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A Gel’fond type criterion in degree two
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1. Introduction. Let ξ be any real number and let n be a positive
integer. Defining the height H(P ) of a polynomial P as the largest absolute
value of its coefficients, an application of the Dirichlet box principle shows
that, for any real number X ≥ 1, there exists a non-zero polynomial P ∈
Z[T ] of degree at most n and height at most X which satisfies

|P (ξ)| ≤ cX−n

for some suitable constant c > 0 depending only on ξ and n. Conversely,
Gel’fond’s criterion implies that there are constants τ = τ(n) and c =
c(ξ, n) > 0 with the property that if, for any real number X ≥ 1, there
exists a non-zero polynomial P ∈ Z[T ] with

deg(P ) ≤ n, H(P ) ≤ X, |P (ξ)| ≤ cX−τ ,
then ξ is algebraic over Q of degree at most n. For example, Brownawell’s
version of Gel’fond’s criterion in [1] implies that the above statement holds
with any τ > 3n, and the more specific version proved by Davenport and
Schmidt as Theorem 2b of [4] shows that it holds with τ = 2n − 1. On
the other hand, the above application of the Dirichlet box principle implies
τ ≥ n. So, if we denote by τn the infimum of all admissible values of τ for a
fixed n ≥ 1, then we have τ1 = 1 and, in general,

n ≤ τn ≤ 2n− 1.

In the case of degree n = 2, the study of a specific class of transcendental
real numbers in [6] provides the sharper lower bound τ2 ≥ γ2 where γ =
(1 +

√
5)/2 denotes the golden ratio (see Theorem 1.2 of [6]). Our main

result below shows that we in fact have τ2 = γ2 by establishing the reverse
inequality τ2 ≤ γ2:

Theorem. Let ξ ∈ C. Assume that for any sufficiently large positive
number X there exists a non-zero polynomial P ∈ Z[T ] of degree at most 2
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and height at most X such that

|P (ξ)| ≤ 1
4
X−γ

2
.(1)

Then ξ is algebraic over Q of degree at most 2.

Comparing this statement with Theorem 1.2 of [6], we see that it is
optimal up to the value of the multiplicative constant 1/4 in (1). Although
we do not know the best possible value for this constant, our argument will
show that it can be replaced by any real number c with 0 < c < c0 =
(6 · 21/γ)−1/γ ∼= 0.253. As the reader will note, our proof, given in Section 3
below, has the same general structure as the proof of the main result of [3]
and the proof of Theorem 1a of [4].

Following the method of Davenport and Schmidt in [4] combined with
ideas from [2] and [7], we deduce the following result on simultaneous ap-
proximation of a real number by conjugate algebraic numbers:

Corollary. Let ξ be a real number which is not algebraic over Q of
degree at most 2. Then there are arbitrarily large real numbers Y ≥ 1 for
which there exist an irreducible monic polynomial P ∈ Z[T ] of degree 3 and
an irreducible polynomial Q ∈ Z[T ] of degree 2, both of which have height at
most Y and admit at least two distinct real roots whose distance to ξ is at
most cY −(3−γ)/2, with a constant c depending only on ξ.

The proof of this corollary is postponed to Section 4.

2. Preliminaries. We collect here several lemmas which we will need
in the proof of the Theorem. The first one is a special case of the well
known Gel’fond’s lemma for which we computed the optimal values of the
constants.

Lemma 1. Let L,M ∈ C[T ] be polynomials of degree at most 1. Then
1
γ
H(L)H(M) ≤ H(LM) ≤ 2H(L)H(M).

The second result is an estimate for the resultant of two polynomials of
small degree.

Lemma 2. Let m,n ∈ {1, 2}, and let P and Q be non-zero polynomials
in Z[T ] with deg(P ) ≤ m and deg(Q) ≤ n. Then, for any complex number ξ,

|Res(P,Q)| ≤ H(P )nH(Q)m
(
c(m,n)

|P (ξ)|
H(P )

+ c(n,m)
|Q(ξ)|
H(Q)

)

where c(1, 1) = 1, c(1, 2) = 3, c(2, 1) = 1 and c(2, 2) = 6.

The proof of the above statement is easily reduced to the case where
deg(P ) = m and deg(Q) = n. The conclusion then follows by writing
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Res(P,Q) as a Sylvester determinant and by arguing as Brownawell in the
proof of Lemma 1 of [1] to estimate this determinant.

The third lemma may be viewed, for example, as a special case of Lemma
13 of [5].

Lemma 3. Let P,Q ∈ Z[T ] be non-zero polynomials of degree at most 2
with greatest common divisor L ∈ Z[T ] of degree 1. Then, for any complex
number ξ, we have

H(L)|L(ξ)| ≤ γ(H(P )|Q(ξ)|+H(Q)|P (ξ)|).
Proof. The quotients P/L and Q/L being relatively prime polynomials

of Z[T ], their resultant is a non-zero integer. Applying Lemma 2 with m =
n = 1 and using Lemma 1, we then deduce, if L(ξ) 6= 0,

1 ≤ |Res(P/L,Q/L)| ≤ H(P/L)|(Q/L)(ξ)|+H(Q/L)|(P/L)(ξ)|

≤ γ H(P )
H(L)

|Q(ξ)|
|L(ξ)| + γ

H(Q)
H(L)

|P (ξ)|
|L(ξ)| .

Lemma 4. Let ξ ∈ C and let P,Q,R ∈ C[T ] be arbitrary polynomials of
degree at most 2. Then, writing the coefficients of these polynomials as rows
of a 3× 3 matrix , we have

|det(P,Q,R)| ≤ 2H(P )H(Q)H(R)
( |P (ξ)|
H(P )

+
|Q(ξ)|
H(Q)

+
|R(ξ)|
H(R)

)
.

The above statement follows simply by observing, as in the proof of
Lemma 4 of [3], that the determinant of the matrix does not change if, in
this matrix, we replace the constant coefficients of P , Q and R by the values
of these polynomials at ξ.

We also construct a sequence of “minimal polynomials” similarly to §3
of [3]:

Lemma 5. Let ξ ∈ C with [Q(ξ) : Q] > 2. Then there exists a strictly
increasing sequence (Xi)i≥1 of positive integers and a sequence (Pi)i≥1 of
non-zero polynomials in Z[T ] of degree at most 2 such that , for each i ≥ 1:

• H(Pi) = Xi,
• |Pi+1(ξ)| < |Pi(ξ)|,
• |Pi(ξ)| ≤ |P (ξ)| for all P ∈ Z[T ] with deg(P ) ≤ 2 and 0 < H(P )

< Xi+1,
• Pi and Pi+1 are linearly independent over Q.

Proof. For each positive integer X, define pX to be the smallest value of
|P (ξ)| where P ∈ Z[T ] is a non-zero polynomial of degree ≤ 2 and height
≤ X. This defines a non-decreasing sequence p1 ≥ p2 ≥ . . . of positive real
numbers converging to 0. Consider the sequence X1 < X2 < . . . of indices
X ≥ 2 for which pX−1 > pX . For each i ≥ 1, there exists a polynomial Pi ∈
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Z[T ] of degree ≤ 2 and height Xi with |Pi(ξ)| = pXi . The sequences (Xi)i≥1
and (Pi)i≥1 clearly satisfy the first three conditions. The last condition fol-
lows from the fact that the polynomials Pi are primitive of distinct height.

Lemma 6. Assume, in the notation of Lemma 5, that

lim
i→∞

Xi+1|Pi(ξ)| = 0.

Then there exist infinitely many indices i ≥ 2 for which Pi−1, Pi and Pi+1
are linearly independent over Q.

Proof. Assume on the contrary that Pi−1, Pi and Pi+1 are linearly de-
pendent over Q for all i ≥ i0. Then the subspace V of Q[T ] generated by
Pi−1 and Pi is independent of i for i ≥ i0. Let {P,Q} be a basis of V ∩ Z3.
Then, for each i ≥ i0, we can write

Pi = aiP + biQ

for some integers ai and bi of absolute value at most cXi, with a constant
c > 0 depending only on P and Q. Since Pi and Pi+1 are linearly indepen-
dent, we get

1 ≤
∥∥∥∥
ai bi

ai+1 bi+1

∥∥∥∥ =
|aiPi+1(ξ)− ai+1Pi(ξ)|

|Q(ξ)| ≤ 2c
|Q(ξ)| Xi+1|Pi(ξ)|

in contradiction with the hypothesis as we let i tend to infinity.

3. Proof of the Theorem. Let c be a positive number and let ξ be a
complex number with [Q(ξ) : Q] > 2. Assume that, for any sufficiently large
real number X, there exist a non-zero polynomial P ∈ Z[T ] of degree ≤ 2
and height ≤ X with |P (ξ)| ≤ cX−γ

2
. We will show that these conditions

imply c ≥ c0 = (6 · 21/γ)−1/γ > 1/4, thereby proving the Theorem.
Let c1 be an arbitrary real number with c1 > c. By our hypotheses, the

sequences (Xi)i≥1 and (Pi)i≥1 given by Lemma 5 satisfy

|Pi(ξ)| ≤ cX−γ
2

i+1

for any sufficiently large i. Then, by Lemma 6, there exist infinitely many i
such that Pi−1, Pi and Pi+1 are linearly independent. For such an index i, the
determinant of these three polynomials is a non-zero integer and, applying
Lemma 4, we deduce

1 ≤ |det(Pi−1, Pi, Pi+1)| ≤ 2Xi−1XiXi+1

( |Pi−1(ξ)|
Xi−1

+
|Pi(ξ)|
Xi

+
|Pi+1(ξ)|
Xi+1

)

≤ 2cX−γi Xi+1 + 4cX1−γ
i+1 .

Assuming that i is sufficiently large, this implies

Xγ
i ≤ 2c1Xi+1.(2)
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Suppose first that Pi and Pi+1 are not relatively prime. Then their great-
est common divisor is an irreducible polynomial L ∈ Z[T ] of degree 1, and
Lemma 3 gives

H(L)|L(ξ)| ≤ γ(Xi|Pi+1(ξ)|+Xi+1|Pi(ξ)|) ≤ 2γcX−γi+1.(3)

Since Pi−1, Pi and Pi+1 are linearly independent, the polynomial L does
not divide Pi−1 and so the resultant of Pi−1 and L is a non-zero integer.
Applying Lemma 2 then gives

1 ≤ |Res(Pi−1, L)| ≤ H(Pi−1)H(L)2
( |Pi−1(ξ)|
H(Pi−1)

+ 3
|L(ξ)|
H(L)

)

≤ cX−γ2

i H(L)2 + 3Xi−1H(L)|L(ξ)|.
Combining this with (3) and with the estimate H(L) ≤ γH(Pi) ≤ γXi

coming from Lemma 1, we conclude that, in this case, the index i is bounded.
Thus, assuming that i is sufficiently large, the polynomials Pi and Pi+1

are relatively prime and therefore their resultant is a non-zero integer. Using
Lemma 2 we then find

1 ≤ |Res(Pi, Pi+1)| ≤ 6XiXi+1(cXiX
−γ2

i+2 + cX−γi+1) ≤ 6c1XiX
1−γ
i+1

since from (2), we have cXi ≤ (c1 − c)Xi+1 for large i. By (2) again, this
implies

1 ≤ 6c1(2c1)1/γ,

and thus c1 ≥ c0 = (6 · 21/γ)−1/γ. The choice of c1 > c being arbitrary, this
shows that c ≥ c0 as announced.

4. Proof of the Corollary. Let ξ be as in the statement of the Corol-
lary and let V denote the real vector space of polynomials of degree at most
2 in R[T ]. It follows from the Theorem that there exist arbitrarily large real
numbers X for which the convex body C(X) of V defined by

C(X) = {P ∈ V ; |P (ξ)| ≤ (1/4)X−γ
2
, |P ′(ξ)| ≤ c1X and |P ′′(ξ)| ≤ c1X}

with c1 = (1 + |ξ|)−2 contains no non-zero integral polynomial. By Propo-
sition 3.5 of [7] (a version of Mahler’s theorem on polar reciprocal bodies),
this implies that there exists a constant c2 > 1 such that, for the same values
of X, the convex body

C∗(X) = {P ∈ V ; |P (ξ)| ≤ c2X
−1, |P ′(ξ)| ≤ c2X

−1 and |P ′′(ξ)| ≤ c2X
γ2}

contains a basis of the lattice of integral polynomials in V .
Fix such an X with X ≥ 1, and let {P1, P2, P3} ⊂ C∗(X) be a basis of

V ∩ Z[T ]. We now argue as in the proof of Proposition 9.1 of [7]. We put

B(T ) = T 2 − 1, r = X−(1+γ2)/2, s = 20c2X
−1,
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and observe that any polynomial S ∈ V with H(S − B) < 1/3 admits at
least two real roots in the interval [−2, 2] as such a polynomial takes positive
values at ±2 and a negative value at 0. We also note that, since Pi ∈ C∗(X),
we have

H(Pi(rT + ξ)) ≤ c2X
−1 (i = 1, 2, 3).

Since {P1, P2, P3} is a basis of V over R, we may write

(T − ξ)3 + sB

(
T − ξ
r

)
= T 3 +

3∑

i=1

θiPi(T ), sB

(
T − ξ
r

)
=

3∑

i=1

ηiPi(T )

for some real numbers θ1, θ2, θ3 and η1, η2, η3. For i = 1, 2, 3, choose integers
ai and bi with |ai − θi| ≤ 2 and |bi − ηi| ≤ 2 so that the polynomials

P (T ) = T 3 +
3∑

i=1

aiPi(T ) and Q(T ) =
3∑

i=1

biPi(T )

are respectively congruent to T 3 + 2 and T 2 + 2 modulo 4. Then, by Eisen-
stein’s criterion, P and Q are irreducible polynomials of Z[T ]. Moreover, we
find

H(s−1P (rT + ξ)−B(T )) = s−1H
(

(rT )3 +
3∑

i=1

(ai − θi)Pi(rT + ξ)
)

≤ s−1 max{r3, 6c2X
−1} < 1/3.

Then P (rT+ξ) has at least two distinct real roots in the interval [−2, 2] and
so P has at least two real roots whose distance to ξ is at most 2r. A similar
but simpler computation shows that the same is true of the polynomial Q.
Finally, the above estimate implies H(P (rT + ξ)) ≤ 4s/3 and so H(P ) ≤
c3X

γ2
for some constant c3 > 0, and the same for Q. These polynomials thus

satisfy the conclusion of the Corollary with Y = c3X
γ2

and an appropriate
choice of c.
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briques de degré donné, Acta Arith. 93 (2000), 77–86.

[3] H. Davenport and W. M. Schmidt, Approximation to real numbers by quadratic ir-
rationals, ibid. 13 (1967), 169–176.

[4] —, —, Approximation to real numbers by algebraic integers, ibid. 15 (1969), 393–416.
[5] M. Laurent and D. Roy, Criteria of algebraic independence with multiplicities and

interpolation determinants, Trans. Amer. Math. Soc. 351 (1999), 1845–1870.



Gel’fond type criterion 103

[6] D. Roy, Approximation to real numbers by cubic algebraic integers I, Proc. London
Math. Soc., to appear; arXiv:math.NT/0210181.

[7] D. Roy and M. Waldschmidt, Diophantine approximation by conjugate algebraic in-
tegers, Compositio Math., to appear; arXiv:math.NT/0207102.

Department of Mathematics
McGill University
805 Sherbrooke Ouest
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