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1. Introduction. Let E be an elliptic curve defined over the rationals.
For any prime p of good reduction, let Ep be the elliptic curve over Fp
obtained by reducing E modulo p. Let ap(E) be the trace of the Frobenius
morphism of Ep. Then Hasse proved that #E(Fp) = p + 1 − ap(E) with
|ap(E)| ≤ 2

√
p. The case ap(E) = 0 corresponds to supersingular reduction

modulo p.
LetN be a positive integer. For a fixed r ∈Z and fixed curves E1, . . . , EN ,

we define

πrE1,...,EN
(x) = #{p ≤ x : ap(E1) = . . . = ap(EN ) = r}.

There is a simple heuristic that can be used to predict the asymptotic be-
havior of πrE1,...,EN

(x). From Hasse’s bound, the probability that ap(E) = r
is

Prob{ap(E) = r} ∼





1
4
√
p

if |r| ≤ 2
√
p,

0 if |r| > 2
√
p.

This suggests the asymptotic behavior

πrE(x) ∼
∑

p≤x
Prob{ap(E) = r} ∼ CE,r

√
x

log x

where CE,r is a constant depending on E and r. Similarly, assuming that
ap(E1) = r and ap(E2) = r are independent events for non-isogenous curves
E1 and E2, we have for |r| ≤ 2

√
p,
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Prob{ap(E1) = ap(E2) = r} ∼ 1
16p

and more generally

Prob{ap(E1) = . . . = ap(EN ) = r} ∼ 1
4NpN/2

.

Summing the probabilities as above leads to the following conjecture.

Conjecture 1.1 (Lang–Trotter conjecture). Let N be a positive inte-
ger , let r ∈ Z, and let E1, . . . , EN be elliptic curves over Q, not Q-isogenous
and if r = 0 without complex multiplication. Then

πrE1,...,EN
(x) ∼





CE1,r

√
x

log x
if N = 1,

CE1,E2,r log log x if N = 2,

is finite if N > 2.
For N = 1, there is a more precise conjecture by Lang and Trotter [LT].

Their conjecture is based on a probabilistic model more refined than the
simple heuristic above, and they then get a conjectural value for the constant
CE,r. In particular, the constant can be 0, and the asymptotic relation is
then interpreted to mean that there are only finitely many primes p such
that ap(E) = r. This can happen, for example, if E has rational torsion
over Q. Some other such cases were classified in [DKP].

To this date, very little is known about the Lang–Trotter conjecture. It
was shown by Elkies [Elk] that for any elliptic curve E over Q, there are
infinitely many primes such that ap(E) = 0, but this result is not known for
any curve E if r 6= 0. The best (unconditional) lower bound for this case is
π0
E(x) ≥ log3 x/(log4 x)1+δ for any positive δ and x sufficiently large [FM1].

For any r ∈ Z, it was shown by Serre [S] that πrE(x) has density 0 in the
set of primes, and the best result for this case is πrE(x) � x4/5(log x)−1/5

([MMS]) under the Generalised Riemann Hypothesis. For r = 0, the uncon-
ditional bound π0

E(x)� x3/4 was obtained by Elkies and Ram Murty.
A classical way to get evidence for hard distribution questions like the

Lang–Trotter conjecture is to look at average estimates. For any a, b ∈ Z
such that 4a3 + 27b2 6= 0, let E(a, b) be the elliptic curve

y2 = x3 + ax+ b.

It was shown by Murty and Fouvry [FM1] that for r = 0, the Lang–Trotter
conjecture holds on average, i.e. as x→∞,

1
4AB

∑

|a|≤A
|b|≤B

π0
E(a,b)(x) ∼ C0

√
x

log x

where C0 is an explicit non-zero constant. This result was extended to all
r ∈ Z by David and Pappalardi [DP] who showed that as x→∞,
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1
4AB

∑

|a|≤A
|b|≤B

πrE(a,b)(x) ∼ Cr
√
x

log x

where

Cr =
2
π

∏

p|r

p2

p2 − 1

∏

p-r

p(p2 − p− 1)
(p− 1)(p2 − 1)

.(1)

We prove in this paper that the Lang–Trotter conjecture holds on average
when N = 2. If r = 0, this was done by Fouvry and Murty [FM2]. We extend
it to all r ∈ Z. As for all those average results, the key step is a theorem
of Deuring which relates the number of elliptic curves over the finite fields
Fp with ap(E) = r to the class number of the quadratic imaginary order of
discriminant r2 − 4p (see Section 2). By Dirichlet’s class number formula,
the averages to consider are then averages of special values of Dirichlet
L-functions (for N = 1), or averages of products of special values of Dirichlet
L-functions (for N ≥ 2). In the case r = 0, one can compute those averages
by splitting the L-functions

L(1, χ) =
∑

n≥1

χ(n)
n

into two sums, depending if n is a square or not, as only the terms with
n a square will contribute to the main term. This is not the case when
r 6= 0, because there is a shifting in the characters χ. Then all the terms
of the Dirichlet L-functions will contribute to the main term, and the com-
putations are more delicate. The average Lang–Trotter conjecture for two
elliptic curves then follows from this average of products of special values of
Dirichlet L-functions.

Theorem 1.2. Let ε > 0, and let r be an odd integer. Let A,B be
positive integers with A,B ≥ x1+ε. Then as x→∞,

1
16A2B2

∑

|a1|,|a2|≤A
|b1|,|b2|≤B

πrE1,E2
(x) ∼ Cr log log x

where

Cr =
3
π2

∏

p|r

p2(p2 + 1)
(p2 − 1)2

∏

p-r

p2(p4 − 2p2 − 3p− 1)
(p+ 1)3(p− 1)3 .(2)

We remark that for technical reasons, we restrict to the case of r odd in
the statement of Theorem 1.2. A similar result (with a different constant)
would hold for r even, but is not included here, except for the case r = 0
(done previously by Fouvry and Murty) in Section 5.
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The structure of this paper is as follows: in Section 2, we reduce the
statement of Theorem 1.2 to an average of a product of special values of
L-series; in Section 3, we find a precise asymptotic for the average of the
product of special values of L-series that is necessary for our application; in
Section 4, we find the expression for the constant Cr as an Euler product;
in Section 5, we show that our method implies the Fouvry–Murty result in
the case r = 0.

Acknowledgments. We would like to thank Ram Murty for reading
the manuscript and for commenting on an earlier version of this work.

2. From elliptic curves to L-series. In all the following, we fix
an integer r. For any integers a1, a2, b1, b2 such that 4a3

1 + 27b21 6= 0 and
4a3

2 + 27b22 6= 0, let

E1 : y2 = x3 + a1x+ b1, E2 : y2 = x3 + a2x+ b2

be two elliptic curves over Z. Then, for such a1, b1, a2, b2, we define

πrE1,E2
(x) = #{p ≤ x : ap(E1) = ap(E2) = r}.

We consider ∑

|a1|,|a2|≤A
|b1|,|b2|≤B

πrE1,E2
(x)

where a1, a2, b1, b2 are such that (4a3
1 + 27b21)(4a3

2 + 27b22) 6= 0. Reversing the
summations, this is

(3)
∑

Br<p≤x
#{|a1|, |a2| ≤ A, |b1|, |b2| ≤ B : ap(E1) = ap(E2) = r}+O(A2B2)

where Br = max(3, r2/4), and the O(A2B2) comes from the fact that we
removed the primes 2 and 3 from the sum.

Let E(a, b) be the elliptic curve y2 = x3 + ax + b with a, b ∈ Z. The
reduced curve E(a, b)p/Fp is the reduction modulo p of a minimal model at
p for E(a, b). Write a = p4ka′ and b = p6kb′ with k ≥ 0 and integers a′, b′

such that vp(a′) < 4 or vp(b′) < 6 (vp(n) is the power of p appearing in n).
Then, for p > 3, E(a′, b′) : y2 = x3 + a′x+ b′ is a minimal model for E(a, b)
at p. Hence, each elliptic curve Ep over the finite field Fp is the reduction of

(
2A
p

+O(1)
)(

2B
p

+O(1)
)

+O

(
AB

p10

)

curves E(a, b) with a, b ∈ Z and |a| ≤ A, |b| ≤ B, where the second term
accounts for non-minimal models. It follows that
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(4) #{|a1|, |a2| ≤ A, |b1|, |b2| ≤ B : ap(E1) = ap(E2) = r}

=
(

4AB
p2 +O

(
A

p
+
B

p
+
AB

p10 + 1
))2

N(p, r)2

where N(p, r) is the number of curves E over the finite field Fp such that
ap(E) = r, or equivalently with p+ 1− r points over that field.

Lemma 2.1 (Deuring’s Theorem). Let p be a prime, and r an integer
such that r2 − 4p < 0. Let H(r2 − 4p) be the Kronecker class number

H(r2 − 4p) = 2
∑

f2|r2−4p

h(d)
w(d)

where the sum runs over all positive integers f such that f 2 | r2 − 4p and
d = (r2 − 4p)/f2 ≡ 0, 1 mod 4 and is not a square, and h(d) and w(d) are
the class number and the number of units in the order of discriminant d
respectively. Then

N(p, r) =
p− 1

2
H(r2 − 4p).

Proof. See [Deu] or [Cox, Theorem 14.18].

Using the last lemma and the standard bound H(r2 − 4p) � √p log2 p,
we get

N(p, r)2 =
p2H2(r − 4p)

4
+O(p2 log4 p)� p3 log4 p.

Inserting this in (4) and (3) gives

∑

|a1|,|a2|≤A
|b1|,|b2|≤B

πrE1,E2
(x) = 4A2B2

∑

Br≤p≤x

H2(r2 − 4p)
p2

+O(A2B2 + (A2B + AB2)x log4 x

+ (A2 + AB +B2)x2 log4 x+ . . .

. . .+ (A+B)x3 log4 x+ x4 log4 x).

We take A,B such that

A,B ≥ x1+ε(5)

for any ε > 0. Then we have

∑

|a1|,|a2|≤A
|b1|,|b2|≤B

πrE1,E2
(x) = 4A2B2

∑

Br<p≤x

H2(r2 − 4p)
p2 +O(A2B2).(6)
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We now analyse the main term. By definition of the Kronecker class number,
and using the class number formula, we get

1
4

∑

Br≤p≤x

H2(r2 − 4p)
p2 =

∑

Br<p≤x

1
p2

∑

f2|r2−4p
f2d1=r2−4p

h(d1)
w(d1)

∑

g2|r2−4p
g2d2=r2−4p

h(d2)
w(d2)

=
1

4π2

∑

Br<p≤x

1
p2

∑

f2|r2−4p
f2d1=r2−4p

√
4p− r2

f
L(1, χd1)

×
∑

g2|r2−4p
g2d2=r2−4p

√
4p− r2

g
L(1, χd2)

=
1

4π2

∑

f≤2
√
x

g≤2
√
x

1
fg

∑

p∈Sf,g(x)

4p− r2

p2 L(1, χd1)L(1, χd2),

where Sf,g(x) is the set of primes

Sf,g(x) = {Br < p ≤ x : f2 | r2 − 4p, g2 | r2 − 4p,

d1 = (r2 − 4p)/f2 ≡ 0, 1 mod 4, d2 = (r2 − 4p)/g2 ≡ 0, 1 mod 4}.
We rewrite the last sum as

(7)
1
π2

∑

f≤2
√
x

g≤2
√
x

1
fg

∑

p∈Sf,g(x)

L(1, χd1)L(1, χd2)
p

+O

( ∑

f≤2
√
x

g≤2
√
x

1
fg

∑

p∈Sf,g(x)

L(1, χd1)L(1, χd2)
p2

)
.

We will prove in the next section (Theorem 3.1) that for any c > 0,

∑

f≤2
√
x

g≤2
√
x

1
fg

∑

p∈Sf,g(x)

L(1, χd1)L(1, χd2) log p = Krx+O

(
x

logc x

)
.

Then, by Theorem 3.1 and partial summation, the first sum of (7) is

1
π2x log x

(
Krx+O

(
x

logc x

))
+

1
π2

x�

2

(
Krt+O

(
t

logc t

))(
1 + log t
t2 log2 t

)
dt

∼ Kr

π2 log log x
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and similarly
∑

f≤2
√
x

g≤2
√
x

1
fg

∑

p∈Sf,g(x)

L(1, χd1)L(1, χd2)
p2 = O(1).

Then
1
4

∑

Br≤p≤x

H2(r2 − 4p)
p2 ∼ Kr

π2 log log x

and inserting this in (6) we get
1

16A2B2

∑

|a1|,|a2|≤A
|b1|,|b2|≤B

πrE1,E2
(x) ∼ Kr

π2 log log x

for A,B ≥ x1+ε. Notice that, assuming Theorem 3.1, this shows Theo-
rem 1.2.

3. Average values of product of Dirichlet L-functions

Theorem 3.1. Let r be an odd integer. Then, for any c > 0,
∑

f≤2
√
x

∑

g≤2
√
x

1
fg

∑

p∈Sf,g(x)

L(1, χd1)L(1, χd2) log p = Krx+O

(
x

logc x

)
,

where

Kr = 3
∏

p|r

p2(p2 + 1)
(p2 − 1)2

∏

p-r

p2(p4 − 2p2 − 3p− 1)
(p+ 1)3(p− 1)3 .

This section consists of a proof of Theorem 3.1. As r is odd, it follows
from the definition of Sf,g(x) that f, g are also odd, and that d1, d2 are con-
gruent to 1 modulo 4. Also, any common factor between r and f would divide
the primes p ∈ Sf,g(x), which is impossible because p > Br = max (3, r2/4).
Then the sum is empty unless (2r, fg) = 1, and we can rewrite the sum of
Theorem 3.1 as ∑

f,g≤2
√
x

(2r,fg)=1

1
fg

∑

p∈Sf,g(x)

L(1, χd1)L(1, χd2) log p

where
Sf,g(x) = {Br < p ≤ x : f2 | r2 − 4p, g2 | r2 − 4p}.

Let

L(s) = L(s, χd1)L(s, χd2) =
∞∑

m,n=1

χd1(m)χd2(n)
(mn)s

=
∞∑

l=1

ad1,d2(l)
ls

,

where
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ad1,d2(l) =
∑

mn=l

χd1(m)χd2(n).(8)

We then have the trivial bound

ad1,d2(l)� d(l)� lε(9)

for any ε > 0, where d(l) is the number of divisors of l. We need an expression
for the truncated L-series of L(1).

Lemma 3.2. Let U > 0. Then, for any ε > 0,

L(1) =
∞∑

l=1

ad1,d2(l)
l

e−l/U +O

( |d1d2|3/16+ε

U1/2

)

where the error term depends on ε.

Proof. We have the integral representation

e−1/U =
1

2πi

�

(1)

Γ (s+ 1)U s
ds

s

(see [M, p. 353] for a proof). Using this we have
∞∑

l=1

ad1,d2(l)
l

e−l/U =
1

2πi

�

(1)

L(s+ 1)Γ (s+ 1)U s ds

s
.

Now moving the line of integration from (1) to (−1/2) and calculating the
residue at s = 0 yields

(10)
∞∑

l=1

ad1,d2(l)
l

e−l/U = L(1) +
1

2πi

�

(−1/2)

L(s+ 1)Γ (s+ 1)U s ds

s
.

Recalling Burgess’s result (see [Bur]), we have, for any ε > 0,

L(1/2 + it) = L(1/2 + it, χd1)L(1/2 + it, χd2)�ε |d1d2|3/16+ε,

and then
1

2πi

�

(−1/2)

L(s+ 1)Γ (s+ 1)U s ds

s
�ε
|d1d2|3/16+ε

U1/2
.

Inserting this in (10) completes the proof.

Using Lemma 3.2, we write, for any ε > 0,
∑

f,g≤2
√
x

(2r,fg)=1

1
fg

∑

p∈Sf,g(x)

L(1) log p

=
∑

f,g≤2
√
x

(2r,fg)=1

1
fg

∑

p∈Sf,g(x)

{ ∞∑

l=1

ad1,d2(l)
l

e−l/U +O

( |d1d2|3/16+ε

U1/2

)}
log p
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=
∑

f,g≤2
√
x

(2r,fg)=1

1
fg

∞∑

l=1

e−l/U

l

∑

p∈Sf,g(x)

ad1,d2(l) log p

+O

(
1

U1/2

∑

f,g≤2
√
x

(2r,fg)=1

1
fg

∑

p∈Sf,g(x)

|d1d2|3/16+ε log p
)
.

Replacing d1 and d2 by their definition, we can bound the sum in the error
term by

� 1
U1/2

∑

f,g≤2
√
x

(2r,fg)=1

1
(fg)11/8+2ε

∑

p∈Sf,g(x)

p3/8+2ε log p

� x3/8+2ε log x
U1/2

∑

f,g≤2
√
x

(2r,fg)=1

1
(fg)11/8+2ε

∑

p∈Sf,g(x)

1� x11/8+2ε

U1/2
,

and we have

(11)
∑

f,g≤2
√
x

(2r,fg)=1

1
fg

∑

p∈Sf,g(x)

L(1) log p

=
∑

f,g≤2
√
x

(2r,fg)=1

1
fg

∞∑

l=1

e−l/U

l

∑

p∈Sf,g(x)

ad1,d2(l) log p+O

(
x11/8+2ε

U1/2

)

for any ε > 0.

Let 1 < V ≤ 2
√
x be a parameter to be chosen later. We write the sum

in (11) as

∑

f,g≤V
(2r,fg)=1

∞∑

l=1

e−l/U

l

∑

p∈Sf,g(x)

ad1,d2(l) log p

+
∑

V <f,g≤2
√
x

(2r,fg)=1

1
fg

∞∑

l=1

e−l/U

l

∑

p∈Sf,g(x)

ad1,d2(l) log p.

For the sum over large values of f and g, we first notice that for such f and
g, we have [f2, g2] | r2 − 4p, which implies that [f 2, g2] ≤ 4x. We also have
4p ≡ r2 mod f2 and 4p ≡ r2 mod g2 ⇔ 4p ≡ r2 mod [f2, g2]. Then



248 A. Akbary et al.

(12)
∣∣∣∣

∑

V <f,g≤2
√
x

(2r,fg)=1
[f2,g2]≤4x

1
fg

∞∑

l=1

e−l/U

l

∑

p∈Sf,g(x)

ad1,d2(l) log p
∣∣∣∣

≤ log x
∣∣∣∣
∞∑

l=1

d(l)
l
e−l/U

∣∣∣∣
∑

V <f,g≤2
√
x

(2r,fg)=1
[f2,g2]≤4x

1
fg

∑

p≤x
4p≡r2 mod [f2,g2]

1

≤ x log x

∣∣∣∣
∞∑

l=1

d(l)
l
e−l/U

∣∣∣∣
∑

V <f,g≤2
√
x

(2r,fg)=1
[f2,g2]≤4x

1
fg[f2, g2]

.

Lemma 3.3.
∞∑

l=1

d(l)
l
e−l/U � log2 U.

Proof. As in Lemma 3.2, we have the integral representation
∞∑

l=1

d(l)
l
e−l/U =

1
2πi

�

(1)

ζ2(s+ 1)Γ (s+ 1)U s ds

s

for the infinite sum that we want to bound, where ζ(s) is the Riemann zeta
function. Note that since

ζ(s) =
1

s− 1
+ γ + c1(s− 1) + . . .

(see [M, p. 63]), the residue of the integrand at s = 0 is

1
2

log2 U + 2γ logU + c0,

where γ is the Euler constant and c0 a constant. Now by moving the line of
integration from (1) to (−1/2) and calculating the residue at s = 0 we get
the desired bound.

Using this lemma, we can bound (12) by

x log x log2 U
∑

V <f,g≤2
√
x

(2r,fg)=1

(f2, g2)
f3g3 ≤ x log x log2 U

∑

V <f,g≤2
√
x

(2r,fg)=1

1
f2g2

� x log x log2 U

V 2

to get
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(13)
∑

f,g≤2
√
x

(2r,fg)=1

1
fg

∑

p∈Sf,g(x)

L(1) log p

=
∑

f,g≤V
(2r,fg)=1

1
fg

∞∑

l=1

e−l/U

l

∑

p∈Sf,g(x)

ad1,d2(l) log p

+O

(
x11/8+2ε

U1/2

)
+O

(
x log x log2 U

V 2

)
.

We now write the sum on the right hand side of (13) as
∑

f,g≤V
(2r,fg)=1

1
fg

∑

l≤U logU

e−l/U

l

∑

p∈Sf,g(x)

ad1,d2(l) log p

+
∑

f,g≤V
(2r,fg)=1

1
fg

∑

l>U logU

e−l/U

l

∑

p∈Sf,g(x)

ad1,d2(l) log p

for some parameter U = U(x) to be chosen later.
We first estimate the sum for large values of l. For any ε > 0, we have
∑

l>U logU

d(l)
l
e−l/U �

∑

l>U logU

e−l/U

l1−ε
� 1

(U logU)1−ε
∑

l>U logU

e−l/U

� 1
(U logU)1−ε

∞�

U logU

e−t/U dt =
1

(U logU)1−ε

and then
∑

f,g≤V
(2r,fg)=1

1
fg

∑

l>U logU

1
l
e−l/U

∑

p∈Sf,g(x)

ad1,d2(l) log p

� x log x
∑

l>U logU

d(l)
l
e−l/U

∑

f,g≤V
(2r,fg)=1

1
fg[f2, g2]

� x log x log2 V

(U logU)1−ε .

Using this last result and (13), we find that for any ε > 0,

(14)
∑

f,g≤2
√
x

(2r,fg)=1

1
fg

∑

p∈Sf,g(x)

L(1) log p

=
∑

f,g≤V
(2r,fg)=1

1
fg

∑

l≤U logU

1
l
e−l/U

∑

p∈Sf,g(x)

ad1,d2(l) log p

+O

(
x11/8+2ε

U1/2

)
+O

(
x log x log2 U

V 2

)
+O

(
x log x log2 V

(U logU)1−ε

)
.
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We now estimate the sum of the right hand side of (14). By quadratic
reciprocity,

χd1(m) = χd′1(m) if d1 ≡ d′1 mod (4m).

We then have
∑

f,g≤V
(2r,fg)=1

1
fg

∑

l≤U logU

e−l/U

l

∑

p∈Sf,g(x)

log p
∑

mn=l

χd1(m)χd2(n)

=
∑

f,g≤V
(2r,fg)=1

1
fg

∑

l≤U logU
mn=l

e−l/U

l

∑

amod 4m
bmod 4n

(
a

m

)(
b

n

)∑

p

∗
log p

where
∑∗

p runs over primes p such that p ∈ Sf,g(x) and d1 ≡ a mod (4m),
d2 ≡ b mod (4n), i.e. the primes p such that Br < p ≤ x and

p ≡ (r2 − af2)/4 mod mf2 and p ≡ (r2 − bg2)/4 mod ng2.

If (r2 − af2)/4 6≡ (r2 − bg2)/4 mod (mf2, ng2), there are no such primes.
If the above congruence is satisfied, let θ = θ(a, b,m, n, f, g) be the unique
residue modulo [mf2, ng2] which is congruent to (r2− af2)/4 modulo mf2,
and congruent to (r2−bg2)/4 modulo ng2. If (r2−af2)/4 6≡ (r2−bg2)/4 mod
(mf2, ng2), we set θ = 0. Then we can rewrite the last sum as

∑

f,g≤V
(2r,fg)=1

1
fg

∑

l≤U logU
mn=l

1
l
e−l/U

∑

amod 4m
bmod 4n

(
a

m

)(
b

n

) ∑

Br<p≤x
p≡θmod [mf2,ng2]

log p.

Let a, n be positive integers with (a, n) = 1. Following the standard notation,
we write

ψ(x;n, a) =
∑

p≤x
p≡amodn

log p =
x

φ(n)
+E(x;n, a).

With this notation, we rewrite the last sum as
∑

f,g≤V
(2r,fg)=1

1
fg

∑

l≤U logU
mn=l

1
l
e−l/U

∑

amod 4m
bmod 4n

∗
(
a

m

)(
b

n

)

×
(

x

φ([mf2, ng2])
+ E(x; [mf2, ng2], θ)

)

where
∑∗

amod 4m
bmod 4n

means that the sum runs over invertible residues a, b mod-

ulo m,n respectively such that (r2−af2)/4 ≡ (r2− bg2)/4 mod (mf2, ng2),
and θ is invertible modulo [mf 2, ng2], or equivalently (r2 − af2, 4m) = 4
and (r2 − bg2, 4n) = 4. We then define
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(15) crf,g(m,n) =
∑

a (4m)∗

(r2−af2,4m)=4

∑

b (4n)∗

(r2−bg2,4n)=4
(r2−af2)/4≡(r2−bg2)/4 mod (mf2,ng2)

(
a

m

)(
b

n

)
,

where
∑

a (4m)∗ denotes the sum over a complete set of invertible residues
modulo 4m. Using this notation, we have

(16)
∑

f,g≤V
(2r,fg)=1

1
fg

∑

l≤U logU

e−l/U

l

∑

p∈Sf,g(x)

ad1,d2(l) log p

= x
∑

f,g≤V
(2r,fg)=1

1
fg

∑

l≤U logU
mn=l

e−l/U

l

crf,g(m,n)

φ([mf2, ng2])

+
∑

f,g≤V
(2r,fg)=1

1
fg

∑

l≤U logU
l=mn

e−l/U

l

∑

amod 4m
bmod 4n

∗
(
a

m

)(
b

n

)
E(x; [mf2, ng2], θ).

We first deal with the second sum of (16), which is bounded by
∑

f,g≤V
(2r,fg)=1

1
fg

∑

mn≤U logU

1
mn

∑

amod 4m
bmod 4n

∗ |E(x; [mf2, ng2], θ)|.

In the sum
∑∗

amod 4m
bmod 4n

, each pair of residues a, b modulo 4m and 4n respec-

tively yields a different residue θ modulo [mf 2, ng2]. We then have
∑

mn≤U logU

1
mn

∑

amod 4m
bmod 4n

∗ |E(x; [mf2, ng2], θ)|

≤
∑

mn≤U logU

1
mn

∑

θmod [mf2,ng2]

|E(x; [mf2, ng2], θ)|

� f2g2
∑

l≤U logUf2g2

1
l

∑

θmod l

c(l)|E(x; l, θ)|

where c(l) is the number of ways that we can write l = [mf 2, ng2]. More
generally, we have

Lemma 3.4. Let n be a positive integer , and let C(n) be the number
of ways to write n = [n1, n2] for any positive integers n1 and n2. Then
C(n) ≤ 2ν(n)d(n), where ν(n) is the number of distinct prime factors of n
and d(n) is the number of divisors of n.

Proof. Let n =
∏r
i=1 p

αi
i with αi ≥ 1 for i = 1, . . . , r. Then n = [n1, n2]

implies that n1 =
∏r
i=1 p

βi
i and n2 =

∏r
i=1 p

γi
i with 0 ≤ βi, γi ≤ αi and
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max (βi, γi) = αi for i = 1, . . . , r. As there are 2αi + 1 such pairs (βi, γi) for
each i, we have

C(n) =
r∏

i=1

(2αi + 1) ≤
r∏

i=1

2(αi + 1) = 2ν(n)d(n).

Using this result in the last bound, we get
∑

mn≤U logU

1
mn

∑

amod 4m
bmod 4n

∗ |E(x; [mf2, ng2], θ)|

� f2g2
∑

l≤U logUf2g2

d2(l)
l

∑

θmod l

|E(x; l, θ)|

≤ f2g2
( ∑

l≤U logUf2g2

θmod l

d4(l)
l2

)1/2( ∑

l≤U logUf2g2

θmod l

E2(x; l, θ)
)1/2

using the Cauchy–Schwarz inequality.
For the first parenthesis, we use the result of Ramanujan [Wil]∑

l≤N
dr(l) ∼ ArN log2r−1 (N)

for r ≥ 2 and Ar an absolute constant with r = 4. If we use partial summa-
tion, and the fact that f, g ≤ V , this gives
( ∑

l≤U logUf2g2

θmod l

d4(l)
l2

)1/2

≤
( ∑

l≤U logUf2g2

d4(l)
l

)1/2

� log8 (V 4U logU).

For the second parenthesis, we apply the theorem of Barban–Davenport–
Halberstam [Dav, p. 169]. This gives

( ∑

l≤V 4U logU
θmod l

E2(x; l, θ)
)1/2

� (V 4Ux logU log x)1/2

whenever
x

logA x
≤ V 4U logU ≤ x for some A > 0.(17)

Finally, summing over f, g gives

(18)
∑

f,g≤V
(2r,fg)=1

1
fg

∑

l≤U logU
l=mn

e−l/U

l

∑

amod 4m
bmod 4n

∗
(
a

m

)(
b

n

)
E(x; [mf2, ng2], θ)

� (V 4Ux logU log x)1/2 log8 (V 4U logU)
∑

f,g≤V
(2r,fg)=1

fg

� V 6(Ux logU log x)1/2 log8 x

whenever (17) holds.
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We now have to evaluate the first sum of (16). We first rewrite the sum as

(19) x

∞∑

f,g=1
(2r,fg)=1

1
fg

∞∑

m,n=1

crf,g(m,n)e−mn/U

mnφ([mf2, ng2])

− x
∑

f,g≤V
(2r,fg)=1

1
fg

∑

l>U logU
mn=l

e−l/U

l

crf,g(m,n)

φ([mf2, ng2])

− x
∑

f,g>V
(2r,fg)=1

1
fg

∞∑

m,n=1

crf,g(m,n)e−mn/U

mnφ([mf2, ng2])
.

We first deal with the two error terms of (19). This is done using the bound

crf,g(m,n)� mn

κ(mn)(m,n)
,(20)

which is shown in Lemma 4.8. Using the notation of Section 4, we write
k = (f, g) and f = kf ′ and g = kg′. If (f ′, n) 6= 1 or (g′,m) 6= 1, we have
crf,g(m,n) = 0 by Lemma 4.3(i). If (f ′, n) = (g′,m) = 1, then (mf2, ng2) =
(m,n)(f2, g2). This gives

crf,g(m,n)

φ([mf2, ng2])
=

(mf2, ng2)crf,g(m,n)

φ(mnf2g2)
=

(m,n)(f2, g2)crf,g(m,n)

φ(mnf2g2)

≤
(m,n)(f2, g2)crf,g(m,n)

φ(mn)φ(f2)φ(g2)
� mn(f2, g2)

κ(mn)φ(mn)φ(f2)φ(g2)

by the bound (20) for crf,g(m,n). Inserting this in the first error term of (19),
we get

x
∑

f,g≤V
(2r,fg)=1

1
fg

∑

l>U logU
mn=l

e−l/U

l

crf,g(m,n)

φ([mf2, ng2])

� x
∑

f,g≤V
(2r,fg)=1

(f2, g2)
fgφ(f2)φ(g2)

∑

l>U logU

d(l)
κ(l)φ(l)

.

It is shown in [DP, Lemma 3.4] that
∞∑

l=1

l3/2

κ(l)φ(l)
l−s(21)

converges for Re(s) > 1. Clearly, this implies that
∑∞

l=1
d(l)

κ(l)φ(l) converges.
Furthermore, using the Wiener–Ikehara Tauberian Theorem and partial
summation as in the proof of [DP, Lemma 3.4], we can show that for any
ε > 0,
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∑

l>U logU

d(l)
κ(l)φ(l)

� (U logU)−1/2+ε.(22)

Also,
∑

f,g≤V
(2r,fg)=1

(f2, g2)
fgφ(f2)φ(g2)

≤ 2
∑

f,g≤V
f≤g

1
g2φ(f)φ(g)

≤ 2
(∑

f≤V

1
fφ(f)

)2

= O(1)

and then

x
∑

f,g≤V
(2r,fg)=1

1
fg

∑

l>U logU
mn=l

e−l/U

l

crf,g(m,n)

φ([mf2, ng2])
= O

(
x

(U logU)1/2−ε

)
.(23)

We now look at the second error term of (19). As above, we have

x
∑

f,g>V
(2r,fg)=1

1
fg

∞∑

m,n=1

crf,g(m,n)e−mn/U

mnφ([mf2, ng2])
� x

∑

f,g>V

(f2, g2)
fgφ(f2)φ(g2)

≤ x
(∑

f>V

1
fφ(f)

)2

� x

V 2−2ε

for any positive ε > 0, as φ(n)� n1−ε for any positive ε > 0 [HW, p. 267].
Then, by (19), we get

(24) x
∑

f,g≤V
(2r,fg)=1

1
fg

∑

l≤U logU

e−l/U

l

∑

mn=l

crf,g(m,n)

φ([mf2, ng2])

= x

∞∑

f,g=1
(2r,fg)=1

1
fg

∞∑

m,n=1

crf,g(m,n)e−mn/U

mnφ([mf2, ng2])
+O

(
x

(U logU)1/2−ε

)
+O

(
x

V 2−2ε

)
.

Finally, we remove the exponential e−l/U from the main term. We have, for
any c1 > 0,

x

∞∑

f,g,m,n=1
(2r,fg)=1

crf,g(m,n)e−mn/U

mnfgφ([mf2, ng2])

=
x

2πi

∞∑

f,g,m,n=1
(2r,fg)=1

crf,g(m,n)

fgmnφ([mf2, ng2])

�

(c1)

Γ (s)
(
U

mn

)s
ds

=
x

2πi

�

(c1)

( ∞∑

f,g,m,n=1
(2r,fg)=1

crf,g(m,n)

fg(mn)s+1φ([mf2, ng2])

)
Γ (s)U s ds.
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Using the bound (20) and working as above, we get
∞∑

f,g,m,n=1
(2r,fg)=1

crf,g(m,n)

(mn)s+1fgφ([mf2, ng2])
�

∞∑

l=1

d(l)
κ(l)φ(l)ls

and from (21), the sum converges for Re(s) > −1/2+ε, for any ε > 0. Then
we can move the line of integration to any −1/2 + ε < γ < 0, say γ = −1/4.
As Γ (s) has a simple pole at s = 0, by using Cauchy’s residue theorem and
working as in the proof of Lemma 3.2, we get

x

∞∑

f,g,m,n=1
(2r,fg)=1

crf,g(m,n)

fgmnφ([mf2, ng2])
e−mn/U = x

∞∑

f,g,m,n=1
(2r,fg)=1

crf,g(m,n)

fgmnφ([mf2, ng2])

+O

(
x

U1/4

)

and by (24), we have

(25) x
∑

f,g≤V
(2r,fg)=1

1
fg

∑

l≤U logU

e−l/U

l

∑

mn=l

crf,g(m,n)

φ([mf2, ng2])

= x

∞∑

f,g,m,n=1
(2r,fg)=1

crf,g(m,n)

fgmnφ([mf2, ng2])
+O

(
x

(U logU)1/2−ε +
x

V 2−2ε +
x

U1/4

)
.

This finishes the proof of Theorem 3.1. Indeed, inserting (25) and (18) in (16)
and (14), we get

∑

f,g≤2
√
x

(2r,fg)=1

1
fg

∑

p∈Srf,g(x)

L(1, χd1)L(1, χd2) log p

= Krx+O

(
x

(U logU)1/2−ε +
x

V 2−2ε + . . .

. . .+
x

U1/4
+ V 6(Ux logU log x)1/2 log8 x

+
x11/8+2ε

U1/2
+
x log x log2 U

V 2 +
x log x log2 V

(U logU)1−ε

)

for all ε > 0, with

Kr =
∞∑

f,g=1
(2r,fg)=1

1
fg

∞∑

mn=1

crf,g(m,n)

mnφ([mf2, ng2])
.(26)

We choose U = x/logα x and V = logβ x for positive integers α, β such that
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α− 4β − 1 ≥ 1 ensuring that the condition (17) is satisfied. Then
∑

f,g≤2
√
x

(2r,fg)=1

1
fg

∑

p∈Srf,g(x)

L(1, χd1)L(1, χd2) log p

= Krx+O

(
x

logβ x
+

x

logα/2−6β−9 x

)
= Krx+O

(
x

logc x

)

for any c > 0 for an appropriate choice of α and β. This proves Theo-
rem 3.1, provided that we get the Euler product expansion for the constant
Kr of (26). This is done in the next section.

4. The constant. In this section, we express the constant Kr as an
Euler product of local factors. We first prove that the coefficients crf,g(m,n)
are multiplicative, and we then use this result to prove a bound on the size
of crf,g(m,n) needed to complete the proof of Theorem 3.1 (see Lemma 4.8).
Moreover, we also use the multiplicativity of these coefficients to derive the
Euler product for the constant Kr in Theorem 3.1.

4.1. Multiplicativity of the coefficients crf,g(m,n). For all this section, let
r be an odd integer, and let f and g be positive odd integers. Let k = (f, g),
and let f ′, g′ be such that f = f ′k and g = g′k. Let m and n be positive
integers. For a prime p and an integer n, the valuation vp(n) is the power of
p appearing in the integer n.

Definition 4.1. (1) Let

crf (m) =
∑

a (4m)∗

(r2−af2,4m)=4

(
a

m

)
.

(2) For any invertible residue a modulo 4m, let

crf,g(n;m,a) =
∑

b (4n)∗

(r2−bg2,4n)=4
(r2−bg2)/4≡(r2−af2)/4 mod (mf2,ng2)

(
b

n

)
.

(3) Let

crf,g(m,n) =
∑

a (4m)∗

(r2−af2,4m)=4

(
a

m

)
crf,g(n;m,a).

Of course, this definition agrees with the previous definition of crf,g(m,n)
in (15).
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Definition 4.2. A function F (m,n) defined on the set of positive inte-
gers m, n is multiplicative if it satisfies

F (m,n) =
∏

p|mn
F (pvp(m), pvp(n)).

Lemma 4.3. (i) If (m, g′) 6= 1 or (n, f ′) 6= 1, then crf,g(m,n) = 0.
(ii) If (n1, n2) = 1, then crf,g(n1n2;m,a) = crf,g(n1;m,a)crf,g(n2;m,a).

Proof. (i) As

(r2 − bg2)/4 ≡ (r2 − af2)/4 mod (mf2, ng2)

⇔ (af ′2 − bg′2)/4 ≡ 0 mod (mf ′2, ng′2),
we have

crf,g(m,n) =
∑

a (4m)∗

(r2−af2,4m)=4

(
a

m

) ∑

b (4n)∗

(r2−bg2,4n)=4
(af ′2−bg′2)/4≡0 mod (mf ′2,ng′2)

(
b

n

)
.

Suppose there is a prime p dividing (n, f ′). Then crf,g(m,n) = 0 because
b ≡ 0 mod p, as p divides (mf ′2, ng′2) and (g′, p) = 1. The case (m, g′) 6= 1
is similar.

(ii) From the Generalised Chinese Remainder Theorem, there is a bi-
jection between the set of invertible residues b modulo 4n1n2 such that
(r2−bg2, 4n1n2) = 4 and the set of pairs (b1, b2) of invertible residues modulo
4n1 and 4n2 respectively such that (r2 − b1g2, 4n1) = 4 and (r2 − b2g2, 4n2)
= 4. Furthermore,

(af2 − bg2)/4 ≡ 0 mod (mf2, n1n2g
2)

if and only if

(af2− b1g2)/4 ≡ 0 mod (mf2, n1g
2), (af2− b2g2)/4 ≡ 0 mod (mf2, n2g

2)

as the least common multiple of (mf 2, n1g
2) and (mf2, n2g

2) is (mf2,
n1n2g

2). This proves the result.

Lemma 4.4. Let m1,m2, n1, n2 be positive integers such that (m1,m2) =
(n1, n2) = (m1, n2) = (m2, n1) = 1. Then

crf,g(m1m2, n1n2) = crf,g(m1, n1)crf,g(m2, n2).

Equivalently , the functions crf,g(m,n) are multiplicative.

Proof. Let n = n1n2 and m = m1m2. If (m, g′) 6= 1, or (n, f ′) 6= 1, then
crf,g(m1m2, n1n2) = 0 by Lemma 4.3(i). But then one of (m1, g

′), (m2, g
′),

(n1, f
′), (n2, f

′) is not 1, and either

crf,g(m1, n1) = 0 or crf,g(m2, n2) = 0

by Lemma 4.3(i). This proves the lemma in this case, and we now suppose
that (m, g′) = (n, f ′) = 1. Using Lemma 4.3(ii), we have



258 A. Akbary et al.

crf,g(m,n1n2) =
∑

a (4m)∗

(r2−af2,4m)=4

(
a

m

)
crf,g(n1;m,a)crf,g(n2;m,a)

with

crf,g(n1;m,a) =
∑

b1 (4n1)∗

(r2−b1g2,4n1)=4
(af ′2−b1g′2)/4≡0 mod (mf ′2,n1g′2)

(
b1
n1

)
.

By hypothesis, (mf ′2, n1g
′2) = (m1f

′2, n1g
′2), and

crf,g(n1;m,a) = crf,g(n1;m1, a1)

where a1 is the reduction of a modulo 4m1. Similarly, we have

crf,g(n2;m,a) = crf,g(n2;m2, a2)

where a2 is the reduction of a modulo 4m2.
Then, applying the Generalised Chinese Remainder Theorem, we have

crf,g(m,n) =
∑

a (4m1m2)∗

(r2−af2,4m1m2)=4

(
a

m1m2

)
crf,g(n1;m1, a1)crf,g(n2;m2, a2)

=
∑

a1 (4m1)∗

(r2−a1f2,4m1)=4

(
a1

m1

)
crf,g(n1;m1, a1)

×
∑

a2 (4m2)∗

(r2−a2f2,4m2)=4

(
a2

m2

)
crf,g(n2;m2, a2)

which proves the lemma.

4.2. Bounds for the coefficients crf,g(m,n). We prove in this section that
the functions crf,g(m,n) satisfy the bound (20). This is the result needed to
complete the proof of Theorem 3.1.

Lemma 4.5. Let p be a prime, and let α, β ≥ 0 be integers. Then

(i) crf,g(1, 1) = 1;
(ii) If p - fg (i.e. vp(f) = vp(g) = 0), then crf,g(p

α, pβ) = cr1,1(pα, pβ);
(iii) If p | fg and vp(f) = vp(g), then crf,g(p

α, pβ) = crp,p(p
α, pβ);

(iv) Suppose p | fg and vp(f) 6= vp(g). If α, β ≥ 1, then crf,g(p
α, pβ) = 0.

If α = 0 and β ≥ 1, then crf,g(p
α, pβ) = 0 whenever vp(g) < vp(f) and

crf,g(p
α, pβ) = crp(p

β) whenever vp(g) > vp(f). If α ≥ 1 and β = 0, then
crf,g(p

α, pβ) = 0 whenever vp(f) < vp(g) and crf,g(p
α, pβ) = crp(p

α) whenever
vp(f) > vp(g).
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Proof. (i) By definition.
(ii) By definition,

cr1,1(pα, pβ) =
∑

a (4pα)∗

(r2−a,4pα)=4

(
a

pα

) ∑

b (4pβ)∗

(r2−b,4pβ)=4
(a−b)/4≡0 mod (pα,pβ)

(
b

pβ

)
.

As (f, 2p) = (g, 2p) = 1, there is a bijection between the invertible residues
modulo 4pα (respectively 4pβ) and the set of af2 (respectively bg2), where a
(respectively b) runs over the set of invertible residues modulo 4pα (respec-
tively 4pβ). This gives

cr1,1(pα, pβ) =
∑

a (4pα)∗

(r2−af2,4pα)=4

(
af2

pα

) ∑

b (4pβ)∗

(r2−bg2,4pβ)=4
(af2−bg2)/4≡0 mod (pα,pβ)

(
bg2

pβ

)
.

As

(af2 − bg2)/4 ≡ 0 mod (pα, pβ) ⇔ (af2 − bg2)/4 ≡ 0 mod (pαf2, pβg2)

and (
af2

pα

)
=
(
a

pα

)
,

(
bg2

pβ

)
=
(
b

pβ

)

we get cr1,1(pα, pβ) = crf,g(p
α, pβ).

(iii) As p | fg, and vp(f) = vp(g), p is odd, and we have

(af2 − bg2)/4 ≡ 0 mod (pαf2, pβg2) ⇔ af ′2 ≡ bg′2 mod (pα, pβ).

Let h = f ′−2g′2 modulo 4pβ . Then there is a bijection between the set of
invertible residues b modulo 4pβ and the set of hb, where b runs over the
invertible residues b modulo 4pβ . Then

crp,p(p
α, pβ) =

∑

a (4pα)∗

(r2−ap2,4pα)=4

(
a

pα

) ∑

b (4pβ)∗

(r2−bp2,4pβ)=4
a≡bmod (pα,pβ)

(
b

pβ

)

=
∑

a (4pα)∗

(r2−ap2,4pα)=4

(
a

pα

) ∑

b (4pβ)∗

(r2−hbp2,4pβ)=4
a≡hbmod (pα,pβ)

(
bh

pβ

)
.

As (r2−ap2, 4pα) = 4 if and only if (r2−af2, 4pα) = 4, (r2−hbp2, 4pβ) = 4
if and only if (r2 − bg2, 4pβ) = 4, and(

bh

pβ

)
=
(
b

pβ

)

we get crp,p(p
α, pβ) = crf,g(p

α, pβ).
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(iv) Suppose that p | fg, and vp(f) 6= vp(g). If α, β ≥ 1, then one of
(pα, g′) or (pβ, f ′) is divisible by p. Then crf,g(p

α, pβ) = 0 by Lemma 4.3(i).
If α = 0, β ≥ 1 and vp(f) > vp(g), then (pβ, f ′) is divisible by p and

crf,g(p
α, pβ) = 0 by Lemma 4.3(i). If α = 0, β ≥ 1 and vp(f) < vp(g), then

crf,g(1, p
β) =

∑

b (4pβ)∗

(r2−bg2,4pβ)=4
(af ′2−bg′2)/4≡0 mod (f ′2,pβg′2)

(
b

pβ

)

is equal to cg(pβ) as (f ′2, pβg′2) = 1. Finally, from [DP, Lemma 3.3(3)],
crg(p

β) = crp(p
β). The proof is similar for α ≥ 1, β = 0 and vp(f) 6= vp(g).

Lemma 4.6. Let α ≥ 0.

(i) For p odd ,

cr1(pα)
pα−1 =





−
(
r2

p

)
when α is odd ,

p− 1−
(
r2

p

)
when α is even.

(ii) For p odd ,

crp(p
α)

pα−1 =





0 when p | r,
p− 1 when α is even and p - r,
0 when α is odd and p - r.

(iii)
cr1(2α)
2α−1 = (−1)α.

Proof. This is [DP, Lemma 3.3].

Lemma 4.7. Let α, β ≥ 0, not both 0.

(i) For p odd ,

cr1,1(pα, pβ)

pmax (α,β)−1
=





−
(
r2

p

)
when α+ β is odd ,

p− 1−
(
r2

p

)
when α+ β is even.

(ii) For p odd ,

crp,p(p
α, pβ)

pmax (α,β)−1
=





0 when p | r,
p− 1 when α+ β is even and p - r,
0 when α+ β is odd and p - r.

(iii)
cr1,1(2α, 2β)

2max (α,β)−1
= (−1)α+β.
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Proof. (i) If α = 0, then cr1,1(1, pβ) = cr1(pβ), and the result follows from
Lemma 4.6(i). Similarly for β = 0. We then suppose that α, β ≥ 1, and
without loss of generality that α ≤ β. As p is odd, we have

cr1,1(pα, pβ) =
∑

a (pα)∗

(r2−a,p)=1

(
a

p

)α ∑

b (pβ)∗

(r2−b,p)=1
b≡amod pα

(
b

p

)β

= pβ−α
∑

a (pα)∗

(r2−a,p)=1

(
a

p

)α+β

= pβ−1
∑

a (p)∗

a6≡r2 mod p

(
a

p

)α+β

.

This proves (i).
(ii) As in (i), we can suppose that 1 ≤ α ≤ β. As p is odd, we have

crp,p(p
α, pβ) =

∑

a (pα)∗

(r2−ap2,p)=1

(
a

p

)α ∑

b (pβ)∗

(r2−bp2,p)=1
bp2≡ap2 mod pα+2

(
b

p

)β
.

If p | r, then p | (r2−ap2, p), and crp,p(p
α, pβ) = 0. If p - r, then (r2−ap2, p) = 1,

and

crp,p(p
α, pβ) =

∑

a (pα)∗

(
a

p

)α ∑

b (pβ)∗
b≡amod pα

(
b

p

)β

= pβ−α
∑

a (pα)∗

(
a

p

)α+β

= pβ−1
∑

a (p)∗

(
a

p

)α+β

.

This proves (ii).
(iii) As above, we can suppose that 1 ≤ α ≤ β. We have

cr1,1(2α, 2β) =
∑

a (2α+2)∗

(r2−a,2α+2)=4

(
a

2

)α ∑

b (2β+2)∗

(r2−b,2β+2)=4
a≡bmod 2α+2

(
b

2

)β

= 2β−α
∑

a (2α+2)∗

(r2−a,2α+2)=4

(
a

2

)α+β

.

As the value of the character depends only on the value of a modulo 8, and
as r2 ≡ 1 mod 8, we have
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cr1,1(2α, 2β) = 2β−α2α−1
∑

a (8)∗

a≡5 mod 8

(
a

2

)α+β

= 2β−1(−1)α+β.

This proves (iii).

Lemma 4.8. For any integers m,n ≥ 1, we have

crf,g(m,n) = O

(
mn

κ(mn)(m,n)

)
.

Here κ(n) is the multiplicative arithmetic function generated by the identity

κ(pα) =
{
p, α odd ,

1, α even
for any prime p and any positive integer α.

Proof. From Lemma 4.4, crf,g(m,n) is multiplicative, i.e.

crf,g(m,n) =
∏

p|mn
crf,g(p

α(p), pβ(p)).

Let p be any prime. It then follows from Lemmas 4.5–4.7 that for integers
α, β ≥ 0, we have

crf,g(p
α, pβ)�

(
pα+β

κ(pα+β)(pα, pβ)

)

with an absolute constant. We then have

crf,g(m,n)�
∏

p|mn

pα(p)+β(p)

κ(pα(p)+β(p))(pα(p), pβ(p))
=

mn

κ(mn)(m,n)
.

4.3. Euler product. We compute in this section the Euler product for
the constant Cr. We recall from Section 2 that

Cr =
Kr

π2
and from (26),

Kr =
∞∑

f,g=1
(2r,fg)=1

1
fg

∞∑

m,n=1

crf,g(m,n)

mnφ([mf2, ng2])
.

From Lemma 4.3(i), crf,g(m,n) = 0 when (f ′, n) 6= 1 or (g′,m) 6= 1. Now, if
(f ′, n) = (g′,m) = 1,

[mf2, ng2] = k2[mf ′2, ng′2] = k2[m,n]f ′2g′2 = [m,n][f2, g2].

Using that and the identity

φ(ab) =
φ(a)φ(b)(a, b)

φ(a, b)
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we get

Kr =
∑

f,g≥1
(2r,fg)=1

1
fgφ([f2, g2])

∞∑

m,n=1

crf,g(m,n)φ([f2, g2], [m,n])

mnφ([m,n])([f2, g2], [m,n])
.(27)

One can check that the function in the inside sum is a multiplicative function
of m and n. For such functions, we have the following.

Lemma 4.9 (Euler product). Let F (m,n) be a multiplicative function.
Then ∑

m,n≥1

F (m,n) =
∏

p

∑

α,β≥0

F (pα, pβ).

We then write the inside sum of (27) as

∞∑

m,n=1

crf,g(m,n)φ([f2, g2], [m,n])

mnφ([m,n])([f2, g2], [m,n])

=
∏

p

∑

α,β≥0

crf,g(p
α, pβ)φ([f2, g2], [pα, pβ])

pαpβφ([pα, pβ ])([f2, g2], [pα, pβ ])
.

We now break the product in three parts, depending on the p-adic valuations
of f and g. We first notice that for any prime p,

φ([f2, g2], [pα, pβ])
([f2, g2], [pα, pβ])

=





1 if α = β = 0,

1 if p - fg,
p− 1
p

if p | fg, α, β not both 0.

Then, using Lemma 4.5, we can rewrite the last product as

∏

p-fg

∑

α,β≥0

cr1,1(pα, pβ)

pαpβφ([pα, pβ ])

∏

p|fg
vp(f)=vp(g)

(
1 +

p− 1
p

∑

α,β≥0
(α,β)6=(0,0)

crp,p(p
α, pβ)

pαpβφ([pα, pβ ])

)

×
∏

p|fg
vp(f)<vp(g)

(
1 +

p− 1
p

∑

β>0

crp(p
β)

pβφ(pβ)

) ∏

p|fg
vp(f)>vp(g)

(
1 +

p− 1
p

∑

α>0

crp(p
α)

pαφ(pα)

)

=
∏

p

E1(p)
∏

p|fg
vp(f)=vp(g)

E2(p)
E1(p)

∏

p|fg
vp(f)<vp(g)

E3(p)
E1(p)

∏

p|fg
vp(f)>vp(g)

E3(p)
E1(p)

where
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E1(p) =
∑

α,β≥0

cr1,1(pα, pβ)

pαpβφ([pα, pβ ])
,

E2(p) = 1 +
p− 1
p

∑

α,β≥0
(α,β)6=(0,0)

crp,p(p
α, pβ)

pαpβφ([pα, pβ])
,

E3(p) = 1 +
p− 1
p

∑

β>0

crp(p
β)

pβφ(pβ)
.

Inserting the last equation in (27), we get

Kr =
∏

p

E1(p)
∑

f,g≥1
(2r,fg)=1

1
fgφ([f2, g2])

∏

p|fg
vp(f)=vp(g)

E2(p)
E1(p)

×
∏

p|fg
vp(f)<vp(g)

E3(p)
E1(p)

∏

p|fg
vp(f)>vp(g)

E3(p)
E1(p)

.

One can check that the function

F (f, g) =
1

fgφ([f2, g2])

∏

p|fg
vp(f)=vp(g)

E2(p)
E1(p)

∏

p|fg
vp(f)<vp(g)

E3(p)
E1(p)

∏

p|fg
vp(f)>vp(g)

E3(p)
E1(p)

is a multiplicative function of f and g. We compute F (1, 1) = 1, and for
γ, δ ≥ 0 not both 0,

F (pγ , pδ) =





1
pγpδφ([p2γ, p2δ])

E2(p)
E1(p)

if γ = δ,

1
pγpδφ([p2γ, p2δ])

E3(p)
E1(p)

if γ < δ,

1
pγpδφ([p2γ, p2δ])

E3(p)
E1(p)

if γ > δ.

By Lemma 4.9, this gives

Kr =
∏

p

E1(p)
∏

p-2r

∑

γ,δ≥0

F (pγ , pδ)

=
∏

p|2r
E1(p)

×
∏

p-2r

(
E1(p) +E2(p)

∑

γ≥1

1
p2γφ(p2γ)

+ 2E3(p)
∑

γ,δ≥0
γ<δ

1
pγpδφ([p2γ , p2δ])

)
.



Special values of L-series 265

One computes

E1(2) =
4
9
,

E1(p) =
p2(p2 + 1)
(p2 − 1)2 for p | r,

E1(p) =
p5 − p4 − p3 − 4p2 + 1

(p− 1)3(p+ 1)2 for p - 2r,

E2(p) =
p4 + p3 + 2p2 − p− 1
p(p− 1)(p+ 1)2 for p - 2r,

E3(p) = 1 +
1

p(p+ 1)
=
p2 + p+ 1
p(p+ 1)

,

∑

γ≥1

1
p2γφ(p2γ)

=
p

(p− 1)(p4 − 1)
,

∑

γ,δ≥0
γ<δ

1
pγpδφ([p2γ , p2δ])

=
(

p

p− 1

)2( 1
p3 − 1

− 1
p4 − 1

)
=

p5

(p4 − 1)(p3 − 1)(p− 1)
.

Inserting this in the last expression for Kr gives

Kr =
4
9

∏

p|r

p2(p2 + 1)
(p2 − 1)2

∏

p-2r

p2(p4 − 2p2 − 3p− 1)
(p+ 1)3(p− 1)3

= 3
∏

p|r

p2(p2 + 1)
(p2 − 1)2

∏

p-r

p2(p4 − 2p2 − 3p− 1)
(p+ 1)3(p− 1)3

and finally

Cr =
3
π2

∏

p|r

p2(p2 + 1)
(p2 − 1)2

∏

p-r

p2(p4 − 2p2 − 3p− 1)
(p+ 1)3(p− 1)3 .

5. The supersingular case. The case r = 0 was considered by Fouvry
and Murty in [FM2], and we verify here that our method gives the same
asymptotic. We start by considering (3.1) of [FM2]:

T (x) =
∑

p≤x

h2(−p)
p2 + 2

∑

p≤x

h(−p)h(−4p)
p2 +

∑

p≤x

h2(−4p)
p2

= T1,1(x) + 2T1,4(x) + T4,4(x).
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Proceeding as in Section 2, we write

T1,1(x) =
∑

p∈S2,2(x)

L(1, χ−p)L(1, χ−p)
p

,

T1,4(x) = 2
∑

p∈S2,1(x)

L(1, χ−p)L(1, χ−4p)
p

,

T4,4(x) = 4
∑

p∈S1,1(x)

L(1, χ−4p)L(1, χ−4p)
p

.

We replace 1/p by log p in the above sums, and we call the corresponding
new sums T̂i,j(x). One can easily get the asymptotic for T from T̂ by partial
summation as in Section 2. We now calculate each of the sums T̂i,j(x).

Proceeding as in Section 3, we get

T̂1,1(x) ∼
( ∞∑

m,n=1

c0
2,2(m,n)

mnφ([4m, 4n])

)
x

where

c0
2,2(m,n) =

∑

a (4m)∗
a≡1 mod 4

(
a

m

) ∑

b (4n)∗
b≡1 mod 4

(a−b)/4≡0 mod (m,n)

(
b

n

)
.

When m and n are odd, we have

c0
2,2(m,n) =

∑

a (m)∗

(
a

m

) ∑

b (n)∗

a≡bmod (m,n)

(
b

n

)

and for 1 ≤ α ≤ β, we have

c0
2,2(2α, 2β) = 2β−1(1 + (−1)α+β).

Using these and following the arguments of Section 4, we get the Euler
product

∞∑

m,n=1

c0
2,2(m,n)

mnφ([4m, 4n])
=

1
2

∏

p

1 + 1/p2

(1− 1/p2)2 =
5π2

24
.

Proceeding similarly, we get

T̂1,4(x) ∼
(

2
∞∑

m,n=1
n odd

c0
2,1(m,n)

mnφ([4m,n])

)
x



Special values of L-series 267

where

c0
2,1(m,n) =

∑

a (4m)∗
a≡1 mod 4

(
a

m

) ∑

b (n)∗

a≡bmod (4m,n)

(
b

n

)
.

When m is odd, we have

c0
2,1(m,n) =

∑

a (m)∗

(
a

m

) ∑

b (n)∗

a≡bmod (m,n)

(
b

n

)

and for α ≥ 1, we have

c0
2,1(2α, 1) = 2α−1(−1)α.

Using these and following the arguments of Section 4, we get the Euler
product

2
∞∑

m,n=1
n odd

c0
2,1(m,n)

mnφ([4m,n])
= 2
(

1
2

)(
1

1− 1/22

)∏

p≥3

1 + 1/p2

(1− 1/p2)2 =
π2

4
.

Proceeding in the same way, we get

T̂4,4(x) ∼
(

4
∞∑

m,n=1
m,n odd

c0
1,1(m,n)

mnφ([m,n])

)
x

where

c0
1,1(m,n) =

∑

a (m)∗

(
a

m

) ∑

b (n)∗

a≡bmod (m,n)

(
b

n

)
.

Here m and n are odd, and we have

4
∞∑

m,n=1
m,n odd

c0
1,1(m,n)

mnφ([m,n])
= 4

∏

p≥3

1 + 1/p2

(1− 1/p2)2 =
3π2

4
.

Finally, putting the last three estimates together, we get

T (x) ∼
(

5
24

+
1
2

+
3
4

)
x

log x
=

35
24

x

log x

and then Theorem 1.2 also holds for r = 0 with C0 = 35/96. This is the
result obtained by Fouvry and Murty in [FM2].
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