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The product of two Dirichlet series
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Frédéric Bayart (Lille)

1. Introduction. Let A(s) =
∑

n≥1 ann
−s be a Dirichlet series. Two

abscissas are connected to the convergence of A:

σc = inf
{
σ ∈ R;

+∞∑

n=1

ann
−σ converges

}
, abscissa of convergence,

σa = inf
{
σ ∈ R;

+∞∑

n=1

|an|n−σ converges
}
, abscissa of absolute convergence.

It is well known that 0 ≤ σa − σc ≤ 1, and that those inequalities are
best possible. We recall that A converges for Re(s) > σc, and A diverges
for Re(s) < σc. If σc > 0, we have moreover the following Hadamard-like
formula:

σc = lim sup
n→+∞

log |An|
logn

,(1)

where An = a1 + . . .+ an.
Let B(s) =

∑
n≥1 bnn

−s be another Dirichlet series. The Dirichlet prod-
uct C = AB is formally defined by C(s) =

∑
n≥1 cnn

−s, where cn =∑
ij=n aibj . It is natural to study the relations between the abscissas of

convergence of A, B and C. The answer is given by the following:

Theorem 1.1. If A (resp. B) is a Dirichlet series whose abscissa of
convergence is α (resp. β), with |α−β| ≤ 1, then the abscissa of convergence
of C = AB is less than 1

2(α+ β + 1). Moreover , this inequality is optimal :
we can find A and B such that C diverges for all σ < 1

2(α+ β + 1).

This theorem has a long history. Its first part was first proved by Stielt-
jes if α = β = 0, next by Landau in the general case. Moreover, Landau [4]
proved that σc can be larger than 1

2(α + β) + 1
8 , whereas it had been con-

jectured by Cahen that we always have σc ≤ 1
2(α + β). It is Bohr [1] who

gave the first proof of the optimality of the bound 1
2(α+β+1). His method,
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which used the order function, was simplified by H. Queffélec in [5], and gen-
eralized by J. P. Kahane and H. Queffélec in [2], by using the Baire category
theorem. Very recently, S. V. Konyagin and H. Queffélec have given in [3] an
easy proof of this theorem, by using the principle of uniform boundedness.

The previous arguments are essentially topological. In Section 2, we give
the first “explicit” proof of the optimality. Indeed, we give an example of
two Dirichlet series A and B with σc(A) = α, σc(B) = β, and σc(AB) =
1
2(α+ β + 1).

In Section 3, we study the same problem under additional assumptions
on A and B. For instance, B will be the ζ function, and A will satisfy
A(1) = 0. Under these conditions, we show that σc(AB) ≤ 1

2(α + β), the
inequality being optimal. This answers a question asked by M. Balazard.

2. Convergence of products of Dirichlet series. We begin by the
following simple

Lemma 2.1. Let N be the square of an even number. For k=1, . . . ,
√
N/2,

set ik = [N/k]. Then:

• [N/ik] = k.
• 2
√
N ≤ ik ≤ N .

We recall that [x] denotes the integer part of x.

Proof. Clearly, we have

2
√
N =

[
N√
N/2

]
≤ ik ≤ N =

[
N

1

]
.

Moreover, since ik = [N/k], we see that N/ik ≥ k and N/ik < Nk/(N − k).
The assumption k ≤

√
N/2 allows us to conclude.

Now, we are going to define two Dirichlet series A and B with σc(A) = α,
σc(B) = β, and σc(AB) = 1

2(α + β + 1), with the additional assumption
β − 1 < α < β. By a translation, it is sufficient to handle the case β = 1.
For all n ≥ 1, we set Mn = 24n, so that Mn−1 = M

1/4
n . Lemma 2.1 gives us

integers ik,n which satisfy

2
√
Mn ≤ i√Mn/2,n < . . . < i2,n < i1,n ≤Mn

and [
Mn

ik,n

]
= k for k = 1, . . . ,

√
Mn/2.

If n is fixed, the integers ik,n are all distinct. Moreover, since Mn−1 < 2
√
Mn,

if (k, n) 6= (j,m), then ik,n 6= ij,m. So we may define a sequence (ai)i∈N by

aik,n = (−1)kiαk,n, ai = 0 if i 6= ik,n.
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The Dirichlet series A(s) =
∑

i≥1 aii
−s is then well defined. Let us compute

its abscissa of convergence. If N ≥ 1, and if n0 is the least integer such that
N ≤Mn0 , then

N∑

i=1

aii
−α =

n0−1∑

n=1

√
Mn/2∑

k=1

(−1)k +
N∑

ik,n0≥2
√
Mn0

(−1)k.(2)

But for all n ≥ 1,
√
Mn/2 is an even integer, and so

√
Mn/2∑

k=1

(−1)k = 0.

Since
N∑

ik,n0≥2
√
Mn0

(−1)k ∈ {−1, 0, 1},

the abscissa of convergence of A is α.
We define B as the alternate zeta function, namely

B(s) =
∑

i≥1

(−1)ii−s.

Clearly, σc(B) = 0. As a consequence of Theorem 1.1, we get σc(AB) ≤
1
2(α+ 1). In fact, we have equality:

Theorem 2.2. The abscissa of convergence of AB is exactly 1
2(1 + α).

Proof. We set C(s) = A(s)B(s) =
∑

n≥1 cnn
−s, and CN = c1 + . . .+ cN .

An elementary computation gives

CN =
N∑

i=1

aiB[N/i],

where Bn = b1 + . . .+ bn. We suppose that N = Mn. It is sufficient to prove
that CN ≥ δN (α+1)/2. Observe that

Bj =
{−1 if j is odd,

0 if j is even.

We split the sum which defines CN into two parts:

CN =
2
√
N−1∑

i=1

aiB[N/i] +
N∑

i=2
√
N

aiB[N/i] =: S1 + S2.

If i ≤ 2
√
N − 1, the condition ai 6= 0 implies that i ≤ Mn−1 = N1/4. In
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particular,

|S1| ≤
N1/4∑

i=1

|ai| ≤ N1/4Nα/4.

On the other hand,

S2 =

√
N/2∑

k=1

aik,nBk =

√
N/2∑

k=1
k odd

(−1) · (−1)iαk,n.

Since ik,n ≥ 2
√
N , we get S2 ≥ K1

√
NNα/2. Therefore CN ≥ K2N

(1+α)/2,
which shows that the abscissa of convergence of C is at least (1 + α)/2.

Remark 2.3. The case α ≤ β− 1 is easier. Indeed, the inequality σa(A)
≤ σc(A) + 1 implies σc(AB) ≤ β. This is optimal. For instance, set A(s) =∑

n≥1(−1)nnαn−s, σc(A) = α, and B(s) =
∑

n≥1(−1)nnβn−s, σc(B) = β.
If p is a prime number, one has

cp = apb1 + a1bp = (−1)p(pα + pβ),

so that |cp| ≥ K3p
β . In particular, this gives σc(AB) ≥ β.

3. Multiplication by ζ. We would like to know if the abscissa of con-
vergence of the product AB can be improved if A vanishes at least once on
the half-line ]α,+∞[. M. Balazard noticed (personal communication) that if
0 < σc(A) < 1 and A(1) = 0, then the abscissa of convergence of the product
Aζ is less than 1

2(α+ 1). He asked whether this inequality is optimal.
Our aim in this section is to generalize (in somewhat optimal form)

Balazard’s observation, and to answer his question.

Theorem 3.1. Let A(s) =
∑

n≥1 ann
−s and B(s) =

∑
n≥1 bnn

−s be two
Dirichlet series with σc(A) = α, σc(B) = β, and β − 1 < α < β. Moreover ,
suppose that

1. A(β) = 0,
2. Bn = b1 + . . .+ bn = Knβ +O(nβ−1).

Then the abscissa of convergence of the product AB is less than 1
2(α+ β).

This theorem improves the abscissa given by Theorem 1.1, since we gain
a translation of factor 1/2. In particular, if B = ζ, we have Bn = n, and we
recover Balazard’s observation.

Proof. We can assume that K = β = 1. We set C(s) =
∑+∞

n=1 cnn
−s =

A(s)B(s); it is sufficient to prove that Cn = c1 + . . . + cn = O(n(1+α)/2+ε)
for each ε > 0. We shall use the hyperbola method of Dirichlet by writing
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(see [6, p. 38])

Cn =
∑

i≤√n
aiB[n/i] +

∑

j≤√n
bjA[n/i] − A[

√
n]B[

√
n] =: S1 + S2 − S3.

Now, we know that:

(i) |∑n≤t an| = O(tα+ε),
(ii) σa(A) ≤ α+ 1, and so

∑
n≤t |an| = O(t1+α+ε).

Therefore, we have

S3 = O(
√
nnα/2+ε) = O(n(1+α)/2+ε), S2 =

∑

j≤√n
bjO

(
nα+ε

jα+ε

)
.

But bj = Bj −Bj−1 = j − (j − 1) +O(1) = O(1), and so

S2 =
∑

j≤√n
O

(
nα+ε

jα+ε

)
= O(n(1+α)/2+ε).

Taking advantage of A(1) = 0, we have

S1 =
∑

i≤√n
aiB[n/i] − n

+∞∑

i=1

ai
i

=
∑

i≤√n
ai

(
B[n/i] −

n

i

)
− n

∑

i>
√
n

ai
i
.

Now, B[n/i] − n/i = B[n/i] − [n/i] + [n/i]− n/i = O(1), and so
∑

i≤√n
ai

(
B[n/i] −

n

i

)
= O

( ∑

i≤√n
|ai|
)

= O(n(1+α)/2+ε).(3)

Finally, an Abel summation by parts shows that

n
∑

i>
√
n

ai
i

= O(n(1+α)/2+ε).

Putting this together, we find Cn = O(n(1+α)/2+ε), which is the conclusion
of Theorem 3.1.

We shall prove that Theorem 3.1 is optimal, thus answering the question
of M. Balazard.

Theorem 3.2. Let α, β be real numbers such that α < β < α + 1. For
each Dirichlet series B(s) =

∑
n≥1 bnn

−s satisfying Bn = Knβ + O(nβ−1)
with K 6= 0, there exists a Dirichlet series A with σc(A) = α, A(β) = 0
and σc(AB) = 1

2(α+β). In particular , the abscissa of convergence given by
Theorem 3.1 is best possible.

Proof. We can assume that K = β = 1. As in Theorem 2.2, the Dirichlet
series A will be defined by blocks. We shall need the following technical
lemmas:
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Lemma 3.3. Let N ≥ 16 be the square of an even number. Set

A = {2
√
N ≤ i ≤ N/2; ∃k ∈ {2, . . . ,

√
N/2− 1},

[N/(i− 1)] = k + 1, [N/i] = k},
B = {2

√
N ≤ j ≤ N/2; ∃k ∈ {3, . . . ,

√
N/2},

[N/i] = k, [N/(j + 1)] = k − 1}.
Then |A| = |B| =

√
N/2−2. Moreover , if A = {ik; k ∈ {2, . . . ,

√
N/2−1}}

and B = {jk; k ∈ {3, . . . ,
√
N/2}}, where k = [N/ik] = [N/jk], then

jk+1 = ik − 1,(4)

jk > ik,(5)

N

ik
− N

jk
≥ 1

2
.(6)

In particular , A ∩ B = ∅.
For instance, if N = 100, one has A = {i2 = 34; i3 = 26; i4 = 21}, while

B = {j3 = 33; j4 = 25; j5 = 20}.

Fig. 1. Definition of the integers ik and jk

Proof. First, the cardinality of each set is clearly ≤
√
N/2 − 2. On the

other hand, if i ≥ 2
√
N , one has:
N

i
− N

i+ 1
=

N

i(i+ 1)
≤ 1

4
< 1.

Therefore, the function {2
√
N, . . . , N/2} → N, i 7→ [N/i], is non-increasing,

and satisfies [N/(i+ 1)] − [N/i] ∈ {−1, 0}. Moreover, since [N/(2
√
N)] =√

N/2 and [N/(N/2)] = 2, each value from {2, . . . ,
√
N/2 − 1} is taken by

[N/i] if i runs over {2
√
N+1, . . . , N/2}. Fix k in {2, . . . ,

√
N/2−1} and let ik
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be the first integer in {2
√
N, . . . , N/2} such that [N/ik] = k. By definition,

we have [N/(ik − 1)] = k+1, and ik ∈ A. This implies that |A| =
√
N/2−2.

The proof is exactly the same for B. Observe that jk is the greatest
integer in {2

√
N, . . . , N/2} with [N/jk] = k. In particular, we get
[

N

(jk + 1)− 1

]
= k,

[
N

jk + 1

]
= k − 1.

This shows that jk = ik−1 − 1.
To obtain (5), note that by construction jk ≥ ik. Equality would imply

[
N

ik + 1

]
= k − 1,

[
N

ik − 1

]
= k + 1.

But in view of the inequality ik ≥ 2
√
N + 1, this is impossible since one has

N

ik − 1
− N

ik + 1
=

2N
(ik − 1)(ik + 1)

≤ 1.

It remains to prove (6). An easy computation shows that
(

N

jk + 1
−
[

N

jk + 1

])
−
(
N

jk
−
[
N

jk

])
= 1− N

jk(jk + 1)
≥ 3

4
.

Since x − [x] ∈ [0, 1[, one has N/jk − k ≤ 1/4. With exactly the same
argument, one can prove that N/ik − k ≥ 3/4, which gives (6).

The following lemma is crucial.

Lemma 3.4. Let N ≥ 16 be the square of an even number , and let A
and B be the sets defined in Lemma 3.3. For i ∈ {2

√
N, . . . , N/2}, define a

complex number ai as follows:

• for k ∈ {2, . . . ,
√
N/2}, set aik = iαk , and ajk = −jαk ,

• for i ≥ 2
√
N , i 6∈ A ∪ B, set ai = 0.

Then there exists a constant δ > 0, which does not depend on N , such that
∣∣∣∣

N/2∑

i=2
√
N

(
N

i
−B[N/i]

)
ai

∣∣∣∣ ≥ δN (1+α)/2.(7)

Proof. For commodity reasons, we shall write Bn = n+ un, where (un)
is a bounded sequence. Then the left hand side of (7) reads

N/2∑

i=2
√
N

(
N

i
−B[N/i]

)
ai =

(
N

i2
−B[N/i2]

)
ai2 +

(
N

j√N/2
−B[N/j√N/2]

)
aj√N/2

+

√
N/2−1∑

k=3

iαk

(
N

k
− k − uk

)
− jαk

(
N

k
− k − uk

)
= O(Nα) +

√
N/2−1∑

k=3

dk,
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where

dk = iαk

(
N

ik
− k − uk

)
− jαk

(
N

jk
− k − uk

)
.

We shall prove that

dk ≥
1
2
iαk −M(jαk − iαk ),(8)

where M is a constant independent of k and N . We consider three cases:

• If 0 ≤ N/jk − k − uk ≤ N/ik − k − uk, it follows from (6) that

N

ik
− k − uk ≥

(
N

jk
− k − uk

)
+

1
2
≥ 0,

which gives

dk ≥
1
2
iαk −

(
N

jk
− k − uk

)
(jαk − iαk ) ≥ 1

2
iαk −M(jαk − iαk ),

where M = 1 + max |uk|.
• If N/jk − k − uk ≤ N/ik − k − uk ≤ 0, then by (6), we have

−
(
N

jk
− k − uk

)
≥ −

(
N

ik
− k − uk

)
+

1
2
≥ 0,

which gives

dk ≥
1
2
jαk −

(
N

ik
− k − uk

)
(jαk − iαk ) ≥ 1

2
iαk −M(jαk − iαk ).

• If N/jk − k − uk ≤ 0 ≤ N/ik − k − uk, we are in the most favorable
case, since we add two numbers with the same sign:

dk ≥ iαk
(
N

ik
− k − uk

)
− iαk

(
N

jk
− k − uk

)
≥ 1

2
iαk .

So, we have proved (8). Now,
√
N/2−1∑

k≥3

iαk ≥
(√

N

2
− 3
)

(2
√
N)α ≥ δ1N

(1+α)/2.

On the other hand, we use (4) to majorize |∑
√
N/2−1

k=3 (jαk − iαk )|:
√
N/2−1∑

k=3

(jαk − iαk ) =

√
N/2−2∑

k=2

jαk+1 −

√
N/2−1∑

k=3

iαk

= O(Nα) +

√
N/2−2∑

k=3

((ik − 1)α − iαk )
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= O(Nα) +

√
N/2−2∑

k=3

O(iα−1
k )

= O(Nα) +

√
N/2−2∑

k=3

O(Nα−1) = O(Nα).

Finally, we obtain
∣∣∣∣
N∑

i=1

(
N

i
−
[
N

i

]
− u[N/i]

)
ai

∣∣∣∣ ≥ δ2N
(1+α)/2.(9)

Proof of Theorem 3.2. We set Mn = 24n for n ≥ 1. Let An = {ik,n}
and Bn = {jk,n} be the sets defined in Lemma 3.3 for N = Mn. Since
An ∪ Bn ⊂ [2

√
Mn;Mn/2] and Mn/2 < 2

√
Mn+1, the sets An ∪ Bn and

Am ∪ Bm are disjoint if n 6= m. So, we may define a sequence (ai)i≥2 by:

aik,n = iαk,n, ajk,n = −jαk,n, ai = 0 otherwise.

Let us verify that
∑

i≥2 aii
−1 converges. It is sufficient to prove that m 7→∑m

i=2 aii
−α is bounded. We apply the same decomposition as in (2). Denot-

ing by n0 the least integer such that N ≤Mn0 , we have

N∑

i=1

aii
−α =

n0−1∑

n=1

√
Mn0/2−1∑

k=2

(iαk,Mn0
i−αk,Mn0

− jαk,Mn0
j−αk,Mn0

) +
N∑

i≥2
√
Mn0

aii
−α

=
N∑

i≥2
√
Mn0

aii
−α.

Now, properties (4) and (5) ensure that

N∑

i≥2
√
Mn0

aii
−α ∈ {−1, 0, 1}.

So, it is correct to set a1 = −∑i≥2 aii
−1 and to consider the Dirichlet

series A(s) =
∑

i≥1 aii
−s. By construction, σc(A) = α and A(1) = 0. It

remains to prove that σc(AB) ≥ (1 + α)/2, since we already know that
σc(AB) ≤ (1 + α)/2. Letting CN =

∑N
i=1 aiB[N/i], this will be done by

proving that

lim sup
N→+∞

CN

N (1+α)/2
> 0.

For N = Mn, we take advantage of
∑

i≥1 aii
−1 = 0 and of the vanishing of
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ai for i between N1/4 and 2N1/2:

CN =
N1/4∑

i=1

ai

(
B[N/i] −

N

i

)
+

N∑

i=2
√
N

ai

(
B[N/i] −

N

i

)
+N

∑

i>N

ai
i

=: S1 + S2 + S3.

By assumption, B[N/i] −N/i = O(1), which implies

|S1| ≤
N1/4∑

i=1

|ai| = O(N (1+α)/4).

An Abel summation by parts now gives

|S3| ≤ O(Nα).

Finally, Lemma 3.4 gives us an estimation of S2:

|S2| ≥ δN (1+α)/2.

We conclude that there exists a constant δ′ such that, providing N = Mn,
we have

|CN | ≥ δ′N (1+α)/2.

This ends to prove that σc(AB) ≥ (1 + α)/2.

Remark 3.5. As in [2], it is possible to give a topological proof of
Theorem 3.2, which is maybe a little bit less technical. Indeed, consider
a non-decreasing sequence (ϕN ) such that, for all Dirichlet series A with
σc(A) = α and A(1) = 0, the sequence (c1 + . . .+ cN )/ϕN is bounded,
where

∑+∞
n=1 cnn

−s = A(s)B(s). It is sufficient to prove that

ϕN ≥ δN (1+α)/2, where δ is a positive constant.

We introduce the Banach space E = {a = (an);
∑

n≥1 ann
−α converges,∑

n≥1 ann
−1 = 0}, equipped with the norm ‖a‖ = supn |

∑n
k=1 akk

−α|. De-
fine a sequence of linear forms (Ln) on E by

Ln(a) =
c1 + . . .+ cn

ϕn
.

By our assumption, supn |Ln(a)| < ∞ for each a ∈ E. The Banach–Stein-
haus theorem now gives M = supn ‖Ln‖ < +∞, i.e. for each a ∈ E and each
n ∈ N∗,

∣∣∣
n∑

i=1

aiB[n/i]

∣∣∣ ≤Mϕn‖a‖.

Suppose that N is the square of an even number; again, A and B are defined
in Lemma 3.3, and the sequence (ai) is defined as follows:

• For k ∈ {2, . . . ,
√
N/2}, we set aik = iαk and ajk = −jαk .

• For i ≥ 2, i 6∈ A ∪ B, we set ai = 0.
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• Finally, we set a1 = −∑N
i=2 aii

−1.

This definition is consistent, and a ∈ E. Now, the computation made in the
proof of Theorem 3.2 implies that ‖a‖ = O(1) and

∣∣∣
N∑

i=1

aiB[N/i]

∣∣∣ ≥ δN (1+α)/2.

This in turn implies the required inequality on ϕN .

Remark 3.6. Conditions 1 and 2 in Theorem 3.1 cannot be dispensed
with.

1. If we do not assume thatA(β) = 0, the conclusion is false. For example,
if 0 < α < 1, consider B(s) = ζ(s) and A(s) = ζ(s− 1 + α). Then

n∑

i=1

aiB[n/i] ≥
n∑

i=1

ai
n

i
−

n∑

i=1

ai ≥ n
n∑

i=1

1
i2−α

−
n∑

i=1

1
i1−α

≥ δn,

which proves that the abscissa of convergence is at least 1, while Theorem 3.1
would give 1

2(1 + α).
2. Now consider a Dirichlet series B such that Bn = n + (−1)nnr, 0 <

r < 1. If N is the square of an even integer, and the set A is defined as
previously, we choose a ∈ E with aik = (−1)kiαk , ai = 0 for i ≥ 2, i 6= ik,
and a1 = −∑i≥2 aii

−1. It is clear that a ∈ E, and that ‖a‖ = O(1).
Moreover
N∑

i=1

aiB[N/i] =
N∑

i=1

ai

(
B[N/i] −

N

i

)

=

√
N/2−1∑

k=2

aik

(
k − N

ik

)
+

√
N/2−1∑

k=2

aik(−1)kkr

= O
(
√
N/2−1∑

k=2

|aik |
)

+

√
N/2−1∑

k=2

iαkk
r = O(N (1+α)/2) +

√
N/2−1∑

k=2

iαkk
r.

But ik ≥
√
N , and so
√
N/2−1∑

k=2

iαkk
r ≥ CNα/2N (1+r)/2 ≥ CN (1+α)/2+r/2.

This gives ϕN ≥ δN (1+α)/2+r/2, which means that we cannot improve the
abscissa of convergence given by Theorem 1.1.
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