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Septic analogues of the Rogers—Ramanujan functions
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1. Introduction. The well known Rogers—Ramanujan functions are de-
fined for |g| < 1 by

(1.1) =3 U =Y
' e G =G

These functions satisfy the famous Rogers-Ramanujan identities [8, pp. 214
215]

1 1
1.2 G q) = 5 H q) = )
12 = m@os T E @
where, as usual, for any complex number a, (a;q)o = 1, for n > 1,
(@ q)n =[]0 —ad""), (ai1q)ec=[J(L—ag"™).
k=1 k=1

At the end of his brief communication [7], [8, p. 231] announcing his proofs
of the Rogers—Ramanujan identities (1.2), Ramanujan remarks, “I have now
found an algebraic relation between G(q) and H(q), viz.:

(1.3)  H@{G@}' — *G({H(9)}" =1+ 11¢{G(q)H(q)}".

Another noteworthy formula is
(1.4) H(q)G(¢") — *G(q)H (¢") = 1.

Each of these formulae is the simplest of a large class.” In a manuscript of
Ramanujan, published with his Lost Notebook [9], there are forty identities
involving the Rogers—Ramanujan functions.

In 1921, L. J. Rogers [10] established ten of the identities including (1.3)
and (1.4). In his paper [12] proving eight of the identities, but with two
of them from the list that Rogers proved, Watson confides, “Among the
formulae contained in the manuscripts left by Ramanujan is the set of about
forty which involve functions of the types G(¢) and H(q); the beauty of

2000 Mathematics Subject Classification: Primary 33D90, 11P83.

[381]



382 H. Hahn

these formulae seems to me comparable with that of the Rogers—Ramanujan
identities.”

Ramanujan’s forty identities for G(q) and H(q) were first brought to
the mathematical public by B. J. Birch [3] in 1975. As mentioned above,
Rogers [10] first established ten of them. After Watson’s paper, D. Bres-
soud [5] proved fifteen from the list of forty in 1977. The remaining nine
identities were proved by A. Biagioli [2] using modular forms.

Now, let us define the septic Rogers—Ramanujan type functions,

N ¢ (@50)00(@% 000 (0% 4o
o) A= ; (% @)n(~a:q)2n (% Yoo ’

o et (0700?0000 )
(1.6) B(q) := nz:o (@2 )n(—0;9)2n = (0% oo )

N g*rint) (475000434700 (0% ) oo
tn Cla= nz:o (€% aM)n(~¢: @)2ns1 (4% ¢%) o ’

where the latter equalities are due to L. J. Slater [11].

The main purpose of this paper is to establish several analogues of Ra-
manujan’s forty identities involving A(q), B(q), and C(q). Some of these
identities that we found have partition-theoretic interpretations. In the final
section, some results related to the theory of partitions are established by
introducing the notion of colored partitions.

2. Definitions and preliminary results. We first recall Ramanujan’s
definition for a general theta function

(2.1) fla,p)= > @FI2pn=D2 0 gp| < 1.

n=—oo

Then it is easy to verify that [1, p. 34, Entry 18]

(2.2) f(a,b) = f(b,a),

(23) f(]-’a) = 2f(a,a3),

(24) f(_la CL) =0,

and by Jacobi triple product identity [1, p. 35, Entry 19], we have
(2.5) f(a,b) = (—a;ab)so(—b; ab)oc(ab, ab)so.

Another basic property satisfied by f(a,b) is that, for any integer n,
(2.6) fa,b) = a2 D2 £ (a(ab)”, bab) ™).
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The three most important special cases of (2.1) are

(2.7) #(9) == f(a,9) E:q = (~4:¢)% (6% ")
(2.8) (q) = f(a,4° §ijHw @q;
(29) f(—q) = f(_q; _q2) — Z (_1>nqn(3n—l)/2

= (¢ @)oo =1 ¢ (1),

where ¢ = 2™ Im7 > 0, and 7 denotes the Dedekind eta function. Also,
after Ramanujan, define

(2.10) X(@) = (—0:¢")oo
It is easy to show that

Sl ele)  f(=4?)
(2.11) D= 508 = 7o) = 90
(2.12) x(@)x(—q) = x(—d%).

The function f(a,b) also satisfies a useful addition formula. For each positive
integer n, let
U, = an(n+1)/2bn(n—1)/27 V,, = an(n—l)/an(n+1)/2‘

Then [1, p. 48, Entry 31]

(2.13) (UL V) ZUf( e Vo )

Using (2.5), we can rewrite our septic identities (1.5)—(1.7) in the forms
[ =q") g [P =) L (e —d0)
o PO T o 9T Ty

We shall use (2.14) many times in the remainder of the paper.

(2.14)  Alq) =

3. Main results. In this section, we present a list of modular relations
for A(q), B(q), and C(q), which we prove in this paper. These identities
(3.1)—(3.29) involve A(q), B(q), and C(q) in the combinations of

A(g")A(q®) + ¢ B(¢%)B(q*) + ¢ TTC(¢%)C(¢%),
A(¢*)B(¢*) — ¢ B(¢7)C(¢%) — ¢ 7C(¢7) A(g),
A(P)C(g%) — ¢ 3HPTB(¢P) A(q*) + ¢ 723870 (¢%) B(¢%),

where a and (§ are positive integers.
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From now on, for positive integer n, let

and

A, = A(G"), B,:=DB(q

We will prove that

(3.1)

(3.2)

—~ ~~ I~ ~~
~N O Ut

(3.17)

(3.18)

"), Cni=C(d"),

A1B3 — ¢B1C3 — C1A3 =0,

3(_ .3 3
AgA1 + qBsB1 + ¢°CsCh = %7

A3By — qB3Co — qC3A5 =

A19C — qB1oAr + ¢*C1oBy = (

AsAs + qBsBy + ¢*C5Co = ( 7°)x(q),
3

A19B1 — ¢*B12Cy — ¢°C12A; =

A4A3 + qByBs + ¢*C4C3 =

ALAT + qB; B + q?’C‘é‘Cf =

A3B5 +qB3C5 — qC3 A5 = (

A*Ocl - CIB10A* - q4CmBl = (
At A%+ qBiB; + ¢*CiC5 = x(9)x(q

Al BT + QQBTQCT - Q5Cf2141 =

A AL+ qBiB; + ¢°CiC5 =

AsB; — ¢B5C1 — ¢*Cs

A= x(—

)
( )X q )x(

A17C1 — ¢?Bi7 A1 + ¢"C17By = x(—q)x(—4¢'7),

A19B1 — ¢®B19C1 — ¢®C19A4

1

q2
T T XCox() T 1
~ ﬁ x(=9)x(—¢")

A A1 + ¢®BogBy + ¢?Co0Cy =

AyBs — ¢*ByCs — qC4 A5 =

X(—a)x(—a")x*(a"*)x

X (=a"x(=¢"?),
X(=®)x(—¢")x(—¢*)
x(—q?)

X(—)x(=¢*)x(—¢")

x(—¢*°)

)

2(q19/2)



Septic analogues of the Rogers—Ramanugjan functions 385

B (24

(3.19) A Cy — ¢*Byy Ay + ¢'°Cou By = )x(~a )7
x(q)
o2V (— 0B

(320) A8B3 - q2B803 — q308A3 = q )X( q )’

x(q*)
(3 21) AssB1 — q432601 — q11026A1 = X(—ql3)x(—q26),
522 A1502 = ¢B1sAz + ¢°C13 By = x(~)x(~%),

B3 F(—g?
(3.23) Agr Ay + ¢*Byr By + q'2CrCy = f(=)f(=¢")

(3.24)  A31C1 — ¢*B3i A1 + ¢°C31 By

_1(2)(62)12 2/ 31 q3
= 9 XEOX(=a7) = 5 X (—)x“(—q HW’
20 40
(3:25)  AwBi —¢°BiCi — ¢'"CrpAs = X _qS)X;(__q(ﬂ;X(_q )7
(—)x(=g")x(=¢*)x(=¢"%)

(3.26) A16C5 — qBigAs + ¢°CiBy =

24) 48)

X(—=*)x(=¢"*)x(=*)x(—q
x(—a?)x(—¢%)
(3.28) A1 Cy — ¢**Bip1 Ay + ¢ Cin By = 0,

(3.29) A1g5A1 + ¢ Bigs B1 + ¢**C19501 = 0.

(3.27) Aug A1 + q7B4gBl + q2lC4801 =

)

4. Proofs of (3.1)—(3.7). In this section, we will prove relations (3.1)-
(3.7) by using ideas similar to those of Watson [12]. In all proofs, one ex-
presses the left sides of the identities in terms of theta functions by using
(2.14). After clearing fractions, we see that the right side can be expressed
as a product of two theta functions, say with summation indices m and n.
One then tries to find a change of indices of the form

am+0n=TM+a, ~ym+n=TN +b,

so that the product on the right side decomposes into the requisite sum of
two products of theta functions on the left side.

THEOREM 4.1. The identity (3.1) holds.

Proof. Using (2.14), we may write (3.1) in the alternative form
1) (=’ —a") (=" —a) = af (¢, —¢") f(=a®, —¢*®)
— f(=4,=a")f(=¢". —¢"*) = 0.
Set
2m+3n="TM +a, m—2n=TN + b,
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where a and b will have values from the set {0,+1,4+2, £3}. Then
m =2M + 3N + (2a+3b)/7, n=DM—2N + (a —2b)/7.

It follows that the values of a and b are associated as in the following table:

a 0 +1 +2 43
b 0 F3 +1 F2

When a assumes the values —3, —2, —1, 0, 1, 2, 3 in succession, it is easy
to see that the corresponding values of m? 4+ m + 3n? + 3n are respectively

TM? — M +21N? + 9N,

TM? 4+ M +21N? — 9N,

TM? +3M + 21N? + 15N + 2,
TM? +5M + 21N? — 3N,

TM? +7M + 21N? — 21N + 6,
TM? +9M + 21N? + 3N + 2,
TM? + 11M + 21N? — 15N + 6.

Hence, by (2.4),
L) (g = 3 (g2

m,n=—00

= — f(—q3,—q4)f(—q6, —¢") — f(=¢*, —¢") f(—¢% —¢"?)

+af (=%, =) F(=¢* —a"*) + f(=¢,—°) F (=4, —¢'?)
+@*f(=1,—¢") (-1, 21) —qf(=¢ " =) (=", —¢")
- f(—¢", = ) f(—¢*, —¢"®)

= —2f(—¢*, —¢") f(=¢°, 15)+2qf( =) f(=¢%, —4")
+2f(—¢,—¢°) f(—¢°, —¢"),

which is the desired identity upon dividing by 2. =
THEOREM 4.2. The identity (3.2) holds.
Proof. By using (2.14), we find that (3.2) is equivalent to the identity

F(=a"%, - f(—=* —a*) + af (—¢"% —¢*) f (=% —¢°)
+ @ F(=¢% =) f(—a, —) = f(—q?) f(—q'?) X120
Using (2.11) and (2.12), we find that

3(_ 3 3
F-)f(—g) % = FP) (gD X
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= () f (= )X(=°)X*(—¢*) = ¥(@) F(—=a®)x*(—¢°)
= () f(—*)x(—¢*) = ¥(@)e(—¢?).
It thus suffices to show that
(4.2) (=", =N f(=* =) + af (=" =) (=% —°)
+ (=% —a*) f(—a, —¢®) = ¥(Q)p(—®).
For a and b in the set {0, +1, £2,+3}, let

m+n=7"M+a, m—6n=TN-+b,
from which it follows that
m=6M+ N+ (6a+b)/7, n=M-—-N+(a—0>)/7.

It follows easily that a = b, and so m = 6M + N +a and n = M — N,
where —3 < a < 3. Thus, there is a one-to-one correspondence between the
set of all pairs of integers (m,n), —oo < m,n < oo, and triples of integers
(M,N,a), —o00o < M,N < 00, =3 < a < 3. By (2.8) and (2.7), we then have

20(q)e(—¢%) = f(1,9) f(—¢*, —¢°)

0o
_ Z (_1)nqm(m—l-l)/2—5—3n2

m,n=—0o0

3 o
2

_ Z qa(a+1)/2 Z ( 1)Mq21M +(34+6a) M Z NqN(7N+1)/2+aN

a=-3 M=—00 N=—oc0
_ Z qa (a+1) /2f 24+6a - 18—6a)f(_q4+a’ _q3—a)

a=-3

= 2f(=¢"%, - f (=’ —q") + 24/ (—¢"*, —¢*) F (¢,
+2¢°f(—°, —*) f(=¢, —°) + ¢° F(=¢*, —1) f (=4, —1)
= [(=4"%, =N f(—¢*, —") + 20/ (—¢"*, —¢™) f(
+2¢° (4", —¢*) f(—q, —°).
After dividing both sides by 2, we obtain the result. m

The proofs of the identities (3.3)—(3.7) are very similar to those above. In
each case, we find some combinations of pairs («, 3) and the corresponding

pairs (7, 9).

5. Proofs of (3.8)—(3.13). Our approach to proving the identities
(3.8)—(3.13) uses a generalized formula of H. Schréter [1, pp. 65-72] pro-
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viding a representation for a product of two theta functions as a sum of m
products of pairs of theta functions, under certain conditions. An elegant
generalization of Schroter’s work has been discovered by R. Blecksmith,
J. Brillhart, and I. Gerst [4, Theorem 2]. We translate their formula into
Ramanujan’s notation.

For € € {0,1} and |ab| < 1, define

oo
felab) = 7 (=17 (ab)" *(a/b)"2,
n=—oo

THEOREM 5.1. Let a, b, ¢, and d denote positive numbers with |abl, |cd|

< 1. Suppose that there exist positive integers «, (3, and m such that

(5.1) (ab)? = (ed)@m—2B),
Let e1,e9 € {0,1}, and define 61,62 € {0,1} by
(5.2) 01 =1 —aegg (mod2), &y = fe1 + pey (mod?2),

where p = m — af. If R denotes any complete residue system modulo m,
then

(5:3)  fel(a,b)fes (e, d)
— Z sg'r rr—l—l /2d'r(r 1) /2f5 (

reR

a(cd)a(a+1—2r)/2 b(cd)a(a+l+2r)/2)
c ’ de

(b/a>ﬁ/2(cd)p(m+1f2r)/2 (a/b)ﬂ/2(6d>p(m+1+2r)/2
X f(52 ( P ’ dr )
THEOREM 5.2. The identity (3.8) holds.
Proof. By using (2.11), we see that (3.8) is equivalent to the identity
(54) [ - (@’ —¢") + af (=42, ¢V (= &)

+¢° (4%, —4°) f (g, —4°)

ol 2\ el 12 X(—q12) (12
f(=a*)f(=q"7) - e(=q 7 )v(q).

We apply Theorem 5.1 with e; = 1,60 =0, a=b= ¢, c=¢q, d = ¢,
a=06,3 =1, and m = 7 to find that

w(—4"*)¥(q)
= f(=¢", =) F(=¢", =¢") + af (=4, =¢"*) F(—=¢"", —¢")
+¢°f (=% =" (=", =) + ¢ F(=4¢"%, =" F(—=¢*, =)
+ (= =" (=g =) + P f (= =) (a7, —¢P)
+ ¢ f (=g —*) f(—q7°, %)




Septic analogues of the Rogers—Ramanugjan functions 389

= f(=¢", —a"®) f (=", - 13)+qf(—q%,—(1102)f(—qn,—tJ”)
+ qu(— —q"*%) f(=d", =) + q15f(— 8, =" (=’ —¢*)
+ ¢ f (=", —¢%) f(—q 27) +q"f (4", =) [ (=4, ="
+¢*f(—4", —") f(—q 14,—q54),

where we applied (2.6) six times in the last equality. By (2.13) with a = ¢3,
b= —¢* n =2, then with a = —¢%, b = ¢°, n = 2, and finally with a = ¢,
b= —¢5% n =2, we obtain

(5.5) F(@, =" = F(=d"%, =) + @ f(—a*7, =),
(5.6) f(=a*,d°) = f(—q —q17) — ¢ f(—d*, -4,
(5.7) fla,—q% = f(—¢°,—4"") + af (=¢**, —¢°).

Replacing ¢ by ¢° in each of (5.5), (5.6), and (5.7), we obtain
Fa'® =a*) = f(=d", =4") + ¢"* F (=P, =),
fa'?,—=4) = f(=4%, =¢'®) = ¢ f(=¢"™, —¢"),
F(¢°,=¢) = F(=¢"", =" + ¢ F (=", =¢*).
Return to (5.4) and substitute each of the equalities above to deduce that

(5.8)  @(—¢")v(q) — {f(@®, - f(@®, —a") + af (=", ¢*) (=% ¢°)
+q 2f (% —4*) fla. ")}

= — (=" - f(—4"%, =) — ¢ f (¢, —d"*) f (=%, —¢'P?)
_|_q f( q )f(—q66,—q102) _|_q13f(_q11?_q17)f(_q18?_q150)
— ' f(—d®, =) F(="*, =) = P F (=, ") (=, — ')

+ qu(_q427 _q126)f(_q77 _q21).

We now use Theorem 5.1 again, but now withe; = 1,60 =0,a=1,b = ¢**
c=q,d=¢% a=6, =1, and m =7, to find that

¢*f(=1, =" )(q)
= ¢ f(—4" =) F(—=a"", =) + ¢* F(=¢"*, 4" f (=4, —0°)
+ @’ f(=a, 4" f(=4", —¢") + ¢ (=%, =" F(=4"°, =¢")
+ @ f(=a7% =) F(=d" —a'T) + ¢ f (=g, =¢*'") f(—d", —¢*)

+ ¢ f(—q7%, =N (g3, —¢*)

(=
(=
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= 1= =) f(=¢", —¢") + ¢ F (=" —q162)f(—q137—q15)
q13f(—q L= f(=4" =4"*) = O F(=q" =) f(—q", —¢*")
+q3f(— ® —qgo)f(—q,—q27)+q4f(—q ,—q23)f(—q54,—q”4)
—*f(—=¢*, —a®) F(=¢%, —¢'?),

after several apphcatlons of (2.6). The product on the far left side of the
above equality equals 0. Hence we complete the proof. »

In a similar way, we can obtain the remaining identities (3.9)—(3.13). If
we set m = 7 in any case, and choose the different parameters a, b, ¢, d, «,
0, then by similar arguments, the proofs are completed.

6. Proofs of (3.14)—(3.29). The proofs in this section rely strongly on
the results of Rogers [10] and Bressoud [5]. We adopt Bressoud’s notation,

except that we use ¢"/?*f(—q") instead of P,, and the variable ¢ instead
(p,n)

of z. Let go " and D, g, be defined as follows:
61) g
_ qa(%#) ﬁ (1— (qa)pr+(p—2n+1)/2)( (qoc)1m~+(p+2n—1)/2)7
=0 121 (1= ()7 +k)
for any positive odd integer p, integer n, and natural number «, and
(6.2)  Posmyp Z Z r+sq%{pa(7“+m2"2—;l)2+pﬁ(s+2’§—;l)2}’

n=1r7r,s=—00

where «, 3, and p are natural numbers, and m is an odd positive integer.
Then we can immediately obtain the following propositions.

PROPOSITION 6.1 ([5, (2.12) and (2.13)]).
géS,l) _ q—a/GOG(qa)’ 9((15’2) _ qlla/GOH(qa)'

PROPOSITION 6.2. We have

(71) _ —a/42 f(=¢? )A

(7.2) _ 5a/42 f(— “)
(6.4) 9o, q =) B,

(7,3) _ 17a/42 f(=4*)

Proof. Take p=7and n=11in (6.1). Then
a)7r+4)

B 0 1 — (g% r+3 1—
gD = go 1/42)1—[( ((16) )( - ;(irk
=0 lp=i (= (g%)™ k)
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—a /42 1

(4% 4™ )oo (4% 4700 (%5 )00 (4% 4" 0
—a/42 f(—q2a) A,

f(=q%)
which gives (6.3). Similarly we can prove (6.4) and (6.5). =

=q

LEMMA 6.3 ([5, Proposition 5.1]).

g&p,n) _ g&p,—nﬂ)’ g((lp,n) _ g&p,n—%)’ g&p,n) _ g&p,2p—n+1)7
g((lp,n) _ _g((lp,n—p)’ g&pm) _ _g&p,p—nﬂ)’ ggp,(erl)/?) —0.

THEOREM 6.4 ([5, Proposition 5.4]). For odd p > 1,

(p—1)/2
Qsa,ﬁ,m,p = Qq(a+ﬁ)/24f(_ { Z 94 (pm p,(?mn m+1)/2)}

If we use Lemma 6.3 and Theorem 6.4 for p = 5 and p = 7, respectively,
we then deduce the following useful lemmas.

LEMMA 6.5.
atB a a ath «Q
(6.6) Pagrs=2q 0 f(—¢)f(—¢"{G(¢")G(¢*) + ¢ 5 H(¢")H(¢")},
9atp a a —atp a
(6.7) Pagss=2q 0 f(=¢*)f(=d"){G@)H(¢*)—q 5 H(¢")G(¢")}.
Proof. Apply Theorem 6.4 with m = 1 and p = 5; then we get
Popis = 202 () F(—?) {gT gV + 957 g PP}
By Proposition 6.1, we then have

—(a+p) 1(a+pB)

atfB a 1 «
Bop1s =247 [(—¢*)f(=¢"{a— o G(¢")G(¢*)+q o H(q")H(¢")}
atf atp a
=2¢"10 f(—¢*)f(=¢"){G(¢")G(¢®) +q 5 H(¢")H(¢™)},
which reduces to (6.6) after simplification. The equality (6.7) can be proved

in a similar way by applying Lemma 6.3, in addition to Theorem 6.4 with
m = 3 and p = 5 and Proposition 6.1. =

LEMMA 6.6.
(6.8)  Dagir=2q"" A0 f(—g*) f(—¢*)
x {AgAq + q(a+6)/7BﬁBa + q(3a+36)/70ﬁ0a},
(6.9)  Papar=2q" (=) f(—¢*)
x {AgBy — q(2o‘+ﬁ)/7350a _ q(_a+3ﬁ)/7C@Aa},
(6.10)  Po 57 = 2¢O f(—g2) f(—¢*)
x {AgCy — ¢\ =3HP/TBs A, + ¢ 7230/ T04 B, ).
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Proof. Applying Theorem 6.4 with m =1 and p = 7, we have
@ 7, 7,2 73
Bo 17 = 20" (=) f(=a") gy Vgl + g P 9T + gf gDy,
By (6.3) in Proposition 6.2, we then have
Do g7 = 20T f (=) f(—¢*)
% {q_(a+ﬁ)/42AﬂAa + q5(a+5)/42BﬁBa + (]17(04-&-5)/420[3(%(}7

which reduces to (6.8) after simplification. The equalities (6.9) and (6.10)
can be proved in a similar way by applying Lemma 6.3, in addition to
Theorem 6.4 with m = 3,5, respectively, and p = 7, and Proposition 6.2. =

COROLLARY 6.7 ([5, Corollaries 5.5 and 5.6]). If o gmp s defined by
(6.2), then

(6.11) @a,ﬁ,m,l =0,
(6.12) Py 513 = 2q T2 F(—¢*) f(—4%).

COROLLARY 6.8 ([5, Corollary 5.11]). If a and [ are even positive inte-
gers, then

arpyi6 S (=) (=) (=) f(=¢"?)
f(=a*)f(=d°) ‘
THEOREM 6.9 ([5, Corollary 7.3]). Let o, (i, mi, pi, where i = 1,2, be
positive integers with m1, mo odd. If \i = (cum? + B1)/p1 and Ny =
(aem3 + B32)/p2, and

)\1 = )\2, Oélﬁl = Oégﬁg, artm) = ﬂ:agmg (mod )\1),

Dopi2= 2¢

then
éalﬂhml,m = ¢a2ﬂ2,m2,l)z'

Let N denote the set of positive integers, and Ng the set of nonnegative
integers.

PROPOSITION 6.10. Foru € N,
(6.13) Do 3u+4,33u+1 = Pautdu,1,utl-
Furthermore, the identity (3.14) holds.
Proof. By Theorem 6.9 with
o] = u, O1=3u+4, mi=3, p=3u+l,
as =3u+4, [ =u, mo =1, ps=u-+1,

and thus A; = 4, we deduce (6.13). In particular, by taking v = 2 in (6.13)
and then by using (6.9) and (6.12), we have

2¢"2 f(—¢*) F(—=¢**){A10B2 — ¢*B10Ca — ¢*CroAs} = 2¢" 2 f(—¢"°) f(—4?).
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After dividing both sides by 2¢/2f(—q*)f(—¢*°) and replacing ¢ by ¢, we
deduce that

5
A5B1 — qB5C1 — ¢°C5 Ay = % = x(—=a)x(—¢°),
where the last equality comes from (2.11). m
PROPOSITION 6.11. Foru € N,
(6.14) Do 5u+12,5,5u+2 = Pout12,u,1,u42-
Furthermore, the identity (3.15) holds.

Proof. (6.14) follows from Theorem 6.9 with A\; = Ay = 6. Furthermore,
by putting v = 1, we have (3.15) by using (6.10) and (6.12). =

PROPOSITION 6.12. For u € N,
(6.15) Do, 3u+16,3,3u+4 = P3u+16,u,1,u+4-
Furthermore, the identity (3.16) holds.

Proof. Equality (6.15) follows from Theorem 6.9 with A\; = Ao = 4.
Furthermore, if we let w = 1 in (6.15) and use (6.9) and Lemma 6.6, we find
that

(6.16)  A19B1 — ¢*B19C1 — ¢*C19 44
= {G(9)G(¢") + ¢"H(q)H(¢") }x(—a)x(—¢").
Now, apply the following identity proved by Biagioli [2]:
(6.17)  G(q)G(¢") +¢*H(q)H (¢")
L o/ 12y 2, 19/2 L o0 v 2, 19/2 'S
= —Xx(q q7"%) = —=x"(—q —qF) = :
W (¢ )x"(a"7) W ( )X ( ) e Ty
By combining (6.16) with (6.17), we obtain (3.16). m
PROPOSITION 6.13. For u € N,

(6.18) Do u(ut3),1ut+2 = Puts2u,1,3-
Furthermore, the identity (3.17) holds.
Proof. By Theorem 6.9 with Ay = Ay = u + 1, we have (6.18). In par-

ticular, by putting v = 5 and then using (6.8) and (6.12), we obtain the
identity (3.17), after replacing ¢ by ¢ and using (2.11). m

PROPOSITION 6.14. For u € N,
(6.19) D5 3u+1,2u+1,4u+3 = P1,15u+5,1,3-
Furthermore, the identity (3.18) holds.

Proof. By Theorem 6.9 with \;y = Xy = 5u + 2, we have (6.19). In
particular, if we let v = 1 and use (6.9) and (6.12), we deduce the identity
(3.18) by using (2.11). =
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PROPOSITION 6.15. For u € N,
(6.20) P12 410u,5,u+5 = Puti0,1,2-
Furthermore, the identity (3.19) holds.

Proof. By Theorem 6.9 with A\; = A2 = u+5, (6.20) holds. Furthermore,
by putting v = 2 in (6.20) and using (6.10) and Corollary 6.8, we obtain the
identity (3.19), after applying (2.11).

PROPOSITION 6.16. For u € N,
(6.21) P3u,3u+10,3,3u+1 = Pout30,u,1,u+3-
Furthermore, the identity (3.20) holds.

Proof. By Theorem 6.9 with Ay = A2 = 10, (6.21) holds. Furthermore,
if we let w =2 in (6.21) and use (6.9) and Lemma 6.6, we can find

(6.22)  AgBs — ¢°BsCs — ¢*Cs A
={G(q)G(¢*") + ¢"H(q)H(¢*")}

Recall the following identity proved by Bressoud [5]:

F(=a) f(=¢*")
(=45 f(=q'%)

.3 12
623 GOGE + PHEH(P = X
By combining (6.22) with (6.23), and using
X(=)x(=a?) f(=a)f(=*) _ f(=*) (=) f(=a*)f(=a")
X(=a)x(=q*) f(=a®)f(=a*)  f(=a*)f(=a®)f(—q®) f(—q*®)
_ xX(=*)x(=¢%)
x(@®) 7
we deduce (3.20). m
PROPOSITION 6.17. For u € N,
(6.24) P2 w2 you3ut3 = Pouti8u,1,3:

Furthermore, the identity (3.21) holds.

Proof. Equality (6.24) holds by Theorem 6.9 with A\; = A2 = u + 6.
Furthermore, by putting © = 4 in (6.24) and using (6.9) and (6.12), we
arrive at (3.21), after replacing ¢ by ¢ and by (2.11). =

PROPOSITION 6.18. For u € N,
(6.25) Put3,10u+16,5,7 = Po 5024 23u424,1,u+2-
Furthermore, the identity (3.22) holds.

Proof. By Theorem 6.9 with A\; = A2 = 5u + 13, (6.25) holds. Further-
more, by putting v = 1 in (6.25) and using (6.10) and (6.12), we have the
result by replacing ¢ by ¢ and using (2.11). =
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PROPOSITION 6.19. For u € N,
(6.26) Do w2 43u1,ut1 = Pout6,u,1,3-
Furthermore, the identity (3.23) holds.

Proof. Equality (6.26) holds by Theorem 6.9 with Ay = Ao = u + 2.
Furthermore, by putting « = 6 in (6.26) and using (6.8) and (6.12), we get
(3.23), after replacing ¢ by ¢. =

PROPOSITION 6.20 ([6, Proposition 5.2]). For u € Ny,
(6.27) D1 8u+7,2u+3,u+4 = P1 8u+7,2u+1,u+2-
COROLLARY 6.21. The identity (3.24) holds.
Proof. By taking v = 3 in (6 27) and applying Theorem 6.4, we find that
7, 7,2) (7,14 7,3) (7,23
20" F (=) F(=a™ ) {gsy Vo + g7 >g§ g0 ™)
(5,1) 52) (511
- 2q4/3f(—q)f( RIS 9 g5 ™).
Applying Lemma 6.3, Proposition 6.2, and Proposition 6.1, we find that
(6.28)  A31C1 — ¢* By Ay + ¢°Ca1 By
={G(¢’YH(q) - °H(¢*)G(a)}
Now apply the following identity proved by Biagioli [2]:
(6.29)  G(¢*")H(q) — ¢"H(¢*")H(q)
— L (@x(@™) — o= x(—@)x(—¢™) i
2 2q X(=a*)x(—=q%%)
By combining (6.28) with (6.29), and using
f(—q)f(—q31) 31
7 el ooy — X\—a)x\—q ),
Fgf (g XX
we obtain the identity (3.24). =

f(=0) f(=¢"")
F(=a®) f(=¢%%)

PROPOSITION 6.22. For u € N,
(6.30) D1 2 46u,3ut3 = Put6,u,1,2-
Furthermore, the identity (3.25) holds.

Proof. Equality (6.30) holds by Theorem 6.9 with Ay = Ao = u + 3.
Furthermore, if we let u = 4, we obtain the identity (3.25), by using (6.9),
Corollary 6.8, and (2.11). =

PROPOSITION 6.23. For u € N,

(631) ¢u+1,4u2,5,u+5 = ¢u,4u(u+l),l,u'
Furthermore, the identity (3.26) holds.
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Proof. Equality (6.31) holds by Theorem 6.9 with A\; = Ao = 4u + 5. If
we set u = 2, we obtain (3.26) by using (6.10), Corollary 6.8, and (2.11). =

PROPOSITION 6.24. For u € N,
(6.32) Dy 48u,1,7 = Pu,6u,1,2-
Furthermore, the identity (3.27) holds.
Proof. Equality (6.32) holds, by Theorem 6.9 with A\; = Ao = 7u. If we
use (6.8) and Corollary 6.8, then we can ﬁnd
=) f(=a") f(=a"") f(=4"")
f(=a®) f(=a®) f(=q*) f (=)
X(=a")x(= 12“) (=g*")x(=¢"™")

xX(=a*)x(=¢**)
The identity (3.27) follows by replacing ¢* by ¢. =

A48uAu + q7uB48uBu + q21u048ucu =

PROPOSITION 6.25. For u € Ny,

(6.33) D1 16u3+188u2+568u+171,2u+5,u+7 = 0-
Furthermore, the identity (3.28) holds.

Proof. The identity (6.33) follows from Theorem 6.9 with A\; = Ay =
416u? + T2u + 28. Furthermore, if we let u = 0 in (6.33), we can deduce
(3.28) by using (6.10) and (6.11). =

PROPOSITION 6.26. For u € Ny,

(634) Ql,16u3+172u2+472u+195,2u+1,u+7 =0.
Furthermore, the identity (3.29) holds.

Proof. The equation (6.34) follows from Theorem 6.9 with A\; = Ay =
16u? +68u +28. Furthermore, by putting u = 0 in (6.34), we arrive at (3.29)
by using (6.8) and (6.11). =

7. Applications to partitions. The identities (3.1) and (3.14) yield
theorems in the theory of partitions. In this section, we present partition
interpretations for them. For simplicity, we adopt the standard notation
n

(aﬁ Q>oo
=1

(a1, ...y 0n; Qoo i=

J
and define

(@50%) 00 = (¢",0° "1 ¢ )oo;
where r and s are positive integers and r < s.
First, we need the notion of colored partitions: A positive integer n has
k colors if there are k copies of n available and all of them are viewed
as distinct objects. Partitions of positive integers into parts with colors
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are called colored partitions. For example, if 1 is allowed to have 2 col-
ors, say r (red), and g (green), then all colored partitions of 2 are 2, 1, + 1,
lg + 15, 1, + 1,. An important fact is that

1
(4%4")%
is the generating function for partitions of n, where all the parts are con-
gruent to u (modwv) and have k colors.

THEOREM 7.1. Let p1(n) denote the number of partitions of n into parts
not congruent to +4, £7, £10 (mod 21) and parts congruent to £9 (mod 21)
with 2 colors. Let pa(n) denote the number of partitions of n into parts not
congruent to £2, £5, £7 (mod21) and parts congruent to £6 (mod21)
with 2 colors. Let ps(n) denote the number of partitions of n into parts not
congruent to £1, +7, £8 (mod 21) and parts congruent to £3 (mod 21) with
2 colors. Then, for any positive integer n > 1,

p1(n) = pa(n —1) + ps(n).
Proof. The identity (3.1) is equivalent to
1
(0%, %% 7)o (P, ¢°F; V) o
q 1
(@ PF ), ¢F P (7%, 63F 4N)oo(6%F, ¢°F; 6P
Now, rewrite all the products on the left side of (7.1) subject to the com-

mon base ¢?!, for example, write (¢%;¢7)oo 35 (6% ¢*H) oo (0”5 ¢*H oo (4% ¢*) e
Then (7.1) becomes

(7.1)

=0.

1
(%, %%, 3%, %, ¢5F, 63, ¢°F, ¢°F5 ¢?N) o
q
(', ¢3F, ¢, ¢F, ¢, ¢BF, ¢OF, ¢10%F; ¢?1)

1
(%, 3%, 3%, ¢*F, ¢°F, ¢5F, ¢OF, ¢10F; ¢?1)

(7.2)

= 0.

Note that the three quotients on the left side of (7.2) represent the generating
functions for p1(n), p2(n), and ps(n), respectively. Hence, (7.2) is equivalent
to

> pin)g" =g pa(n)g" =Y ps(n)g" =0,
n=0 n=0 n=0

where we set p1(0) = p2(0) = p3(0) = 1. Equating coefficients on both sides
yields the desired result. =
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ExaMPLE. The following table illustrates the case n = 5 in Theorem 7.1:

p1(5) =6 p2(4) =3 p3(5) =3
5 4 5

342 341 243,
3+1+1 1+14+1+41 243
24241

24+14+1+1

1+1+14+1+1

THEOREM 7.2. Let p1(n) denote the number of partitions of n into parts
not congruent to £2, £7, +9, £12, +14, £16 (mod 35) and parts congruent
to £10 (mod35) with 2 colors. Let pa(n) denote the number of partitions
of n into parts not congruent to +1, £6, £7, 8, £13, £14 (mod 35) and
parts congruent to £5 (mod 35) with 2 colors. Let ps(n) denote the number
of partitions of n into parts not congruent to £3, +4, £7, £11, £14, +17
(mod 35) and parts congruent to £15 (mod 35) with 2 colors. Then, for any
positive integer n > 2,

p1(n) =pa2(n —1) +ps(n —2).
Proof. The identity (3.14) is equivalent to
1
(¢F, PF, 5, ¢F, 6F | 3%, q10F 10 ITE (13 gI5E (17%. 435)

q
(q2:i:’ q3:|:? q4:|:7 q5:|:7 q5:i:’ q9:|:? ql[):I:? q11:|:? q12:|:’ q15:i:’ q16:i:’ qu:; q35)oo

q2

(ql:i:’ q2:|:7 q5:|:’ q6:l:7 q8:i:’ q9:|:7 qll):l:7 ql2:|:7 ql3:|:’ q15:i:’ q15:i:’ qlﬁ:i:; q35)oo

=1.

Note that the three quotients on the left side of the above equality represent
the generating functions for p;(n), p2(n), and p3(n), respectively. Hence,

o (o] o
> pin)g" =g pan)q" —q* Y pa(n)g" =1,
n=0 n=0 n=0

where we set p1(0) = p2(0) = p3(0) = 1. Equating coefficients on both sides
yields the desired result. =

ExAMPLE. The following table illustrates the case n = 7 in Theorem 7.2:

p1(7) =7 p2(6) =3 p3(5) =4

6+1 4+ 2 5

54+1+4+1 343 24241

443 2492492 2414141
44+1+1+1 1+1+1+4+1+1
3+3+1

3+14+1+1+1
1+1+1+1+1+1+1
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