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1. Introduction. Let A be a finite set of positive integers, |A| = n, and
write

f(x) =
∑

a∈A
cos ax.

Since f(0) > 0 and
� 2π
0 f(x) dx = 0, we have min f(x) < 0. It is a diffi-

cult question to estimate this minimum uniformly for every set of size n.
Bourgain [2] proved

(1.1) min f(x) < −c1e−c2(log n)c3

with unspecified positive constants c1, c2, c3. In another paper [1] he showed
that one can take c3 = 1/2 under the assumption that A ⊂ [1, n2

√
log n]. Our

aim is to prove this without restriction.

Theorem 1. With the above notations we have

(1.2) min f(x) < −c4e−c5
√

log n

with a positive absolute constant c4 and c5 =
√

(log 2)/8.

First we give a reformulation with exponentials, as this form will be more
convenient to work with. We write e(x) = e2πix.

Theorem 2. Let A be a finite set of integers, symmetric about the origin
and not containing 0. Put

f(x) =
∑

a∈A
e(ax).

With |A| = n we have

(1.3) min f(x) < −c4e−c5
√

log n

with a positive absolute constant c4 and c5 =
√

(log 2)/8.
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(The number n and the function f in Theorem 2 are twice the corre-
sponding quantities of Theorem 1.)

In the first stage of the proof (Section 2) we find a regular subset of A
under the assumption that K is small. In the second stage (Section 3) we
show that the existence of a regular subset yields a bound on this minimum.
The synthesis and a comparison to Bourgain’s paper is given in Section 4.

2. From minimum to structure

Lemma 2.1. Let A be a finite set of integers, symmetric about the origin
and not containing 0. Let

f(x) =
∑

a∈A
e(ax).

Write |A| = n, min f(x) = −K and

(2.1) k =
[

logN
4 logK + c6

]

with a suitable absolute constant c6. There are integers β1, . . . , βk and a set
B ⊂ Z such that

(2.2) B +
{∑

εiβi : εi ∈ {0, 1}
}
⊂ A,

the 2k sums

(2.3)
{∑

εiβi : εi ∈ {0, 1}
}

are all distinct and |B| ≥ √n.

Proof. We shall find inductively integers β1, . . . , βk and sets of integers
B0, B1, . . . , Bk with the following properties for every j ≤ k. First, the 2j

numbers
∑j
ν=1 ενβν , εν ∈ {0, 1}, are all distinct. Next, we always have

(2.4)
j∑

ν=1

ενβν +Bj ⊂ A,

(2.5) |Bj | ≥Mj = (4K2)−jn.

The last property asserts that the function

gj(x) =
∑

b∈Bj
e2πibx

has a decomposition gj = h
(j)
1 + h

(j)
2 + h

(j)
3 such that

|h(j)
1 (x)| ≤ f(x) +K for all x,(2.6)

|h(j)
2 (x)| ≤ Lj = 4jKj+1 for all x,(2.7)

‖h(j)
3 ‖1 ≤ ηj = (8K2)jn−1/2.(2.8)
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An important consequence of (2.6) is that

(2.9) ‖h(j)
1 ‖1 ≤ ‖f +K‖1 = K.

We start with B0 = A. The above decomposition of g0 = f will be

h
(0)
1 (x) = f(x)+ = max(0, f(x)),

h
(0)
2 (x) = −f(x)−, L0 = K,

h
(0)
3 = 0.

Assume now that the setBj , the integers β1, . . . , βj and the functions h(j)
ν

are given. We are going to find Bj+1 and the functions h(j+1)
ν . To simplify

notation we shall write B, M , g, hν , L, η for Bj , Mj , gj , h
(j)
ν , Lj , ηj , and

B′, M ′, g′, h′ν , L′, η′ for Bj+1, Mj+1, gj+1, h(j+1)
ν , Lj+1, ηj+1.

Write |B| = m (≥ M). We will seek B′ in the form B′ = B ∩ (B − α),
and then put βj+1 = α. This guarantees (2.4).

To estimate the size of such an intersection, first observe that
∑

α∈Z
|B ∩ (B − α)| = m2,(2.10)

∑

α∈Z
|B ∩ (B − α)|2 = ‖g‖44.(2.11)

To estimate this quantity we start with

‖g − h2‖2 ≥ ‖g‖2 − ‖h2‖2 ≥ ‖g‖2 − ‖h2‖∞ ≥
√
m− L,

‖g − h2‖1 = ‖h1 + h3‖1 ≤ K + η,

by (2.6) and (2.9). By Hölder’s inequality we have

‖g − h2‖4 ≥
‖g − h2‖3/22

‖g − h2‖1/21

≥ (
√
m− L)3/2

(K + η)1/2

≥ 8
9
m3/4K−1/2

if we suppose

(2.12) η < cK, L < c
√
M ≤ c√m

with a suitably small positive constant c. This implies

‖g‖4 ≥ ‖g − h2‖4 − ‖h2‖4 ≥
8
9
m3/4K−1/2 − L ≥ 7

8
m3/4K−1/2

if L
√
K < cm3/4. This assumption follows from the second inequality

of (2.12), since L ≥ K by (2.7).
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By (2.11) we obtain

(2.13)
∑

α∈Z
|B ∩ (B − α)|2 ≥ 1

2
m3

K2 .

The contribution of terms satisfying |B ∩ (B − α)| ≤ 1
4m/K

2 to this sum
is at most 1

4m
3/K2 by (2.10), so at least 1

4m
3/K2 comes from α such that

|B ∩ (B − α)| > 1
4m/K

2. As each summand is at most m2, we infer that
there are > 1

4m/K
2 values of α such that |B ∩ (B − α)| > 1

4m/K
2.

We shall select our βj = α from these values. This guarantees the induc-
tive step for (2.5). In order that the sums

∑j+1
ν=1 ενβν be distinct, we need

to avoid the at most 3j numbers of the form
j∑

ν=1

δνβν , δν ∈ {−1, 0, 1}.

If we suppose

(2.14) 3j ≤ m

8K2 ,

then we still have ≥ m/(8K2) values of β to choose from.
We have to find the decomposition of g′ and show properties (2.6)–(2.8).
Write eα(x) = e2πiαx. With this notation we can write g′ as a convolution

g′ = g ∗ geα.
If we substitute the decomposition of g into this formula we get an expression
for g′ as a sum of 9 convolutions, which will be dealt with in different ways.

First observe that

|h1 ∗ h1eα| ≤ |h1| ∗ |h1| ≤ (f +K) ∗ (f +K) = f +K2

(in the sense that this inequality holds for every value of the variable). In the
last step we use the fact that f ∗ f = f , which is equivalent to the property
that each coefficient is 0 or 1.

Clearly we can decompose h1 ∗ h1eα as

h1 ∗ h1eα = h′1 + h′21,

where |h′1| ≤ f + K and |h′21| ≤ K2 −K. The function h′21 will contribute
to h′2.

Other contributions to h′2 come from convolutions involving h2 and h1

or h3. We have

‖(h1 + h3) ∗ h2eα‖∞ ≤ ‖h1 + h3‖1‖h2‖∞ ≤ (K + η)L

and the same estimate holds for ‖(h1 + h3)eα ∗ h2‖∞. So finally

h′2 = h′21 + (h1 + h3) ∗ h2eα + (h1 + h3)eα ∗ h2
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satisfies
‖h′2‖∞ ≤ (K2 −K) + 2(K + η)L ≤ 4KL.

This is exactly inequality (2.7) for j + 1.
The other terms make up h′3. We have

‖h1 ∗ h3eα‖1 ≤ ‖h1‖1‖h3‖1 ≤ ηK,
and the same estimate holds for ‖h3 ∗ h1eα‖1. Similarly

‖h3 ∗ h3eα‖1 ≤ ‖h3‖21 ≤ η2 < ηK.

For the estimation of ‖h2∗h2eα‖1 we shall use averaging in α. An application
of Parseval’s formula yields

∑

α∈Z
‖h2 ∗ h2eα‖22 = ‖h2‖42 ≤ ‖h2‖4∞ ≤ L4.

Since we have at least m/(8K2) values of α to choose from, there is one such
that

‖h2 ∗ h2eα‖1 ≤ ‖h2 ∗ h2eα‖2 < 3KL2m−1/2.

So
h′3 = h1 ∗ h3eα + h3 ∗ h1eα + h3 ∗ h3eα + h2 ∗ h2eα

satisfies
‖h′3‖1 < 3ηK + 3KLm−1/2.

By substituting the definition of η and L from (2.8), (2.7) and using the
lower estimate (2.5) for m a simple calculation shows (2.8) for j+ 1. This α
will be our βj+1, and this ends the induction.

This process goes on as long as conditons (2.12) and (2.14) are satisfied.
Both inequalites of (2.12) lead to a bound for k as given by (2.1), while
(2.14) gives about twice that. The lower bound for |B| is case j = k of (2.5).

3. From structure to minimum. In this section we show a result
that goes in the opposite direction to Lemma 2.1.

Lemma 3.1. Let A be a finite set of integers, symmetric about the origin
and not containing 0. Put

f(x) =
∑

a∈A
e2πiax.

Suppose that there are sets S, T of integers, an integer d 6= 0 and an even
positive integer L such that |S|, |T | ≥ L and S + T + {0, d} ⊂ A. Then

(3.1) min f(x) < −
√
L/2.

Proof. First we establish the existence of finite sets of integers U, V such
that |U |, |V | ≥ L/2, U − V ⊂ A, U ⊂ A, V ∩A = ∅ and 0 6∈ V .
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Assume 0 ∈ T (this can be achieved by shifting S and T if necessary),
and write

rj = |(S − jd) ∩ A|.
We have r0 ≥ L and rj = 0 for large j, so there is a j such that rj ≥ L/2
> rj+1. Write A0 = A ∪ {0}.

Now if

(3.2) |(jd− T ) ∩ A| < L/2,

then put
U = (S + jd) ∩ A, V = (jd− T ) \A0.

We have
|U | = rj ≥ L/2,
|V | = |T | − |(jd− T ) ∩ A| − 1 > |T | − L/2− 1 ≥ L/2− 1

and
U − V ⊂ (S + jd)− (jd− T ) = S + T ⊂ A.

If (3.2) does not hold, then we put

U = (jd− T ) ∩A, V = (S + (j + 1)d) \ A0.

We have |U | ≥ L/2 by the negation of (3.2), and

|V | = |S| − rj+1 − 1 > L/2− 1,

U − V ⊂ (jd− T )− (S + (j + 1)d) = −(S + T + d) ⊂ −A = A.

We define K by min f(x) = −K, and another function h by

h(x) =
1
|U |

∑

u∈U
e(ux)− 1

|V |
∑

v∈V
e(vx).

We write simply
�

for
� 1
0 . . . dx.

Observe that we know 0 6∈ V , and also 0 6∈ U by U ⊂ A, hence
�
h(x) = 0.

We have
�
h(x)f(x) = 1 since U ⊂ A, V ∩A = ∅, thus

(3.3) � h(x)(f(x) +K) = 1.

Furthermore

|h(x)|2 = |U |−2
∑

u,u′∈U
e((u− u′)x) + |V |−2

∑

v,v′∈V
e((v − v′)x)

− (|U | |V |)−1
∑

u∈U, v∈V
(e((u− v)x) + e((v − u)x)).

As always u− v, v − u ∈ A, we see that

� |h(x)|2f(x) ≤ 1 + 1− 2 = 0.
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Since clearly

(3.4) � |h(x)|2 = |U |−1 + |V |−1 ≤ 4/L,

we have
� |h(x)|2(f(x) +K) ≤ 4K/L.

By Cauchy’s inequality and (3.3) we have

1 = � h(x)(f(x) +K) ≤
( � |h(x)|2(f(x) +K)

)1/2( � (f(x) +K)
)1/2

≤ (4K/L)1/2K1/2,

that is, K ≥
√
L/2 as claimed.

4. Completion of the proof and remarks. We prove Theorem 2.
Let min f(x) = −K. By Lemma 2.1, with k defined by (2.1), there are

integers β1, . . . , βk and a set B such that always
∑
εjβj + B ⊂ A. Put

S = B,

T =
{ k−1∑

j=1

εjβj

}

and d = βk. We have S + T + {0, d} ⊂ A and |S| > |T | = 2k−1, so an
application of Lemma 3.1 yields

K ≥ 2(k−1)/2 ≥ exp
{

log 2
2

logn
4 logK + c6

− 2
}
.

After taking the logarithm and rearranging this yields a quadratic inequality
for logK and by a simple calculation we find the bound of the theorem.

Concluding remarks. The proof of Lemma 2.1 closely follows Bour-
gain’s argument from [2]. We wrote it in detail, since there is no statement
in his paper which we could immediately apply. He proves the existence of
a more complicated structure, namely a cube with sides of 5 in contrast to
our 2, that is, a set of the form

(4.1)
{
b+

∑
εiβi : εi ∈ {0, . . . , 4}

}
.

This makes the argument more involved and reduces the size of k. This
part of the proof is somewhat simpler in this paper than in Bourgain’s, but
this simplification is due to the fact that we are content with the simpler
structure (2.3) rather than (4.1), and there is no essential new idea here.

The improvement is in the second part, where we can make use of the sim-
pler set (2.3). Though the second part is rather different from the approach
in [2], I acknowledge that it also was motivated by analyzing Bourgain’s
argument.
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We remark that since the reciprocals of the cardinalities occur in (3.4) it
does not help that one of the sets U, V (or S, T ) is larger. The assumption
U −V ⊂ A could be weakened to a condition asserting that most differences
u− v are in A; however, in this case one can find somewhat smaller subsets
U ′ ⊂ U , V ′ ⊂ V such that U ′ − V ′ ⊂ A.

Acknowledgements. I profited much by discussing this problem with
Antal Balog.
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