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1. Introduction. More than 150 years ago, E. Heine [He1], [He2] con-
sidered the series

2φ1

(
qa, qb

qc

∣∣∣∣ q, z
)

= 1 +
(1− qa)(1− qb)
(1− q)(1− qc) z

+
(1− qa)(1− qa+1)(1− qb)(1− qb+1)

(1− q)(1− q2)(1− qc)(1− qc+1)
z2 + . . . ,

|q| < 1, |z| < 1, c 6= 0,−1,−2, . . . ,

and proved several results for it. In particular, he obtained the transforma-
tion formula

(1) 2φ1

(
qa, qb

qc

∣∣∣∣ q, z
)

=
(qa; q)∞(qbz; q)∞
(qc; q)∞(z; q)∞

· 2φ1

(
qc−a, z

qbz

∣∣∣∣ q, qa
)
,

where (x; q)∞ :=
∏∞
n=1(1− xqn−1). Today generalized Heine series become

an actively investigated part of modern mathematics and a lot of papers
and monographs (see, e.g., [Ex], [Fi], [GR]) are devoted to their study. The
aim of this note is to make use of Heine’s transform (1) to deduce a sharp
irrationality measure for the q-harmonic series

hp(1) :=
∞∑

n=1

1
pn − 1

=
∞∑

n=1

qn

1− qn(2)

=
q

1− q · 2φ1

(
q, q
q2

∣∣∣∣ q, q
)
, p = 1/q ∈ Z \ {0,±1}.

As is easily seen, the series hp(1) is irrational as a function of p. The
irrationality of the number h2(1) (i.e., q = 1/2 in (2)) was first proved
by P. Erdős [Er], who also posed the problem of extending his result to
an arbitrary integer p ∈ Z \ {0,±1}. This problem (even in more general
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settings) was solved by J.-P. Bézivin [Bé] and in a quantitative form by
P. Borwein [Bo]. A sharp irrationality measure

(3) µ(hp(1)) ≤ 2π2

π2 − 2
= 2.50828476 . . .

was obtained by P. Bundschuh and K. Väänänen [BV] with the help of
explicit Padé approximations to the q-logarithm function and a certain q-
arithmetic observation. (Here µ = µ(α) denotes the irrationality exponent
of an irrational number α that is the least possible exponent such that
for any ε > 0 the inequality |α − a/b| ≤ b−(µ+ε) has only finitely many
solutions in integers a, b.) The works [BV], [MV], and [Ass] contain estimates
for irrationality exponents of the q-logarithm values. Finally, introducing
a q-arithmetic approach in [Zu1] resulted in a slight improvement of the
estimate (3) and of the estimate in [Ass] for a q-analogue of log 2 (the result
for µ(hp(1)) in [Zu1] is wrong due to a computational error; see the remark
at the end of Section 3 below).

The “ordinary” arithmetic approach occurs as a part of the group-
structure approach proposed by G. Rhin and C. Viola in [RV1], [RV2] for
obtaining quantitative results for the values ζ(2) and ζ(3) of Riemann’s
zeta function. Recently, the author [Zu2] extended the method of [RV1] to a
suitable q-analogue of ζ(2). The permutation group in [RV1], [Zu2] is rather
rich to get nice estimates for irrationality exponents in both ordinary and
q-(basic) cases. A simpler group (of order 12) for the q-harmonic series that
appears below also leads to a quantitative result.

Theorem 1. The irrationality exponent of hp(1) satisfies the estimate

µ(hp(1)) ≤ 2.46497868 . . .

However, the group has no ordinary analogue, hence it has not appeared
before in an arithmetic study. As pointed out by the referee, it is worth
remarking that the estimate in Theorem 1 is uniform in p.

2. q-Basis. Throughout the paper p = 1/q ∈ Z\{0,±1}. As usual (see,
e.g., [GR]), define the shifted q-factorial

(a; q)0 = 1, (a; q)n :=
n∏

ν=1

(1− aqν−1) for n = 1, 2, . . . ,

and Jackson’s q-gamma function

Γq(t) :=
(q; q)∞
(qt; q)∞

(1− q)1−t.

Then q-extensions of factorial and binomial coefficients read as follows:

[n]q! := Γq(n+ 1) =
(q; q)n

(1− q)n = p−n(n−1)/2[n]p!,
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[
n

k

]

q

:=
(q; q)n

(q; q)k · (q; q)n−k
=

[n]q!
[k]q! [n− k]q!

= p−k(n−k)
[
n

k

]

p

,

where k = 0, 1, . . . , n and n = 0, 1, 2, . . .
Since pn − 1 =

∏
l|n Φl(p), where

(4) Φl(p) :=
l∏

k=1
(k,l)=1

(p− e2πik/l) ∈ Z[p], l = 1, 2, 3, . . . ,

are (irreducible over Z) cyclotomic polynomials, we deduce the following
claims:

• the polynomials (4) are the only irreducible divisors of the polynomial

[n]p! =
n∏

ν=1

pν − 1
p− 1

∈ Z[p];

moreover,

(5) ordΦ1(p)[n]p! = 0, ordΦl(p)[n]p! =
⌊
n

l

⌋
, l = 2, 3, 4, . . . ,

where b · c denotes the integral part of a number;
• the polynomial Dn(p) :=

∏n
l=1 Φl(p) is the least common multiple of

the polynomials pk − 1, k = 1, . . . , n.

In the above notation, the q-arithmetic approach is characterized by the
following assertions.

Lemma 1 ([BV, Section 2]; [Ass, Lemma 2]). We have

lim
n→∞

log |Dn(p)|
n2 log |p| =

3
π2 .

Lemma 2 ([Zu1, Lemma 1]). For each demi-interval [u, v) ⊂ (0, 1) with
u, v ∈ Q,

lim
n→∞

1
n2 log |p|

∑

l:{n/l}∈[u,v)

log |Φl(p)| =
3
π2 (ψ′(u)− ψ′(v))

=
3
π2

v�

u

d(−ψ′(x)),

where {a} = a−bac and ψ(x) is the logarithmic derivative of Euler’s gamma
function.

3. Linear forms involving q-harmonic series. Let a0, a1, a2, and b
be positive integers satisfying the condition

(6) a1 + a2 ≤ b.
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Consider the rational function

R(T ) =
(qT ; q)a1−1

(q; q)a1−1
· (q; q)b−a2−1

(qa2T ; q)b−a2−1
· T a0 ,

so that

(7) R(qt) =
Γq(b− a2)

(1− q)Γq(a1)
· Γq(t+ a1)Γq(t+ a2)
Γq(t+ 1)Γq(t+ b)

· qa0t.

Denote by a∗1 ≤ a∗2 the ordered version of the set a1, a2, i.e., {a∗1, a∗2} =
{a1, a2}. Condition (6) implies that R(T )T−a0 = O(T−1) as T →∞, hence
we can write the partial-fraction decomposition

R(T ) = T a0

b−1∑

k=a∗2

Ak
1− qkT ,

where

Ak = (R(T )T−a0(1− qkT ))|T=q−k(8)

= (−1)a1+a2+k+1q(a1−2k)(a1−1)/2+(k−a2)(k−a2+1)/2

×
[
k − 1
a1 − 1

]

q

[
b− a2 − 1
b− k − 1

]

q

= (−1)a1+a2+k+1pa1(a1−1)/2−(b−a2)(b−a2−1)/2+(b−k)(b−k−1)/2

×
[
k − 1
a1 − 1

]

p

[
b− a2 − 1
b− k − 1

]

p

.

Furthermore, consider the series

F (a; b) = F (a0, a1, a2; b) :=
∞∑

t=0

R(qt) =
∞∑

t=1−a∗1

R(qt)(9)

=
b−1∑

k=a∗2

Ak

∞∑

t=1−a∗1

qa0t

1− qk+t =
b−1∑

k=a∗2

Akq
−a0k

∞∑

l=k−a∗1+1

qa0l

1− ql

=
b−1∑

k=a∗2

Akp
a0k

( ∞∑

l=1

ql

1− ql −
k−a∗1∑

l=1

ql

1− ql −
∞∑

l=k−a∗1+1

ql − qa0l

1− ql
)

= A(p)hp(1)−B1(p)−B2(p),

where

(10) A(p) =
b−1∑

k=a∗2

Akp
a0k, B1(p) =

b−1∑

k=a∗2

Akp
a0k

k−a∗1∑

l=1

1
pl − 1

,

and
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B2(p) =
b−1∑

k=a∗2

Akp
a0k

∞∑

l=k−a∗1+1

a0−1∑

j=1

qjl(11)

=
b−1∑

k=a∗2

Akp
a0k

a0−1∑

j=1

(qj)k−a
∗
1+1

1− qj

=
b−1∑

k=a∗2

a0−1∑

j=1

Akp
a0k−j(k−a∗1)

pj − 1
.

Now, note that a0k ≥ a0a
∗
2 and a0k−j(k−a∗1) > a0k−a0(k−a∗1) = a0a

∗
1

for a∗2 ≤ k < b, 1 ≤ j < a0. Hence, taking

M0 = a0a
∗
1 + a1(a1 − 1)/2− (b− a2)(b− a2 − 1)/2,

from (8) we deduce the inclusions

p−M0Akp
a0k ∈ Z[p], p−M0Akp

a0k−j(k−a∗1) ∈ Z[p].

Applying the results of Section 2 to formulae (10) and (11) we obtain

p−M0A(p) ∈ Z[p],

p−M0Db−a∗1−1(p)B1(p) ∈ Z[p], p−M0Da0−1(p)B2(p) ∈ Z[p].

Therefore representation (9) yields the following assertion.

Lemma 3. With a suitable integer

(12) M = M(a; b) ≥ a0a
∗
1 +

a1(a1 − 1)
2

− (b− a2)(b− a2 − 1)
2

we have the inclusion

p−MDmax{a0−1,b−a∗1−1}(p)F (a; b) ∈ Z[p]hp(1) + Z[p].

Thanks to (7), the quantity F (a; b) can be identified with the Heine
series:

(13) F (a0, a1, a2; b) =
Γq(a2)Γq(b− a2)

(1− q)Γq(b)
· 2φ1

(
qa1 , qa2

qb

∣∣∣∣ q, qa0

)
.

The lower estimate in (12) for M(a; b) is rather rough and we require
the following sharp form of it.

Lemma 4. Suppose that

(14) a1 ≤ a2, a1 + a2 ≤ b ≤ a0 + a2.

Then

(15) p−MDmax{a0−1,b−a1−1}(p)F (a; b) ∈ Z[p]hp(1) + Z[p],

where

(16) M = M(a; b) :=
a1(a1 − 1)

2
+ a0a1 + (b− a2)(a2 − a1).
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In addition, for any p ∈ Z \ {0,±1}, the estimates

(17) |F (a; b)| = |p|O(b), |A(p)| ≤ |p|(a0+a1+a2)b−(a2
1+a2

2+b2)/2+O(b)

hold with some absolute constant in O(b).

Proof. The first condition in (14) allows us to write a∗1 = a1, a∗2 = a2

in (10), (11), and to apply Lemma 3 from [Zu1] to the quantity B2(p) after
interchanging the summations in (11):

B2(p) = pa1(a1−1)/2+a0a1+(b−a2)(a2−a1)
a0−1∑

j=1

1
pj − 1

×
a2−1∑

l=0

(−1)lp(a1−l)(a1−l−1)/2

×
[
b− a2 + l − 1

a1 − 1

]

p

[
a2 − 1
l

]

p

(pa0−j−1; p−1)b−a1−a2+l.

From this formula we deduce that

p−M2Da0−1(p)B2(p) ∈ Z[p],

where M2 = a1(a1 − 1)/2+a0a1 +(b−a2)(a2−a1), while formulae (8), (10)
and the inequality

(b− k)(b− k − 1)
2

+ a0k ≥
(b− a2)(b− a2 − 1)

2
+ a0a2, k ≥ a2 ≥ b− a0

yield
p−M1(p)A(p) ∈ Z[p], p−M1Db−a1−1(p)B1(p) ∈ Z[p],

where M1 = a1(a1 − 1)/2 + a0a2. Thus using the fact that min{M1,M2} =
M2 under the hypothesis (14), we arrive at (15).

To prove the second part of the lemma, we adopt the construction and
results of [Zu1]. There we consider the family of series

I(n;m) = I(n0, n1, n2;m)(18)

=
(q; q)n2

(q; q)n0

q−n0(n1−n0)

×
∞∑

s=n1+1

(1− qn1−n0+1−s) . . . (1− qn1−s)
(q−s − 1)(q−s − q) . . . (q−s − qn2)

q(m−1)s

= (−1)n0qn0(n0+1)/2+(n1+1)(n2−n0+m)

× (q; q)n1(q; q)n2

(q; q)n1+n2+1
· 2φ1

(
qn0+1, qn1+1

qn1+n2+2

∣∣∣∣ q, qn2−n0+m
)
,

where n0, n1, n2, and m are positive integers satisfying the conditions

(19) n1 ≥ n0, n2 ≥ n0, m > n0.
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Comparing representations (13) and (18) we conclude that

F (a; b) = (−1)n0pn0(n0+1)/2+(n1+1)(n2−n0+m)I(n;m),

where

n0 = a1 − 1, n1 = a2 − 1, n2 = b− a2 − 1, m = a0 + a1 + a2 − b,
and conditions (19) become (14). Therefore the estimates (17) are conse-
quences of the corresponding results for the quantity I(n;m) (see [Zu1,
Lemmas 6 and 7]), and the lemma follows.

Remark. In [Zu1] we made a mistake in computing the exponent of p
when applying the identity of [Zu1, Lemma 3]. The correct application of
the identity leads to

p(n1−n0)(m−n0+1)Dmax{n1+n2−n0,m} · I ∈ Z[p]hp(1) + Z[p],

p(n1−n0)(m−n0+1)D̂n1+n2−n0,m · Î ∈ Z[p] lnp(2) + Z[p],

and to the corresponding changes in Propositions 1, 2 of [Zu1]. Fortunately,
these changes do not influence the result of Theorem 2 of [Zu1] (concerning
the irrationality exponent of lnp(2)), and Theorem 1 in the present work
considerably improves the wrong result of Theorem 1 of [Zu1].

4. Permutation group for q-harmonic series. Heine’s transform (1)
yields the stability of the quantity

(20)
F (a0, a1, a2; b)

Γq(a0)Γq(a2)Γq(b− a2)

=
1

(1− q)Γq(a0)Γq(b)
· 2φ1

(
qa1 , qa2

qb

∣∣∣∣ q, qa0

)

under the action of

τ : (a0, a1, a2; b) 7→ (a1, b− a1, a0; a0 + a2).

In addition, the quantity (20) is obviously stable under the action of the
permutation

σ : (a0, a1, a2; b) 7→ (a0, a2, a1; b)

interchanging the parameters a1 and a2. Let G denote the group generated
by τ, σ; the group G = 〈τ, σ : τ 6 = σ2 = (τσ)2 = id〉 has order 12 (see [Fi,
Section 20]).

To interpret G as a permutation group, we now introduce the tuple c of
the six additional parameters

c00 = a0 + a1 + a2 − b− 1, c01 = a0 − 1, c11 = a1 − 1,

c21 = a2 − 1, c12 = b− a1 − 1, c22 = b− a2 − 1,
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and take H(c) := F (a; b). Then

τ = (c22 c21 c01 c11 c12 c00), σ = (c11 c21)(c12 c22)

are permutations of the tuple c of orders 6 and 2, respectively, and the G-
stability of the quantity (20) can be summarized by the following assertion.

Lemma 5. The quantity

H(c)
Πq(c)

, where Πq(c) := [c01]q! [c21]q! [c22]q!,

is stable under the action of G.

By definition of the q-factorial coefficient, Πq(c) = p−N(c)Πp(c), where

N(c) :=
c01(c01 + 1) + c21(c21 + 1) + c22(c22 + 1)

2
.

We also require some additional characteristics: M(c) := M(a; b) is the
“suitable” integer of Lemma 3 if a1+a2 ≤ b or is determined by formula (16)
if stronger conditions (14) hold, and

m(c) := max{c00, c01, c11, c21, c12, c22},
s+(c) := c01 + c21 + c22 = a0 + b− 3,

s−(c) := c00 + c11 + c12 = a0 + a1 + a2 − 3,

s(c) := s+(c)− s−(c) = b− a1 − a2.

Thenm(c) is G-stable, while the quantities s±(c) and s(c) obey the following
rules.

Lemma 6. The following relations hold :

s+(τc) = s−(c), s−(τc) = s+(c), s(τc) = − s(c),
s+(σc) = s+(c), s−(σc) = s−(c), s(σc) = s(c),

where gc denotes the image of c under the action of a permutation g ∈ G.

Proof. By direct computation.

As is easily seen, condition (6) is equivalent to s(c) ≥ 0; hence we can
write the conclusions of Lemmas 3 and 4 in the form

(21) p−M(c)Dm(c)(p)H(c) ∈ Z[p]hp(1) + Z[p],

if (and only if) s(c) ≥ 0. This fact and Lemma 6 mean that we might use the
group G+ = 〈τ2, σ〉 ⊂ G of order 6 instead of the total group G if s(c) > 0.
The case s(c) = 0 is of no interest since it implies the relations c00 = c01,
c11 = c22, c21 = c12, and as a consequence

Πp(gc) = Πp(c) for all g ∈ G.
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If s(c) > 0, we obtain at most three different values of Πp(gc), g ∈ G+,
namely,

Πp = Πp(c) = Πp(στ4c) = [c01]p! [c21]p! [c22]p!,

Π ′p = Πp(τ2c) = Πp(σc) = [c01]p! [c11]p! [c12]p!,

Π ′′p = Πp(τ4c) = Πp(στ2c) = [c00]p! [c12]p! [c22]p!.

For each l = 2, 3, . . . ,m(c), take

(22) νl := max
g∈G+

ordΦl(p)
Πp(c)
Πp(gc)

= max
{

0,
⌊
c21

l

⌋
+
⌊
c22

l

⌋
−
⌊
c11

l

⌋
−
⌊
c12

l

⌋
,

⌊
c01

l

⌋
+
⌊
c21

l

⌋
−
⌊
c00

l

⌋
−
⌊
c12

l

⌋}
,

and set

Ω(p) :=
m(c)∏

l=2

Φνll (p) ∈ Z[p].

Lemma 7. We have

(23) p−M(c)Dm(c)(p)Ω
−1(p)H(c) ∈ Z[p]hp(1) + Z[p],

provided that s(c) > 0.

Proof. We follow the lines of the proof of Proposition 2 in [Zu2]. The
inclusion (21) and Lemma 5 yield

p−M(gc)−N(gc)+N(c)Dm(c)(p) ·
Πp(gc)
Πp(c)

·H(c)

= p−M(gc)Dm(gc)(p)H(gc) ∈ Z[p]hp(1) + Z[p]

for all g ∈ G+. Since cyclotomic polynomials enter the p-factorial [n]p! in
accordance with formula (5) and these polynomials are coprime to the poly-
nomial p ∈ Z[p], we arrive at (23).

5. q-Conclusion. We now take a tuple of new positive integers (direc-
tions) α0, α1, α2, and β satisfying the conditions

α1 ≤ α2, α1 + α2 < β ≤ α0 + α2,

and to each integer n = 1, 2, . . . assign the old parameters a and b in accor-
dance with the following rule:

aj = αjn+ 1, j = 0, 1, 2, b = βn+ 2.

Then setting

c00 = α0 + α1 + α2 − β, cj1 = αj , j = 0, 1, 2, cj2 = β − αj , j = 1, 2,
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and m = m(c) we introduce the quantities

Hn := H(c · n) = F (a; b) = Anhp(1)−Bn, n = 1, 2, . . .

Finally,

(24) p−M(a;b)Dmn(p)Ω−1(p)Hn ∈ Z[p]hp(1) + Z[p] ⊂ Zhp(1) + Z,
n = 1, 2, . . . ,

by Lemma 7, and

(25)
lim
n→∞

log |Hn|
n2 log |p| = 0,

lim sup
n→∞

log |An|
n2 log |p| ≤ (α0 + α1 + α2)β − α2

1 + α2
2 + β2

2
=: C1

by Lemma 4. In addition, νl = ω(n/l) in (22), where

ω(x) := max{0, bc21xc+ bc22xc − bc11xc − bc12xc,
bc01xc+ bc21xc − bc00xc − bc12xc}

is a 1-periodic integer-valued function; therefore,

(26) lim
n→∞

log |pM(a;b)D−1
mn(p)Ω(p)|

n2 log |p|

=
1
2
α2

1 + α0α1 + (β − α2)(α2 − α1)

− 3
π2

(
m2 −

1�

0

ω(x) d(−ψ′(x))
)

=: C0

by Lemmas 1, 2, and 4. By standard arguments, relations (24)–(26) yield
the estimate µ(hp(1)) ≤ C1/C0, provided that C0 > 0.

Take
α0 = 14, α1 = 12, α2 = 14, β = 27

so that

c00 = 13, c01 = 14, c11 = 12, c21 = 14, c12 = 15, c22 = 13.

Then
C1 = 545.5, C0 = 221.30008816 . . . ,

hence µ(hp(1)) ≤ C1/C0 = 2.46497868 . . . Here ω(x) = 1 for x ∈ [0, 1)
belonging to the set
[

1
14 ,

1
12

)
∪
[

1
7 ,

1
6

)
∪
[

3
14 ,

1
4

)
∪
[

2
7 ,

1
3

)
∪
[

5
14 ,

2
5

)
∪
[

3
7 ,

7
15

)
∪
[

1
2 ,

8
15

)

∪
[

4
7 ,

3
5

)
∪
[

9
14 ,

2
3

)
∪
[

5
7 ,

11
15

)
∪
[

11
14 ,

4
5

)
∪
[

6
7 ,

13
15

)
∪
[

13
14 ,

14
15

)
.

The proof of Theorem 1 is complete.
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Remark. The series (13) involving linear forms in 1 and the q-harmonic
series can be represented as some q-integrals (see, e.g., [Ex, Section 2.5.1]).
This q-integral representation is very similar to that used in [RV1] and [RV2]
for describing the permutation groups for ζ(2) and ζ(3). In spite of this sim-
ilarity, there exists no general pattern to change the variable of q-integration
(see [Ask] and [Ex, Section 2.2.4]). Therefore the hypergeometric construc-
tion proposed in this paper as well as in our previous works [Zu1], [Zu2]
looks a very natural way to extend the group-structure approach to solving
new number-theoretic problems.
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