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The size function h◦ for a pure cubic field
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Paolo Francini (Roma)

Introduction. Let F be a number field and S∞ the set of its infinite
primes. Assume that #(S∞) = r1 +r2, where r1 is the number of real places
of F and r2 is the number of complex places. An Arakelov divisor is a pair
D = (JD,v), where JD is a fractional ideal of the ring of integers OF and
v ∈ RS∞ . We say that JD is the finite part of D, while v is the infinite part .
We denote by N (JD) the ordinary norm of JD as a fractional ideal, and we
define the norm of D in the following way:

N (D) =

∏
σ∈S∞ e

vσ

N (JD)
,

where v = (vσ)σ∈S∞ , and we define the degree of D as deg(D) = logN (D).
The set of Arakelov divisors of a number field forms a group, which we

denote byDiv(F ). The group operation consists in multiplying the fractional
ideals and summing the vectors in RS∞ . Thus we have the isomorphism
Div(F ) ≈ I(F )× RS∞ , where I(F ) is the group of fractional ideals of OF .

The set of zero degree Arakelov divisors is a subgroup Div◦(F ) of
Div(F ), as is PDiv(F ), the set of principal Arakelov divisors. These are
the divisors of the type

(x) = (x−1OF , ((−[Fσ : R] log |σ(x)|)σ∈S∞)), x ∈ F ∗.
Here, |z| stands for the standard absolute value

√
zz of the complex number

z and Fσ is the completion of the field F (R or C) at the place σ. We define
the Picard group of F as

Pic(F ) =
Div(F )
PDiv(F )

and then we put

Pic◦(F ) =
Div◦(F )
PDiv(F )

.
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The vector v, the infinite part of D, assigns a metric to the fields Fσ,
and hence to Rr1 × Cr2 , in the following manner:

‖1σ‖2D = dσe
−2vσ/dσ =

{
e−2vσ , σ real,

2e−vσ , σ complex;

here and in what follows, we set dσ = [Fσ : R] and 1σ is the image of 1 ∈ F
in Fσ. In this way, we associate to an Arakelov divisor D a Hermitian line
bundle over OF , i.e., JD with the above metric on JD ⊗Z R. The group
Pic(F ), defined as above, is isomorphic to the group of the isomorphism
classes of Hermitian line bundles over OF . We refer to [Gr] for a more
detailed account of this equivalent approach. We also observe that we have
the exact sequence (see [GS])

0→ T → Pic◦(F )→ Cl(F )→ 0,

where T is a real torus of dimension #(S∞)− 1.
The fractional ideal JD, viewed as a real lattice in the Euclidean space

Rr1 × Cr2 (which is endowed with the metric specified by the infinite part
of D), may be considered as an analogue of the space H◦(D), the global
sections of the divisor D on a curve. When S is a subset of a lattice in a
Euclidean space, we attach to it the real number

k◦(S) =
∑

x∈S
e−π‖x‖

2
.

In particular, we define k◦(D) as the number k◦(JD). This definition is
clearly equivalent to the following. For x ∈ F and D = (JD,v) ∈ Div(F ),
set

ΦD(x) =
((

dσ
evσ

)1/dσ

σ(x)
)

σ∈S∞
= ((e−vσσ(x))σ real, (

√
2 e−vσ/2σ(x))σ complex),

which is a vector in F ⊗Q R = Rr1 × Cr2 , and set k◦(D) = k◦(D̃), where
D̃ is the lattice D̃ = {ΦD(x) | x ∈ JD} ⊂ Rr1 × Cr2 , taking the standard
Euclidean inner product on Rr1 ×Cr2 . We record the basic fact that k◦(D)
depends only on the class of D in Pic(F ).

We recall from [GS] that the function h◦ = log k◦ can be seen as an ana-
logue of the function h◦ which associates to each divisor D the dimension
of the space H◦(D). In this framework, Poisson’s summation formula pro-
vides a Riemann–Roch theorem: this neatly leads to the functional equation
for the Dedekind zeta function and the classical results about the finite-
ness of the class groups and to Dirichlet’s unit theorem as well. All these
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facts are essentially equivalent to the compactness of the group Pic◦(F ). We
also mention [B], where an analogue of H1(D) is defined, together with an
analogue of Serre’s duality. Before stating the main result, we give another
definition, following [K]:

Definition. Let d be a positive cube-free integer. Let d = ab2 such that
ab is square-free. If a2 − b2 is not divisible by 9, the field Q( 3

√
d) is said to

be a pure cubic field of the first kind , otherwise Q( 3
√
d) is called a pure cubic

field of the second kind .

In this paper, we shall prove the following fact:

Theorem. Let K be a pure cubic field of the first kind. Then the func-
tion k◦ on Pic◦(K) has its unique global maximum at the trivial bundle
class.

In [GS], the same property is conjectured for all number fields which
are Galois over Q or over a complex quadratic field, corresponding to a
standard fact about algebraic curves, i.e., that h◦(D) = 0 for any non-
principal zero degree divisor D, and h◦(D) = 1 when D is principal. In [F],
the corresponding statement was proved for quadratic number fields. These
facts support further the fruitful analogy between the geometric and the
arithmetic situation.

We outline the steps of the proof. If D is a zero degree Arakelov divisor,
the main contributions to k◦(D̃) come from the shortest lattice vectors. We
notice that, for x ∈ F , the arithmetic-geometric mean inequality implies
that

〈ΦD(x), ΦD(x)〉 ≥ [F : Q]
( N (x)
N (JD)

)2/[F :Q]

.

In particular, when F is a cubic field, if we put N (x)/N (JD) = m, then
〈ΦD(x), ΦD(x)〉 ≥ 3 3

√
m2. This permits us to reduce to a local problem and,

thus, the question is to check that the trivial bundle is a stationary point
for k◦. In general, this is not true if F is not Galois over Q. For instance,
it is false if F is the complex cubic field Q(α) of discriminant −23. In the
case of a pure cubic field of the first kind, the fact that the function h◦

has a local maximum at the trivial class comes from the existence of an
orthogonal Z-basis for the ring of integers such that each basis element has
the same length under all the field embeddings σ ∈ S∞. This property is
not enjoyed by cubic fields of the second kind. For Q( 3

√
10) the statement

of the conjecture does not hold.

The author wishes to thank Prof. René Schoof for his helpful suggestions
and comments.
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1. Some estimates

Lemma 1.1. Let Bn(x, ε) denote the open ball of Rn centered at x of
radius ε, and if S is a subset of a lattice, set

%m(S) =
∑

x∈S
‖x‖me−π‖x‖2 ,

where m ∈ N (we remark that %◦(S) = k◦(S)). Let L be a lattice in R3

whose non-zero vectors have length at least
√

3. Then

k◦(L−B3(0,
√

3 3
√

2)) ≤ 1.05
105 , %4(L−B3(0,

√
3 3
√

4)) ≤ 2
107 .

Proof. If v, w ∈ L and v 6= w, then B3(v,
√

3/2) and B3(w,
√

3/2) are
disjoint. Take r ≥

√
3 3
√

2 and δ ≤
√

3/2. Set

Ar,δ = {(x, y, z) ∈ R3 | r2 ≤ x2 + y2 + z2 ≤ (r + δ)2}
and, for k ≥ 0, let Nk(r, δ) = #(Ar+kδ,δ ∩ L). Consider the map

f : Ar,δ → R4,

u = (x, y, z) 7→
(

(r + δ)x
‖u‖ ,

(r + δ)y
‖u‖ ,

(r + δ)z
‖u‖ , r + δ − ‖u‖

)
.

Clearly,

f(Ar,δ) = {(x, y, z, t) ∈ R4 | x2 + y2 + z2 = r + δ, 0 ≤ t ≤ δ};
moreover, if a, b ∈ Ar,δ, then d(a, b) ≤ d(f(a), f(b)). So, if a and b are
two distinct points in Ar,δ ∩ L, then the two balls B4(f(a),

√
3/2) and

B4(f(b),
√

3/2) are disjoint. For h ∈ [0, δ], let Ch be the hyperplane

Ch = {(x, y, z, t) ∈ R4 | t = h}.
The intersection f(Ar,δ)∩Ch is a 2-dimensional sphere of radius r+ δ. The
intersection B4(f(a),

√
3/2)∩Ch is an open ball whose center lies in f(Ar,δ)

and whose radius r̃ satisfies r̃ 2 + h2 = 3/4. For the area α of the cone with
vertex f(a) and bounded by the circle f(Ar,δ)∩∂(B4(f(a),

√
3/2)∩Ch), we

have

α =
πr̃ 2

2(r + δ)

√
4(r + δ)2 − r̃ 2 ≥ π(3/4− δ2)

2(r + δ)

√
4(r + δ)2 − 3/4 + δ2.

The surface f(Ar,δ)∩B4(f(a),
√

3/2)∩Ch has a larger area than this cone,
so the volume of B4(f(a),

√
3/2) ∩ f(Ar,δ) satisfies

vol(f(Ar,δ) ∩B4(f(a),
√

3/2)) >
πδ(3− 4δ2)
16(r + δ)

√
16(r + δ)2 − 3 + 4δ2.
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Since the volume of f(Ar+δ,δ) is 4πδ(r+ δ)2 and the lattice L is symmetric
with respect to the origin, for k ≥ 0 we have

Nk(r, δ) ≤ 2
⌊ 1

2 vol(f(Ar+kδ,δ))

vol(B4(f(a),
√

3/2) ∩ f(Ar+kδ,δ))

⌋
(1)

≤ 2
⌊

32(r + (k + 1)δ)3

(3− 4δ2) +
√

16(r + (k + 1)δ)2 + 4δ2 − 3

⌋
=Mk(δ).

Therefore,

k◦(L−B(0,
√

3 3
√

2)) <
∑

k∈N
Mk(δ)e−π(

√
3 3√2+kδ)2

,

%4(L−B(0,
√

3 3
√

4)) <
∑

k∈N
Mk(δ)(

√
3 3
√

4 + kδ)4e−π(
√

3 3√4 +kδ)2
,

for every δ <
√

3/2. From these inequalities, one finds the numerical re-
sults.

Now, let K = Q( 3
√
d) be a pure cubic field. It has one real place and one

complex place. We consider K as a subset of R, via its real embedding, and
we denote by σ its complex place, represented by the field homomorphism
σ : K ↪→ C given by

σ : 3
√
d 7→ 3

√
d ζ,

where ζ = e2πi/3. With this notation, if D = (JD, (α, β)) ∈ K, then

k◦(D) =
∑

x∈JD
exp(−π(e−2α|x|2 + 2e−β|σ(x)|2)).

A zero degree Arakelov divisor with finite part J has the form

Ds =
(
J,

(
log s, log

N (J)
s

))

for some s > 0. As explained in the introduction, we associate to Ds the
real lattice D̃s = ΦDs(J) ⊂ R× C ≈ R3, where

ΦDs : a 7→ (xa, ya, za) =
(
a

s
,

√
2s
N (J)

Re(σ(a)),

√
2s
N (J)

Im(σ(a))
)
.

We have the equality

D̃s =



s−1 0 0
0

√
s 0

0 0
√
s


 D̃1

and, moreover,

xa(y2
a + z2

a) = 2
N (a)
N (J)
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for every s > 0. Therefore ΦDs(a) lies on the surface in R3 described by the
equation

x(y2 + z2) = 2
N (a)
N (J)

.

On this surface, the points that are nearest to the origin are at distance√
3(N (a)/N (J))1/3. The upper bound of Lemma 1.1 permits us to rule out

some cases for the maximum of k◦ and to reduce the problem to a connected
neighborhood of the trivial class.

Corollary 1.2. Let K be a cubic field and D ∈ Div◦(K) such that JD
is not a principal fractional ideal. Then k◦(D) < k◦(OK).

Proof. Let x ∈ JD. The distance of the lattice point ΦD(x) from the
origin is at least

√
3(N (x)/N (JD))1/3. If JD is not principal, then N (x) ≥

2N (JD), hence a non-zero vector in the lattice D̃ has length at least
√

3 3
√

2.
Applying Lemma 1.1 we get

k◦(D) = k◦(D̃) < 1 +
1.05
105 < 1 + 2e−3π < k◦(OK).

Therefore, in order to determine the maximum of k◦, we may consider
only the Arakelov divisors whose finite part is a principal fractional ideal,
i.e., the connected component of Pic◦(K). A zero degree Arakelov divisor
D with principal finite part is equivalent to a divisor of the form

Ds = (OK , (log s,− log s)).

Notice that ‖ΦDs(x)‖2 = x2/s2 + 2s |σ(x)|2. Setting, for s > 0,

g(s) = k◦(Ds) =
∑

x∈OK
e−π‖ΦDs (x)‖2 ,

we have to show that the function g attains its maximum at s = 1.
A basic fact about pure cubic fields is the following (see [K, 2.5.1]):

Proposition 1.3. Let d = ab2, with ab a square-free integer , and let
K = Q( 3

√
d). Then, if K is of the first kind , a Z-basis for OK is given by

{1, 3
√
ab2,

3
√
a2b}.

If K is of the second kind , a Z-basis for OK is

{(1 + a
3
√
ab2 + b

3
√
a2b )/3, 3

√
ab2,

3
√
a2b}.

By this proposition, if K = Q( 3
√
ab2) with ab a square-free integer, then

∆K =
{−27a2b2 if a2 − b2 6= 0 (mod 9),

−3a2b2 if a2 − b2 = 0 (mod 9).
Corollary 1.4. Let K be a pure cubic field and let ε > 1 be a fun-

damental unit of OF . Let Ds = (OK , (log s,− log s)) ∈ Div◦(K). If s ∈
[1/
√
ε, 0.92] ∪ [1.09,

√
ε ], then k◦(Ds) < k◦(OK).
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Proof. Given s ∈ [1/
√
ε,
√
ε ], consider the set

Bs = {ΦDs(x) | 0 6= x ∈ OK , ‖ΦDs(x)‖2 < 3 3
√

4}.
If ΦDs(x) ∈ Bs, then x is a unit of OF , so x = ±εn for some n ∈ Z. When
s 6∈ [0.92, 1.09], we have

2e−π(2s+1/s2) +
1.05
105 < 2e−3π.

Moreover, from [PZ, 5.6], we have ε ≥ 3
√
|∆F |/3, so that

Bs = {ΦDs(1), ΦDs(−1)}
for every s 6∈ [0.92, 1.09]. Therefore, for s ∈ [1/

√
ε, 0.92] ∪ [1.09,

√
ε ], we

have

k◦(Ds) < 1 + 2e−π(2s+1/s2) +
1.05
105 < 1 + 2e−3π < k◦(OF ).

To complete the proof of the Theorem, we show that the function g(s) =
k◦(Ds) on the interval [0.92, 1.09] has its maximum at s = 1. To prove
this, it is enough to check that g′(1) = 0 and that g′′(s) < 0 for every
s ∈ [0.92, 1.09]. We first prove the latter statement.

Lemma 1.5. Let K be a complex cubic field and let the function g be
defined as above. Then g′′(s) < 0 for all s ∈ [0.92, 1.09].

Proof. For every s > 0, we have

g′′(s) =
2π
s2

∑

x∈OK

(
2π
(
s|σ(x)|2 − x2

s2

)2

− 3
x2

s2

)
e−π‖ΦDs (x)‖2

=
2π
s2

∑

x∈OK

(
2π
(
x2

s2 + 2s|σ(x)|2
)2

− 3
x2

s2 − 6πs2|σ(x)|4− 12π
|xσ(x)|2

s

)

× e−π‖ΦDs (x)‖2 .

Hence, g′′(s) < 0 if and only if

2s2
∑

x∈OK
‖ΦDs(x)‖4e−π‖ΦDs (x)‖2

< 3
∑

x∈OK

(
x2

π
+ 4sxN (x) + 2

s4N (x)2

x2

)
e−π‖ΦDs (x)‖2 .

We now arrange the terms of this inequality in a different manner. For m ∈ N
and s > 0, set

B(s,m) = {x ∈ OK | 3 3
√
m2 ≤ ‖ΦDs(x)‖2 < 3 3

√
(m+ 1)2 }.
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Notice that if x ∈ B(s,m), then |N (x)| = |x| · |σ(x)|2 ≤ m. So the above
inequality may be rewritten as

2s2
∑

x∈B(s,2)

(
‖ΦDs(x)‖4 − 3

(
x2

2πs2 +
2xN (x)

s
+
s2N (x)2

x2

))
e−π‖ΦDs (x)‖2

+ 2s2
∑

x∈B(s,3)

(
‖ΦDs(x)‖4 − 3

(
x2

2πs2 +
2xN (x)

s
+
s2N (x)2

x2

))

× e−π‖ΦDs (x)‖2 + 2s2
∑

x6∈B(s,2)∪B(s,3)

‖ΦDs(x)‖4e−π‖ΦDs (x)‖2

< 3
∑

x6∈B(s,2)∪B(s,3)

(
x2

π
+ 4sxN (x) + 2

s4N (x2)
x2

)
e−π‖ΦDs (x)‖2 .

We give some estimates of the terms involved in these sums. For the right-
hand side, we have

∑

x6∈B(s,2)∪B(s,3)

(
x2

π
+ 4sxN (x) + 2

s4N (x2)
x2

)
e−π‖ΦDs (x)‖2

> 2(1/π + 4s+ 2s4)e−π(2s+1/s2),

and (in the left-hand side)
∑

x6∈B(s,2)∪B(s,3)

‖ΦDs(x)‖4e−π‖ΦDs (x)‖2

= 2(2s+ 1/s2)2e−π(2s+1/s2) +
∑

‖ΦDs (x)‖≥
√

3 3√4

‖ΦDs(x)‖4e−π‖ΦDs (x)‖2

< 2(2s+ 1/s2)2e−π(2s+1/s2) + 2/107,

from Lemma 1.1. By direct calculations, one also finds the inequalities that
follow. If |N (x)| = 1 and x ∈ B(s,2), then
(
‖ΦDs(x)‖4 − 3

(
x2

2πs2 +
2xN (x)

s
+
s2N (x)2

x2

))
e−π‖ΦDs (x)‖2

=
(
x4

s4 − 2
|x|
s

+
s2

x2 −
3x2

2πs2

)
e−π(x

2

s2
+2 s
|x| ) <

2.72
106 ,

while for |N (x)| = 1 and x ∈ B(s,3), we have
(
‖ΦDs(x)‖4 − 3

(
x2

2πs2 +
2xN (x)

s
+
s2N (x)2

x2

))
e−π‖ΦDs (x)‖2 <

6.7
108 .
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If |N (x)| = 2 and x ∈ B(s,2), then
(
‖ΦDs(x)‖4 − 3

(
x2

2πs2 +
2xN (x)

s
+
s2N (x)2

x2

))
e−π‖ΦDs (x)‖2

=
(
x4

s4 − 4
|x|
s

+ 4
s2

x2 −
3x2

2πs2

)
e−π(x

2

s2
+4 s
|x| ) <

1.2
107 ,

while for |N (x)| = 2 and x ∈ B(s,3), we have
(
‖ΦDs(x)‖4 − 3

(
x2

2πs2 +
2xN (x)

s
+
s2N (x)2

x2

))
e−π‖ΦDs (x)‖2 <

3
108 .

If |N (x)| = 3 and x ∈ B(s,3), i.e., (x2/s2 + 6s/|x|) ∈ [3 3
√

9, 6 3
√

2), then
(
‖ΦDs(x)‖4 − 3

(
x2

2πs2 +
2xN (x)

s
+
s2N (x)2

x2

))
e−π‖ΦDs (x)‖2

=
(
x4

s4 − 6
|x|
s

+ 9
s2

x2 −
3x2

2πs2

)
e−π(x

2

s2
+6 s
|x| ) <

2
109 .

Moreover, from (1), used in the proof of Lemma 1.1, we deduce that
#(B(s,2))≤ 38 and #(B(s,3))≤ 44. We also point out that, for s∈ [0.92, 1.09],
there cannot be more than 4 units in B(s,2), because of the inequality
ε ≥ 3

√
|∆F |/3 from [PZ, 5.6]. Therefore, the conclusion follows if

4s2(2s+ 1/s2)e−π(2s+1/s2) + 2s2 2
105 < 6 (1/π + 4s+ 2s4)e−π(2s+1/s2)

for all s ∈ [0.92, 1.09], i.e., if

2
(

3
2πs2 +

2
s
− s2 − 1

s4

)
e−π(2s+1/s2) >

2
105 .

This fact is readily checked.

2. Local calculations. The last step of the proof is to establish the
vanishing of g′(1), where g is the function introduced in the above section.
We start with some general considerations.

For a number field F , set

V◦ =
{

v ∈ RS∞
∣∣∣
∑

σ∈S∞
vσ = 0

}
.

We define the function f : RS∞ → R as follows:

f(v) =
∑

x∈OF
exp
(
−π

∑

σ∈S∞
dσe
−2vσ/dσ |σ(x)|2

)
,

with the notation dσ = [Fσ : R].
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Proposition 2.1. Let F be a number field and let ‖ ‖◦ denote the metric
associated with the trivial Arakelov divisor. Then v = 0 is a stationary point
of the restriction of f to V◦ if and only if

∑

x∈OF
|σ(x)|2e−π‖x‖2◦

is independent of σ ∈ S∞.

Proof. Put f̃(v, λ) = f(v)− λ∑σ∈S∞ vσ. We have

∂f̃

∂vσ
(v, λ) =

∂f

∂vσ
(v)− λ

= −λ+ 2π
∑

x∈OF
|σ(x)|2 exp

(
−π

∑

σ∈S∞
dσe
−2vσ/dσ |σ(x)|2

)
.

Hence, ∂f̃
∂vσ

(0, λ) = 0 if and only if

∑

x∈OF
|σ(x)|2e−π‖x‖2◦ =

λ

2π
for each σ ∈ S∞.

An example of a field K for which the sum
∑
x |σ(x)|2e−π‖x‖2◦ is not

independent of σ ∈ S∞ is the complex cubic field of discriminant −23,
namely K = Q(α), where α is a root of the polynomial p(t) = t3 − t + 1.
A Z-basis of OK is {1, α, α2 − 1}. Choosing as α the real root of p and
denoting by σ the complex place of K, we have

∑

x∈OK
(x2 − |σ(x)|2)e−π(‖x‖2◦)

=
∑

(l,m,n)∈Z3

(m2 + (1/α)n2 + 3αlm+ (1− 3/α)ln− (α+ 3)mn)

× e−π(3l2+(1−3/α)m2+(3/α2−2/α)n2−2ln+2αmn) >
4

108 .

This implies that, in the case of this field Q(α), the function k◦ does not
attain its maximum at the trivial class.

Given a number field F , let F̃ be the set of all the field embeddings of F
into C. We consider the pairing 〈−,−〉◦ on F , defined as follows:

〈x, y〉◦ =
∑

ϕ∈F̃

ϕ(x)ϕ(x) =
∑

σ∈S∞
dσσ(x)σ(x).

This pairing is the restriction to F of the trace form on the finite étale
R-algebra F ⊗Q R, namely the form which gives the metric of the trivial
Arakelov divisor.
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Lemma 2.2. Let F be a number field of degree n over Q and let {ωj |
1 ≤ j ≤ n} be a Z-basis of OF which is an orthogonal system with respect
to the pairing 〈−,−〉◦ . If , for every j, the value of |σ(ωj)| is independent
of σ ∈ F̃ , then the number

∑

x∈OF
|σ(x)|2e−π‖x‖2◦ =

∑

x∈OF
|σ(x)|2e−π

∑
ϕ∈F̃ |ϕ(x)|2

is also independent of σF̃ .

Proof. Let x ∈ OF . One can write x =
∑

1≤j≤n zj(x)ωj for some

zj(x) ∈ Z. Thus, for ϕ ∈ F̃ , we also have

|ϕ(x)|2 =
∑

i,j

zi(x) zj(x)ϕ(ωi)ϕ(ωj),

and then, by orthogonality,

‖x‖2◦ =
∑

σ∈S∞
[Fσ : R]|σ(x)|2 =

∑

ϕ∈F̃

|ϕ(x)|2 =
∑

ϕ∈F̃

∑

i,j

zi(x)zj(x)ϕ(ωi)ϕ(ωj)

=
∑

i,j

zi(x)zj(x)
∑

ϕ∈F̃

ϕ(ωi)ϕ(ωj) =
∑

1≤j≤n
(zj(x))2

∑

ϕ∈F̃

|ϕ(ωi)|2.

Therefore, for each σ ∈ S∞, we obtain
∑

x∈OF
|σ(x)|2e−π‖x‖2◦ =

∑

x=
∑
j zjωj

|σ(x)|2e−π‖x‖2◦(2)

=
∑

z∈Zn

(∑

i,j

zizjσ(ωi)σ(ωj)
)
e−π

∑
i z2
i (
∑
ϕ∈F̃ |ϕ(ωi)|2)

=
∑

z∈Zn

(∑

j

z2
j |σ(ωj)|2

)
e−nπ

∑
i z2
i |σ(ωi)|2 .

Indeed, by hypothesis, |ϕ(ωj)| = |σ(ωj)| for every σ ∈ F̃ and the number∑
i,j zizjσ(ωi)σ(ωj) changes its sign upon the substitution (z1, . . . , zn) ↔

(−z1, . . . , zn) while the term e−nπ
∑
j z2
j |σ(ωj)|2 does not. The expression that

we have now recovered for
∑
x∈OF |σ(x)|2e−π‖x‖2◦ is visibly independent of

σ ∈ F̃ .

Corollary 2.3. Let d ∈ Z be such that the polynomial p(x) = xn−d is
irreducible over Z and OQ( n

√
d) = Z[ n

√
d ]. Define V◦ and f as above. Then

v = 0 is a stationary point of the restriction of f to V◦.

Proof. Set F = Q( n
√
d ) and ωk = n

√
d k. The set {ωk | 0 ≤ k < n} is an

integral basis of OF . For 0 ≤ k < n, let ϕk : F ↪→ C be the field embedding

ϕk : n
√
d 7→ n

√
d e2πki/n,
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with i =
√
−1. Clearly,

F̃ = {ϕk | 0 ≤ k < n},
and |ϕk(ωh)| = n

√
dh, independently of ϕk ∈ F̃ . Moreover, if g 6= h, then

〈ωg, ωh〉◦ =
∑

0≤k<n
ϕk(ωg)ϕk(ωg) = n

√
d g+h

∑

0≤k<n
e2π(g−h)ki/n = 0.

Therefore, applying Proposition 2.1 and Lemma 2.2, we obtain the required
conclusion.

We remark that the hypothesis that F be of the first kind appears es-
sential. Indeed, let F = Q( 3

√
ab2) be a pure cubic field of the second kind.

In this case,

OF =
{
l

3
+ (al + 3m)

3
√
ab2

3
+ (bl + 3n)

3
√
a2b

3

∣∣∣∣ l,m, n ∈ Z
}
.

We can use the same argument that we applied in Lemma 2.2, taking
the orthogonal system (ω1, ω2, ω3) = (1/3, 3

√
ab2/3, 3

√
a2b/3) and letting

z ∈ Z3 run over all the strings of the form (l, al + 3m, bl + 3n) with
l,m, n ∈ Z. But, in this situation, we cannot cancel the terms of the kind
(
∑
i,j zizj σ(ωi)σ(ωj))e−π

∑
j z2
j (
∑
ϕ |ϕ(ωj)|2), with i 6= j, as we did in (2).

Indeed,
∑

x∈OK
(x2 − |σ(x)|2)e−π(‖x‖2◦)

=
1
3

∑

(l,m,n)∈Z3

(l(al + 3m) 3
√
ab2 + l(bl + 3n) 3

√
a2b+ (al + 3m)(bl + 3n)ab)

× e−π3 (l2+(al+3m)2b
3√
a2b+(bl+3n)2a

3√
ab2).

If F = Q( 3
√

10), this difference is

1
3

∑

(l,m,n)∈Z3

(l(10l + 3m) 3
√

10 + l(l + 3n) 3
√

100 + 10(10l + 3m)(l + 3n))

× e−π3 (l2+(10l+3m)2 3√100+(l+3n)210 3√10).

With a numerical computation, one finds that this number is positive (great-
er than 4/1012). In view of Proposition 2.1, this means that the function k◦

on Pic◦(Q( 3
√

10)) does not attain its maximum at the trivial class.
Finally, we state the following fact, which concludes the proof of the

Theorem.

Corollary 2.4. Let K be a pure cubic field of the first kind and let g
be the function defined above. Then g′(1) = 0.
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Proof. Let K = Q( 3
√
ab2) with a and b square-free integers. By Proposi-

tion 2.1 and Lemma 2.2, it is enough to check that if α, β ∈ {1, 3
√
ab2,

3
√
a2b}

with α 6= β, then

〈α, β〉◦ = αβ + σ(α)σ(β) + σ(α)σ(β) = 0

and |α| = |σ(α)|. This is immediate.
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