A note on two conjectures

by
Jiahai Kan (Nanjing)

1. Introduction. Let $d(n)$ denote the divisor function, $\nu(n)$ the number of distinct prime factors, and $\Omega(n)$ the total number of prime factors of n, respectively. About 50 years ago P. Erdős formulated the following conjectures.
(C) There exist infinitely many positive integers n for which

$$
d(n)=d(n+1)
$$

(D) There exist infinitely many positive integers n for which

$$
\Omega(n)=\Omega(n+1)
$$

(E) There exist infinitely many positive integers n for which

$$
\nu(n)=\nu(n+1)
$$

These conjectures have been studied by many mathematicians, e.g. [1], [2], [4], [6] and [8]. Although (C) and (D) were proved by Heath-Brown (cf. [4]) in 1984, conjecture (E) remains open (cf. [8]).

In 1927 during a conversation with H. Hasse, E. Artin enunciated the following famous hypothesis, now known as Artin's conjecture.
(A) For any given non-zero integer a other than $1,-1$, or a perfect square, there exist infinitely many primes p for which a is a primitive root $(\bmod p)$.

This conjecture is the focal point of diverse areas of mathematics such as group theory, algebraic and analytic number theory, and algebraic geometry (cf. [10]). There is a vast amount of literature for conjecture (A), e.g. [7], [3] and [5].

The purpose of this paper is to show the following.
Theorem. At least one of the two conjectures (A) and (E) is true.

[^0]2. The Lemma. Throughout the paper p and q denote primes.

Lemma. For sufficiently large x and any fixed positive integers K, M with $(K, M)=1,(2 K+1, M)=1$, we have

$$
\begin{aligned}
& \#\left\{q: q<x, 2 q+1=p \text { or } p_{1} p_{2}, p_{1}<p_{2}, q \equiv K(\bmod M)\right\} \\
& \quad>\frac{C}{\varphi(M)} x \ln ^{-2} x
\end{aligned}
$$

where φ denotes the Euler totient function.
Proof. This is an easy generalization of [9, Lemma 1], with $a=2, b=1$.
3. Proof of the Theorem. From the Lemma it is easy to see that at least one of the following two cases must hold.
(i) For sufficiently large x and some positive integers K, M with (K, M) $=1,(2 K+1, M)=1$,

$$
\#\left\{q: q<x, 2 q+1=p_{1} p_{2}, p_{1}<p_{2}, q \equiv K(\bmod M)\right\} \gg x \ln ^{-2} x
$$

(ii) For sufficiently large x and any fixed positive integers K, M with $(K, M)=1,(2 K+1, M)=1$,

$$
\#\{q: q<x, 2 q+1=p, q \equiv K(\bmod M)\}>\frac{C}{\varphi(M)} x \ln ^{-2} x
$$

Let $n=2 q, n+1=p_{1} p_{2}$ in (i). It is easy to see that (i) implies conjecture (E) with $\nu(n)=\nu(n+1)=2$, and moreover, all these n belong to a given arithmetic progression. We proceed to show that (ii) implies conjecture (A).

Let a denote a given non-zero integer other than $1,-1$, or a perfect square. From (ii) there are infinitely many pairs of primes p, q with $p-1=2 q$ and $(p, a)=1$.

By Fermat's little theorem $a^{p-1} \equiv 1(\bmod p)$ and $p-1=2 q$, we have

$$
a^{2 q} \equiv 1(\bmod p)
$$

Consider the following two possibilities.
Case $1: a^{2} \equiv 1(\bmod p)$. For sufficiently large p this is impossible.
Case 2: $a^{q} \equiv 1(\bmod p)$. We show this is also impossible for suitably chosen p and q.

Since a is not a perfect square there is a residue class $b(\bmod 4|a|)$, with b coprime to $4|a|$, such that a is a quadratic non-residue of p whenever p is congruent to b modulo $4|a|$. If we choose $M=2|a|$ and $K=(b-1) / 2$ we then see that Case 2 will not arise.

Therefore a must be a primitive root $(\bmod p)$, and (ii) implies conjecture (A).

The proof of the Theorem is complete.

References

[1] P. Erdős and L. Mirsky, The distribution of the values of the divisor function $d(n)$, Proc. London Math. Soc. (3) 2 (1952), 257-271.
[2] P. Erdős, C. Pomerance and A. Sárközy, On locally repeated values of certain arithmetic functions II, Acta Math. Hungar. 49 (1987), 251-259.
[3] R. Gupta and M. R. Murty, A remark on Artin's conjecture, Invent. Math. 78 (1984), 127-130.
[4] D. R. Heath-Brown, The divisor function at consecutive integers, Mathematika 31 (1984), 141-149.
[5] -, Artin's conjecture for primitive roots, Quart. J. Math. Oxford (2) 37 (1986), 27-38.
[6] A. Hildebrand, The divisor function at consecutive integers, Pacific J. Math. 129 (1987), 307-319.
[7] C. Hooley, On Artin's conjecture, J. Reine Angew. Math. 226 (1967), 209-220.
[8] J. H. Kan, On the number-theoretic functions $\nu(n)$ and $\Omega(n)$, Acta Arith. 78 (1996), 91-97.
[9] J. H. Kan and Z. Shan, On the divisor function d(n), Mathematika 43 (1996), 320-322.
[10] M. R. Murty, Artin's conjecture for primitive roots, Math. Intelligencer 10 (1988), no. 4, 59-67.

Nanjing Institute of Post \& Telecommunication
210003 Nanjing, Nanjing, China

Received on 30.4.2001
and in revised form on 14.9.2001

[^0]: 2000 Mathematics Subject Classification: 11B, 11N, 11P.

