) = \emptyset$. If $a \in A(\mathbf{a})$, we have

$$2NQ_{i}(\mathbf{a}) \ge (aQ_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a}))((a+1)Q_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a})) \ge a^{2}Q_{i}^{2}(\mathbf{a})$$

and then $N/(a^2Q_i(\mathbf{a})) \ge 1/2$. This implies that $1 = O(N/(a^2Q_i(\mathbf{a})))$ and from (17) we get $|E_2(\mathbf{a}, a)| = O(N/(a^2Q_i(\mathbf{a})))$. Thus

$$\sum_{a=1}^{\infty} a \sum_{k \in E_2(\mathbf{a}, a)} \lambda(A_{N,i} \cap J(\mathbf{a}, a) \cap M_k(\mathbf{a}))$$
$$= \sum_{a \le 2N/Q_i(\mathbf{a})} a \sum_{k \in E_2(\mathbf{a}, a)} \lambda(A_{N,i} \cap J(\mathbf{a}, a) \cap M_k(\mathbf{a}))$$

Sum-of-digits function of the Ostrowski expansion

$$= \sum_{a \in A(\mathbf{a}) \land a \leq 2N/Q_i(\mathbf{a})} a \sum_{k \in E_2(\mathbf{a},a)} \lambda(A_{N,i} \cap J(\mathbf{a},a) \cap M_k(\mathbf{a}))$$
$$= O\left(\sum_{a \in A(\mathbf{a})} a \frac{N}{a^2 Q_i(\mathbf{a})} \cdot \frac{1}{aNQ_i(\mathbf{a})}\right) = O\left(\sum_{a=1}^{\infty} \frac{1}{a^2 (Q_i(\mathbf{a}))^2}\right)$$
$$= O\left(\frac{1}{(Q_i(\mathbf{a}))^2}\right) = O(\lambda(J(\mathbf{a}))).$$

Hence,

$$\sum_{a=1}^{\infty} a \sum_{k \in E_2(\mathbf{a}, a)} \lambda(A_{N,i} \cap J(\mathbf{a}, a) \cap M_k(\mathbf{a})) = O(\lambda(J(\mathbf{a}))).$$

In order to estimate

$$\sum_{a=1}^{\infty} a \sum_{k \in E_3(\mathbf{a},a)} \lambda(A_{N,i} \cap J(\mathbf{a},a) \cap M_k(\mathbf{a})),$$

we notice that for $k \in E_3(\mathbf{a}, a)$ we have

$$k \leq NQ_i(\mathbf{a}) \frac{aP_i(\mathbf{a}) + P_{i-1}(\mathbf{a})}{aQ_i(\mathbf{a}) + Q_{i-1}(\mathbf{a})}, \quad k \geq NQ_i(\mathbf{a}) \frac{aP_i(\mathbf{a}) + P_{i-1}(\mathbf{a})}{aQ_i(\mathbf{a}) + Q_{i-1}(\mathbf{a})} - \frac{1}{a}.$$

From these conditions we deduce that $E_3(\mathbf{a}, a)$ is an interval of length at most 1/a and (as before) that if $k \in E_3(\mathbf{a}, a)$, then

(18)
$$NP_i(\mathbf{a}) - \frac{N}{aQ_i(\mathbf{a}) + Q_{i-1}(\mathbf{a})} - \frac{1}{a} \le k \le NP_i(\mathbf{a}) - \frac{N}{aQ_i(\mathbf{a}) + Q_{i-1}(\mathbf{a})}$$

We have seen above that for $2N/Q_i(\mathbf{a}) < a, E_3(\mathbf{a}, a)$ is empty. So,

$$\sum_{a=1}^{\infty} a \sum_{k \in E_3(\mathbf{a}, a)} \lambda(A_{N,i} \cap J(\mathbf{a}, a) \cap M_k(\mathbf{a}))$$

$$\leq \sum_{a=1}^{\infty} a \sum_{k \in E_3(\mathbf{a}, a)} \lambda(J(\mathbf{a}, a))$$

$$\leq \sum_{1 \leq a \leq 2N/Q_i(\mathbf{a})} a\lambda(J(\mathbf{a}, a)) \leq \sum_{1 \leq a \leq 2N/Q_i(\mathbf{a})} a \frac{1}{aNQ_i(\mathbf{a})}$$

$$\leq \frac{2N}{Q_i(\mathbf{a})} \cdot \frac{1}{NQ_i(\mathbf{a})} = \frac{2}{Q_i^2(\mathbf{a})} = O(\lambda(J(\mathbf{a}))).$$

Hence

$$\sum_{a=1}^{\infty} a \sum_{k \in E_3(\mathbf{a}, a)} \lambda(A_{N,i} \cap J(\mathbf{a}, a) \cap M_k(\mathbf{a})) = O(\lambda(J(\mathbf{a}))).$$

In order to estimate

$$\sum_{a=1}^{\infty} a \sum_{k \in E_4(\mathbf{a}, a)} \lambda(A_{N,i} \cap J(\mathbf{a}, a) \cap M_k(\mathbf{a})),$$

we observe that for $k \in E_4(\mathbf{a}, a)$ we have

$$k \le NQ_{i}(\mathbf{a}) \frac{(a+1)P_{i}(\mathbf{a}) + P_{i-1}(\mathbf{a})}{(a+1)Q_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a})},$$
$$k \ge NQ_{i}(\mathbf{a}) \frac{(a+1)P_{i}(\mathbf{a}) + P_{i-1}(\mathbf{a})}{(a+1)Q_{i}(\mathbf{a}) + Q_{i-1}(\mathbf{a})} - \frac{1}{a}.$$

From these conditions we deduce that $E_4(\mathbf{a}, a)$ is an interval of length at most 1/a and, as before, if $k \in E_4(\mathbf{a}, a)$ then

(19)
$$NP_i(\mathbf{a}) - \frac{N}{(a+1)Q_i(\mathbf{a}) + Q_{i-1}(\mathbf{a})} - \frac{1}{a} \le k$$

$$\leq NP_i(\mathbf{a}) - \frac{N}{(a+1)Q_i(\mathbf{a}) + Q_{i-1}(\mathbf{a})}$$

Once again, if $2N/Q_i(\mathbf{a}) < a$, $E_4(\mathbf{a}, a)$ is empty. Then

$$\sum_{a=1}^{\infty} a \sum_{k \in E_4(\mathbf{a}, a)} \lambda(A_{N,i} \cap J(\mathbf{a}, a) \cap M_k(\mathbf{a})) \le \sum_{a=1}^{\infty} a \sum_{k \in E_4(\mathbf{a}, a)} \lambda(J(\mathbf{a}, a))$$
$$= O(\lambda(J(\mathbf{a}))).$$

It follows that

$$\sum_{a=1}^{\infty} a \sum_{k \in E_4(\mathbf{a}, a)} \lambda(A_{N,i} \cap J(\mathbf{a}, a) \cap M_k(\mathbf{a})) = O(\lambda(J(\mathbf{a}))).$$

So, if $2 \nmid i$, we have proved that

$$\int_{A_{N,i}} a_{i+1}(\alpha) \, d\alpha = \sum_{a \in \mathbb{N}^i} \sum_{a=1}^{\infty} a \sum_{j=1}^{4} \sum_{k \in E_j(\mathbf{a}, a)} \lambda(A_{N,i} \cap J(\mathbf{a}, a) \cap M_k(\mathbf{a}))$$
$$= \sum_{a \in \mathbb{N}^i} 4 \cdot O(\lambda(J(\mathbf{a}))) = O(1).$$

The case 2 | i can be proved either similarly or by a change of variable $\alpha \to 1 - \alpha$. In fact, for $0 < \alpha \leq 1/2$ we have $a_{i+1}(1-\alpha) = a_i(\alpha)$ and $q_{i+1}(1-\alpha) = q_i(\alpha)$ for i > 0, and if $1/2 < \alpha \leq 1$ we have $a_i(1-\alpha) = a_{i+1}(\alpha)$ and $q_i(1-\alpha) = q_{i+1}(\alpha)$ for $i \geq 0$. Hence,

• if $0 < \alpha < 1/2$ and i > 0 then $1 - \alpha \in A_{N,i} \iff 1 - \{Nq_i(1 - \alpha)(1 - \alpha)\} < \frac{1}{a_{i+1}(1 - \alpha)}$ $\iff \{Nq_i(1 - \alpha)\alpha\} < \frac{1}{a_{i+1}(1 - \alpha)}$ $\iff \{Nq_{i-1}(\alpha)\alpha\} < \frac{1}{a_i(\alpha)} \iff \alpha \in A_{N,i-1};$

• if $1/2 < \alpha < 1$ and i > 0 then

$$1 - \alpha \in A_{N,i} \Leftrightarrow 1 - \{Nq_i(1 - \alpha)(1 - \alpha)\} < \frac{1}{a_{i+1}(1 - \alpha)}$$
$$\Leftrightarrow \{Nq_i(1 - \alpha)\alpha\} < \frac{1}{a_{i+1}(1 - \alpha)}$$
$$\Leftrightarrow \{Nq_{i+1}(\alpha)\alpha\} < \frac{1}{a_{i+2}(\alpha)} \Leftrightarrow \alpha \in A_{N,i+1};$$

• if $1/2 < \alpha < 1$ and i = 0 then

$$1 - \alpha \in A_{N,0} \iff 1 - \{Nq_0(1 - \alpha)(1 - \alpha)\} < \frac{1}{a_1(1 - \alpha)}$$
$$\Leftrightarrow \{Nq_0(1 - \alpha)\alpha\} < \frac{1}{a_1(1 - \alpha)}$$
$$\Leftrightarrow \{Nq_1(\alpha)\alpha\} < \frac{1}{a_2(\alpha) + 1}$$
$$\Rightarrow \{Nq_1(\alpha)\alpha\} < \frac{1}{a_2(\alpha)} \Rightarrow \alpha \in A_{N,1}.$$

Let C_X be the characteristic function of the set X. Then for i > 0,

$$\int_{A_{N,i}} a_{i+1}(\alpha) \, d\alpha = \int_{0}^{1} a_{i+1}(\alpha) C_{A_{N,i}}(\alpha) \, d\alpha$$

=
$$\int_{0}^{1/2} a_{i+1}(1-\alpha) C_{A_{N,i}}(1-\alpha) \, d\alpha + \int_{1/2}^{1} a_{i+1}(1-\alpha) C_{A_{N,i}}(1-\alpha) \, d\alpha$$

=
$$\int_{0}^{1/2} a_{i}(\alpha) C_{A_{N,i-1}}(\alpha) \, d\alpha + \int_{1/2}^{1} a_{i+2}(\alpha) C_{A_{N,i+1}}(\alpha) \, d\alpha = O(1).$$

Similarly,

$$\int_{A_{N,0}} a_1(\alpha) \, d\alpha = \int_0^1 a_1(\alpha) C_{A_{N,0}}(\alpha) \, d\alpha$$
$$= \int_0^{1/2} a_1(1-\alpha) C_{A_{N,0}}(1-\alpha) \, d\alpha + \int_{1/2}^1 a_1(1-\alpha) C_{A_{N,0}}(1-\alpha) \, d\alpha$$

L. Roçadas

$$\leq \frac{1}{2} + \int_{1/2}^{1} (a_2(\alpha) + 1) C_{A_{N,1}}(\alpha) \, d\alpha \leq 1 + \int_{1/2}^{1} a_2(\alpha) C_{A_{N,1}}(\alpha) \, d\alpha = O(1),$$

and the result follows. \blacksquare

1

4. Proof of the Theorem. In order to prove the Theorem we start by proving the following result:

PROPOSITION 4. Given $\alpha \in \Omega$ and $N \in \mathbb{N}$ with $N = \sum_{i=0}^{m} b_i q_i$ we have for $0 \leq i \leq m$,

$$\int_{0}^{1} b_i(\alpha) \, d\alpha = \frac{1}{2} \int_{0}^{1} \left(1 + \frac{q_{i-1}(\alpha)}{q_i(\alpha)} \right) \log^+ \left(\frac{N}{q_i(\alpha)} \right) d\alpha + O(1).$$

Proof. For even i we have, by Section 2 and Propositions 1–3,

$$\int_{0}^{1} b_{i}(\alpha) d\alpha = \int_{[0,1]\backslash A_{N,i}} b_{i}(N,\alpha) d\alpha + \int_{A_{N,i}} b_{i}(N,\alpha) d\alpha$$

$$= \int_{[0,1]\backslash A_{N,i}} (a_{i+1}(\alpha) \{Nq_{i}(\alpha)\alpha\} + O(1)) d\alpha$$

$$= \int_{0}^{1} a_{i+1}(\alpha) \{Nq_{i}(\alpha)\alpha\} d\alpha + O(1)$$

$$= \frac{1}{2} \int_{0}^{1} \left(1 + \frac{q_{i-1}(\alpha)}{q_{i}(\alpha)}\right) \log^{+}\left(\frac{N}{q_{i}(\alpha)}\right) d\alpha + O(1)$$

The proof for the odd case is entirely similar. \blacksquare

THEOREM 1. For $N \in \mathbb{N}$,

$$\int_{0}^{1} s_N(\alpha) \, d\alpha = \frac{1}{2} \sum_{i=0}^{\infty} \int_{0}^{1} \left(1 + \frac{q_{i-1}(\alpha)}{q_i(\alpha)} \right) \log^+\left(\frac{N}{q_i(\alpha)}\right) d\alpha + O(\log N).$$

Proof. Let $(F_k)_{k\geq 0}$ be the sequence of Fibonacci numbers: $F_0 = F_1 = 1$, $F_{k+1} = F_k + F_{k-1}$. Then there is a c > 0 such that $\log F_k \geq k/c$ for $k \geq 2$. For every $\alpha \in \Omega$ we have $q_k(\alpha) \geq F_k$, and $N \leq q_k(\alpha)$ for $c \log N \leq k$, and therefore for $2 \mid k$,

$$a_{k+1}\{Nq_k\alpha\} \le a_{k+1}N|q_k\alpha - p_k| < a_{k+1}N/q_{k+1} \le N/q_k.$$

Similarly for $2 \nmid k$,

$$a_{k+1}(1 - \{Nq_k\alpha\}) \le a_{k+1}N|q_k\alpha - p_k| < N/q_k.$$

Hence

$$\sum_{2|k \ge c \log N}^{\infty} a_{k+1}\{Nq_k\alpha\} = \sum_{2 \nmid k \ge c \log N}^{\infty} a_{k+1}(1 - \{Nq_k\alpha\}) = O(1).$$

So, we can calculate $\int_0^1 s_N(\alpha) d\alpha$ as follows:

$$\begin{split} \int_{0}^{1} s_{N}(\alpha) \, d\alpha &= \int_{0}^{1} \sum_{i=0}^{\infty} b_{i}(N, \alpha) \, d\alpha \\ &= \sum_{\substack{2|i \\ i \leq c \log N}} \int_{[0,1] \setminus A_{N,i}} a_{i+1}(\alpha) \{Nq_{i}(\alpha)\alpha\} \, d\alpha \\ &+ \sum_{\substack{2 \neq i \\ i \leq c \log N}} \int_{[0,1] \setminus A_{N,i}} a_{i+1}(\alpha) (1 - \{Nq_{i}(\alpha)\alpha\}) \, d\alpha + O(1) \\ &= \sum_{\substack{2|i \\ i \leq c \log N}} \left(\int_{0}^{1} a_{i+1}(\alpha) \{Nq_{i}(\alpha)\alpha\} \, d\alpha + O(1) \right) \\ &+ \sum_{\substack{2 \neq i \\ i \leq c \log N}} \left(\int_{0}^{1} a_{i+1}(\alpha) (1 - \{Nq_{i}(\alpha)\alpha\}) \, d\alpha + O(1) \right) + O(1) \\ &= \sum_{\substack{2|i \\ i \leq c \log N}} \int_{0}^{1} a_{i+1}(\alpha) \{Nq_{i}(\alpha)\alpha\} \, d\alpha \\ &+ \sum_{\substack{2 \neq i \\ i \leq c \log N}} \int_{0}^{1} a_{i+1}(\alpha) (1 - \{Nq_{i}(\alpha)\alpha\}) \, d\alpha + O(\log N) + O(1) \\ &= \frac{1}{2} \sum_{\substack{2 \leq i \log N}} \int_{0}^{1} \left(1 + \frac{q_{i-1}(\alpha)}{q_{i}(\alpha)} \right) \log^{+} \left(\frac{N}{q_{i}(\alpha)} \right) \, d\alpha + O(\log N). \end{split}$$

Since $\log^+(N/q_i(\alpha)) = 0$ for $i > c \log N$, the result follows.

Then, by Theorem 1 we have

$$\int_{0}^{1} s_N(\alpha) \, d\alpha = \frac{1}{2} \sum_{i \le c \log N} \int_{0}^{1} \left(1 + \frac{q_{i-1}(\alpha)}{q_i(\alpha)} \right) \log^+ \left(\frac{N}{q_i(\alpha)} \right) d\alpha + O(\log N).$$

This sum has been asymptotically developed in [4] with the effect that it is equal to $(6/\pi^2) \log^2 N + O((\log N)^{3/2} \log \log N)$.

5. Concluding remarks. The methods used here can be generalized to prove that

$$\sum_{i=0}^{\infty} \int_{0}^{1} \frac{b_{i}^{n}(N,\alpha)}{a_{i+1}^{n-1}(\alpha)} \, d\alpha = \frac{6}{(n+1)\pi^{2}} \, \log^{2} N + O((\log N)^{3/2} \log \log N), \quad n \in \mathbb{N}.$$

It seems to be hopeless to generalize this method to more general integrals, like $\int_0^1 s_N(\alpha)^L d\alpha$. On the other hand it might very well happen that there is a central limit law behind our main theorem.

Acknowledgements. The result of this paper is part of my Ph.D. studies under the supervision of Johannes Schoißengeier at the Universidade de Trás-os-Montes e Alto Douro. I am very indebted to him for his valuable comments. Likewise I thank the referee for his comments and suggestions.

References

- M. Drmota, *The distribution of patterns in digital expansions*, in: Algebraic Number Theory and Diophantine Analysis (Graz, 1998), de Gruyter, 2000, 103–121.
- M. Drmota and J. Gajdosik, The distribution of the sum-of-digits function, J. Théor. Nombres Bordeaux 10 (1998), 17–32.
- M. Drmota and J. Schoißengeier, Digital expansions with respect to different bases, Monatsh. Math. 138 (2003), 31–59.
- [4] J. Schoißengeier, On the discrepancy of $(n\alpha)$, Acta Arith. 44 (1984), 241–279.
- [5] —, The integral mean of the discrepancy of the sequence $(n\alpha)$, Monatsh. Math. 131 (2000), 227–234.

Departamento de Matemática Universidade de Trás-os-Montes e Alto Douro Quinta dos Prados, Vila Real 5001-911 Vila Real, Portugal E-mail: rocadas@utad.pt

> Received on 22.4.2002 and in revised form on 6.10.2002 (4270)