On additive properties of two special sequences

by
Yong-Gao Chen (Nanjing) and Bin Wang (Beijing)

1. Introduction. Let A be an infinite sequence of positive integers. For each positive integer n, let $R_{1}(A, n), R_{2}(A, n)$ and $R_{3}(A, n)$ denote the number of solutions of

$$
\begin{array}{ll}
x+y=n, & x, y \in A, \\
x+y=n, & x<y, x, y \in A, \\
x+y=n, & x \leq y, x, y \in A,
\end{array}
$$

respectively. A. Sárközy asked whether there exist two sets A and B of positive integers with infinite symmetric difference, i.e.

$$
|(A \cup B) \backslash(A \cap B)|=\infty
$$

and

$$
R_{i}(A, n)=R_{i}(B, n), \quad n \geq n_{0}
$$

for $i=1,2,3$. For $i=1$, the answer is no. For $i=2$, G. Dombi [1] proved that the set \mathbb{N} of positive integers can be partitioned into two subsets A and B such that $R_{2}(A, n)=R_{2}(B, n)$ for all $n \in \mathbb{N}$. For $i=3$, G. Dombi [1] conjectured that the answer is no. For other related results, the reader is referred to $[2-4]$. Let

$$
\begin{aligned}
U(A, n) & =\{(x, y) \mid x+y=n, x, y \in A, x \leq y\} \\
U_{0}(A, n) & =\{(x, y)|(x, y) \in U(A, n), 2| x\} \\
U_{1}(A, n) & =\{(x, y) \mid(x, y) \in U(A, n), 2 \nmid x\} .
\end{aligned}
$$

Then $R_{3}(A, n)=|U(A, n)|=\left|U_{0}(A, n)\right|+\left|U_{1}(A, n)\right|$.
In this note, we prove the following theorem.

[^0]Theorem. The set \mathbb{N} of positive integers can be partitioned into two subsets A and B such that $R_{3}(A, n)=R_{3}(B, n)$ for all $n \geq 3$.

Proof. Let $T(n)$ denote the number of zero digits in the dyadic representation of $n \geq 0$ (thus $T(0)=1, T(1)=0$, etc.). Then $T(2 n+1)=T(2 n)-1$ $(n \geq 0)$ and $T(2 n)=T(n)+1(n \geq 1)$. Let

$$
A=\{n \in \mathbb{N}|2| T(n-1)\}, \quad B=\{n \in \mathbb{N} \mid 2 \nmid T(n-1)\}
$$

We use induction on n to prove that $|U(A, n)|=|U(B, n)|$ for all $n \geq 3$. By calculation we have $|U(A, n)|=|U(B, n)|$ for $n=3,4,5$. Now suppose that $|U(A, n)|=|U(B, n)|$ for $3 \leq n \leq k-1(k \geq 6)$.

Case 1: $2 \mid k$. Define a map

$$
f: U_{0}(A, k) \backslash\{(2, k-2)\} \rightarrow U\left(A, \frac{k}{2}\right) \backslash\left\{\left(1, \frac{k-2}{2}\right)\right\}
$$

by

$$
f(a, b)=\left(\frac{a}{2}, \frac{b}{2}\right)
$$

Noting that $b \geq a \geq 4,2 \mid a$ and $2 \mid b$, we have

$$
\begin{aligned}
& T\left(\frac{a}{2}-1\right)=T(a-2)-1=T(a-1) \\
& T\left(\frac{b}{2}-1\right)=T(b-2)-1=T(b-1)
\end{aligned}
$$

Hence, f is well defined. It is easy to verify that f is bijective. Thus

$$
\begin{equation*}
\left|U_{0}(A, k) \backslash\{(2, k-2)\}\right|=\left|U\left(A, \frac{k}{2}\right) \backslash\left\{\left(1, \frac{k-2}{2}\right)\right\}\right| \tag{1}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\left|U_{0}(B, k) \backslash\{(2, k-2)\}\right|=\left|U\left(B, \frac{k}{2}\right) \backslash\left\{\left(1, \frac{k-2}{2}\right)\right\}\right| \tag{2}
\end{equation*}
$$

Define a $\operatorname{map} g: U_{1}(A, k) \backslash\{(1, k-1)\} \rightarrow U\left(B, \frac{k+2}{2}\right) \backslash\left\{\left(1, \frac{k}{2}\right)\right\}$ by $f(a, b)=\left(\frac{a+1}{2}, \frac{b+1}{2}\right)$. Noting that $b \geq a \geq 2,2 \nmid a$ and $2 \nmid b$, we have

$$
\begin{aligned}
& T\left(\frac{a+1}{2}-1\right)=T\left(\frac{a-1}{2}\right)=T(a-1)-1 \\
& T\left(\frac{b+1}{2}-1\right)=T\left(\frac{b-1}{2}\right)=T(b-1)-1
\end{aligned}
$$

Hence, g is well defined. It is easy to verify that g is bijective. Thus

$$
\begin{equation*}
\left|U_{1}(A, k) \backslash\{(1, k-1)\}\right|=\left|U\left(B, \frac{k+2}{2}\right) \backslash\left\{\left(1, \frac{k}{2}\right)\right\}\right| \tag{3}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\left.\left|U_{1}(B, k) \backslash\{(1, k-1)\}\right|=\left|U\left(A, \frac{k+2}{2}\right)\right\rangle\left\{\left(1, \frac{k}{2}\right)\right\} \right\rvert\, . \tag{4}
\end{equation*}
$$

Noting that $1 \notin A$ and $2 \notin B$, by (1)-(4), we have

$$
\begin{equation*}
\left.|U(A, k) \backslash\{(2, k-2)\}|=\left|U\left(A, \frac{k}{2}\right)\right|+\left|U\left(B, \frac{k+2}{2}\right)\right\rangle\left\{\left(1, \frac{k}{2}\right)\right\} \right\rvert\, \tag{5}
\end{equation*}
$$

$$
\begin{align*}
& |U(B, k) \backslash\{(1, k-1)\}| \tag{6}\\
& \quad=\left|U\left(B, \frac{k}{2}\right) \backslash\left\{\left(1, \frac{k-2}{2}\right)\right\}\right|+\left|U\left(A, \frac{k+2}{2}\right)\right| .
\end{align*}
$$

Noting that $T(k-2)=T\left(\frac{k}{2}-1\right)+1$ and $T(k-3)=T(k-4)-1=$ $T\left(\frac{k-4}{2}\right)=T\left(\frac{k-2}{2}-1\right)$, we have the following possibilities:
(i) If $2 \nmid T\left(\frac{k}{2}-1\right)$ and $2 \nmid T\left(\frac{k-2}{2}-1\right)$, then

$$
\begin{array}{cl}
\left(1, \frac{k}{2}\right) \in U\left(B, \frac{k+2}{2}\right), & \left(1, \frac{k-2}{2}\right) \in U\left(B, \frac{k}{2}\right) \\
(2, k-2) \notin U(A, k), & (1, k-1) \notin U(B, k)
\end{array}
$$

In this case, by (5) and (6), we have

$$
\begin{aligned}
& |U(A, k)|=\left|U\left(A, \frac{k}{2}\right)\right|+\left|U\left(B, \frac{k+2}{2}\right)\right|-1 \\
& |U(B, k)|=\left|U\left(B, \frac{k}{2}\right)\right|+\left|U\left(A, \frac{k+2}{2}\right)\right|-1
\end{aligned}
$$

(ii) If $2 \nmid T\left(\frac{k}{2}-1\right)$ and $2 \left\lvert\, T\left(\frac{k-2}{2}-1\right)\right.$, then

$$
\begin{array}{cl}
\left(1, \frac{k}{2}\right) \in U\left(B, \frac{k+2}{2}\right), & \left(1, \frac{k-2}{2}\right) \notin U\left(B, \frac{k}{2}\right), \\
(2, k-2) \in U(A, k), & (1, k-1) \notin U(B, k) .
\end{array}
$$

In this case, by (5) and (6), we have

$$
\begin{aligned}
& |U(A, k)|=\left|U\left(A, \frac{k}{2}\right)\right|+\left|U\left(B, \frac{k+2}{2}\right)\right| \\
& |U(B, k)|=\left|U\left(B, \frac{k}{2}\right)\right|+\left|U\left(A, \frac{k+2}{2}\right)\right|
\end{aligned}
$$

(iii) If $2 \left\lvert\, T\left(\frac{k}{2}-1\right)\right.$ and $2 \nmid T\left(\frac{k-2}{2}-1\right)$, then

$$
\begin{array}{cl}
\left(1, \frac{k}{2}\right) \notin U\left(B, \frac{k+2}{2}\right), & \left(1, \frac{k-2}{2}\right) \in U\left(B, \frac{k}{2}\right), \\
(2, k-2) \notin U(A, k), & (1, k-1) \in U(B, k) .
\end{array}
$$

In this case, by (5) and (6), we have

$$
\begin{aligned}
& |U(A, k)|=\left|U\left(A, \frac{k}{2}\right)\right|+\left|U\left(B, \frac{k+2}{2}\right)\right| \\
& |U(B, k)|=\left|U\left(B, \frac{k}{2}\right)\right|+\left|U\left(A, \frac{k+2}{2}\right)\right|
\end{aligned}
$$

(iv) If $2 \left\lvert\, T\left(\frac{k}{2}-1\right)\right.$ and $2 \left\lvert\, T\left(\frac{k-2}{2}-1\right)\right.$, then

$$
\begin{array}{cl}
\left(1, \frac{k}{2}\right) \notin U\left(B, \frac{k+2}{2}\right), & \left(1, \frac{k-2}{2}\right) \notin U\left(B, \frac{k}{2}\right), \\
(2, k-2) \in U(A, k), & (1, k-1) \in U(B, k) .
\end{array}
$$

In this case, by (5) and (6), we have

$$
\begin{aligned}
& |U(A, k)|=\left|U\left(A, \frac{k}{2}\right)\right|+\left|U\left(B, \frac{k+2}{2}\right)\right|+1 \\
& |U(B, k)|=\left|U\left(B, \frac{k}{2}\right)\right|+\left|U\left(A, \frac{k+2}{2}\right)\right|+1
\end{aligned}
$$

Since $3 \leq k / 2<k, 3 \leq(k+2) / 2<k$, by the induction hypothesis, we have

$$
\left|U\left(A, \frac{k}{2}\right)\right|=\left|U\left(B, \frac{k}{2}\right)\right|, \quad\left|U\left(A, \frac{k+2}{2}\right)\right|=\left|U\left(B, \frac{k+2}{2}\right)\right| .
$$

By (i)-(iv), we have

$$
|U(A, k)|=|U(B, k)|
$$

CASE 2: $2 \nmid k$. Define a map $h: U_{0}(A, k) \rightarrow U_{1}(B, k)$ by

$$
h(a, b)=(a-1, b+1)
$$

Since $2 \mid a$, we have $2 \nmid b, b+1 \geq a-1 \geq 1$ and $2 \nmid a-1$. By $T(a-2)=$ $T(a-1)+1$ and $T(b)=T(b-1)-1$, we know that h is well defined. It is clear that h is injective. Now we show that h is surjective. Assume that $(u, v) \in U_{1}(B, k)$. Let $a^{\prime}=u+1$ and $b^{\prime}=v-1$. Then $2|u+1,2| v-2$, $T\left(a^{\prime}-1\right)=T(u)=T(u-1)-1$ and $T\left(b^{\prime}-1\right)=T(v-2)=T(v-1)+1$. To prove that $\left(a^{\prime}, b^{\prime}\right) \in U_{0}(A, k)$, it is sufficient to prove that $a^{\prime} \leq b^{\prime}$. If $a^{\prime}>b^{\prime}$, then, since $u \leq v, 2 \nmid u$ and $2 \mid v$, we have $a^{\prime}-1=b^{\prime}$. But

$$
T\left(a^{\prime}-1\right)=T(u-1)-1 \equiv T(v-1)-1=T\left(b^{\prime}\right)-1(\bmod 2)
$$

a contradiction. So $a^{\prime} \leq b^{\prime}$ and then $\left(a^{\prime}, b^{\prime}\right) \in U_{0}(A, k)$. Hence h is bijective. Thus

$$
\left|U_{0}(A, k)\right|=\left|U_{1}(B, k)\right| .
$$

Similarly, $\left|U_{0}(B, k)\right|=\left|U_{1}(A, k)\right|$. Therefore $|U(A, k)|=|U(B, k)|$. This completes the proof.

References

[1] G. Dombi, Additive properties of certain sets, Acta Arith. 103 (2002), 137-146.
[2] P. Erdős and A. Sárközy, Problems and results on additive properties of general sequences I, Pacific J. Math. 118 (1985), 347-357.
[3] P. Erdős, A. Sárközy and V. T. Sós, Problems and results on additive properties of general sequences III, Studia Sci. Math. Hungar. 22 (1987), 53-63.
[4] —, 一, 一, Problems and results on additive properties of general sequences IV, in: Number Theory (Ootacamund, 1984), Lecture Notes in Math. 1122, Springer, Berlin, 1985, 85-104.

Department of Mathematics
Nanjing Normal University
Nanjing 210097, China
Department of Mathematics
Peking University
Beijing 100871, China
E-mail: ygchen@pine.njnu.edu.cn

[^0]: 2000 Mathematics Subject Classification: 11B34, 11B83, 11B85.
 Supported by the National Natural Science Foundation of China, grant no. 10171046 and the Teaching and Research Award Program for Outstanding Young Teachers in Nanjing Normal University.

