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1. Introduction. Let d(n) denote the divisor function, ν(n) the num-
ber of distinct prime factors, and Ω(n) the total number of prime factors
of n, respectively. About 50 years ago P. Erdős formulated the following
conjectures.

(C) There exist infinitely many positive integers n for which

d(n) = d(n+ 1).

(D) There exist infinitely many positive integers n for which

Ω(n) = Ω(n+ 1).

(E) There exist infinitely many positive integers n for which

ν(n) = ν(n+ 1).

These conjectures have been studied by many mathematicians, e.g. [1],
[2], [4], [6] and [8]. Although (C) and (D) were proved by Heath-Brown (cf.
[4]) in 1984, conjecture (E) remains open (cf. [8]).

In 1927 during a conversation with H. Hasse, E. Artin enunciated the
following famous hypothesis, now known as Artin’s conjecture.

(A) For any given non-zero integer a other than 1, −1, or a perfect
square, there exist infinitely many primes p for which a is a primitive root
(mod p).

This conjecture is the focal point of diverse areas of mathematics such as
group theory, algebraic and analytic number theory, and algebraic geometry
(cf. [10]). There is a vast amount of literature for conjecture (A), e.g. [7], [3]
and [5].

The purpose of this paper is to show the following.

Theorem. At least one of the two conjectures (A) and (E) is true.
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2. The Lemma. Throughout the paper p and q denote primes.

Lemma. For sufficiently large x and any fixed positive integers K, M
with (K,M) = 1, (2K + 1,M) = 1, we have

#{q : q < x, 2q + 1 = p or p1p2, p1 < p2, q ≡ K (modM)}

>
C

ϕ(M)
x ln−2 x

where ϕ denotes the Euler totient function.

Proof. This is an easy generalization of [9, Lemma 1], with a = 2, b = 1.

3. Proof of the Theorem. From the Lemma it is easy to see that at
least one of the following two cases must hold.

(i) For sufficiently large x and some positive integers K, M with (K,M)
= 1, (2K + 1,M) = 1,

#{q : q < x, 2q + 1 = p1p2, p1 < p2, q ≡ K (modM)} � x ln−2 x.

(ii) For sufficiently large x and any fixed positive integers K, M with
(K,M) = 1, (2K + 1,M) = 1,

#{q : q < x, 2q + 1 = p, q ≡ K (modM)} > C

ϕ(M)
x ln−2 x.

Let n = 2q, n+1 = p1p2 in (i). It is easy to see that (i) implies conjecture
(E) with ν(n) = ν(n + 1) = 2, and moreover, all these n belong to a given
arithmetic progression. We proceed to show that (ii) implies conjecture (A).

Let a denote a given non-zero integer other than 1, −1, or a perfect
square. From (ii) there are infinitely many pairs of primes p, q with p−1 = 2q
and (p, a) = 1.

By Fermat’s little theorem ap−1 ≡ 1 (mod p) and p− 1 = 2q, we have

a2q ≡ 1 (mod p).

Consider the following two possibilities.
Case 1 : a2 ≡ 1 (mod p). For sufficiently large p this is impossible.
Case 2 : aq ≡ 1 (mod p). We show this is also impossible for suitably

chosen p and q.
Since a is not a perfect square there is a residue class b (mod 4|a|), with

b coprime to 4|a|, such that a is a quadratic non-residue of p whenever p is
congruent to b modulo 4|a|. If we choose M = 2|a| and K = (b − 1)/2 we
then see that Case 2 will not arise.

Therefore a must be a primitive root (mod p), and (ii) implies conjec-
ture (A).

The proof of the Theorem is complete.
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