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The Jacobi-Perron Algorithm introduced by Jacobi [7] and O. Perron
[9] is a generalization of the continued fraction algorithm. Applied to an
n-uple of real numbers, it gives simultaneous approximations. In case of
periodicity it yields a unit of a number field which commands the quality of
simultaneous approximations.

We prove that for n = 2 this unit is a Pisot number (positive algebraic
integer with each conjugate in |z| < 1) and that this is not necessarily the
case for n > 3.

The problem of characterizing the periodicity of JPA (Jacobi—Perron
Algorithm) is still open for n > 2. Many families of sets of n real numbers
for which the JPA is periodic were found by L. Bernstein [2], E. Dubois &
R. Paysant-Le Roux [5], C. Levesque & G. Rhin [8]. M. Bouhamza for n = 3
and n = 4 [3, 4], and then E. Dubois and R. Paysant-Le Roux for every
n [6] proved that there exists, in any real number field of degree n + 1, an
n-uple of real numbers with periodic JPA.

Recently B. Adam & G. Rhin [1] found a method yielding all pairs of
real numbers with periodic JPA which produce a given unit in a real cubic
field. In many examples they get no set with periodic JPA when the given
unit is not a Pisot number. So they ask if this is always true. In this paper
we give a positive answer in case n = 2 and we prove that this is not always
true for n > 3.

I. The Jacobi—Perron Algorithm. The continued fraction algorithm,
applied to an irrational real number «, yields a sequence (ay),~, of real
numbers, a sequence (aj),, of integers and a sequence (px/qk);>_o Of
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rational approximations of a by the well known formula

(1) ap =, ar=a+ with a, = [ax] (k> 0)

Opt1
where [z] denotes the integer part of x,

(2)

When ay,+1 = ag,, the continued fraction is periodic and the product ¢ =
Qo V41 - - - Ak +1—1 1S @ unit in the quadratic field Q(«v). Moreover this unit
is clearly a Pisot number.

p—2=0, p.1=1 pr=arpr—1+pr—2 (k>0),
g—2=1, ¢1=0, gqr=agag—1+q—2 (k>0).

The JPA applied to an n-uple (aq,...,a,) determines three sequences:
(agy), cen oz%y))ux) of real n-uples, (agy), el agf))wo of integer n-uples and
(Ag'/)/A((JV), e Agf')/A(()V)),,ZO of simultaneous approximations of (a1, . .., ay,)

by the formulae

ago) =a; (1<i<n)

(3) ) a(u+1)
v v v v —1 .
ag):a§)+a(n+1)’ O‘E):ag)jLaz(vH) (2<i<n)

AT — AW AT a0 AT (0 <i<n, v >0).

We say that the JPA is periodic when the sequence (aﬁ”), e ,ozgf))ywco is
periodic, or equivalently when the sequence (agy), . ,agj))y> ko 1S periodic.

If ago) = agl) (1 <4 < n) we say that the JPA is purely periodic. We
assume that we are in this particular case. In the general case, it is easy to
imagine the formula.

The matrix

A((]l) A((]lJrl) A(()lJrn)
(5) M= oo
A(l) A%H—l) A(H—n)

characterizes the development and contains much information.

The sequence (agy), . ,agf)),,zo of nonnegative integer n-uples is a JPA
development if and only if

(6) (aglu)ja(l""l) o a(l’"‘l)) > (CL(V) a(”+1)

n—1 > ) In—q v =1 o

"CL;(lIJ-‘ri—l)7 1)
0<i<n-1l,v>1),

where > denotes the lexicographical order.
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For every JPA development we have
(7) det( A oz jen = (1™ (v 20),
AV +aAY ¢ o)A

8 a; = <1< n,v>0),
( ) Ag/) +O[§D)Aéy+1) + .. +a7(1u)A(()V+n) ( )
AY
9) lim Eu) =ao; (1<i<n),
V—00 AO

10) aPa® . a® =AW 4 oAV 4+ oAl > ),

In case of purely periodic JPA with minimal length [, oo = a%l)om(f) . ag )
is an eigenvalue of M and (l,ago), .. ,oh(lo)) is an eigenvector associated

to pg. The real value gg is the maximal positive real root of the characteristic
polynomial

(11) f(X) =det(M — XTI)
and gg is a simple root of f. But f is not always irreducible.

Starting with a periodic sequence of nonnegative integer n-uples (agu), e

. agf)) satisfying (6) we get a matrix M and an n-uple (a1, ..., a,) which
have (ag'/), . ,a%’j)) as JPA development.

We will use the following result:

THEOREM 1 ([9]). Let oo, 01,...,0n be the roots of the characteristic
polynomial of a periodic JPA, with minimal length I, oo € R and g9 >
lo1] = max{|o;| : 1 < i <n}. Then

Ve > 0,dc > 0,dvy, Yv > vy,

Az(‘VH)\) . 01(1+¢)
A(()Vl+)\) ¢ 00

14

<c (0<A<I—1,1<i<n).

But there exist (i,A\) and ¢’ > 0 such that
‘A(Vl+A)

AéUH_A)

v

01

> | =— for infinitely many v.
Qo

This theorem shows that the quality of these simultaneous approxima-
tions is given by p1. So it is important to know if gy is a Pisot number or
not.

We will also use the following theorem:

THEOREM 2 ([5]). Let be an n-uple of real numbers (aq,..., o) with
periodic JPA. Then lim,,ﬂoo(Agy) — aiAéV)) = 0 if and only if the char-
acteristic polynomial is irreducible with a Pisot number as root. We have
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Q(o0) = Q(ai,...,an) and the degree of Q(o) is n + 1 if and only if
1, aq,...,qa, are Q-linearly independent.

II. Main result in the case of two real numbers

THEOREM 3. For any JPA the sequences (AY — a; Afj)u>0 are bounded
fori=1,2. For a periodic JPA of two real numbers (a1, as), we have

lim (A" — ;A" =0 (i=1,2).

V—00
The characteristic polynomial is irreducible and its maximal real root is a
Pisot number.

Proof. We consider
V, = (A" — g AL AY) — 0,4V (v >0).

From (8) we have V,, + aﬁ”)VVH + ozg/)Vl,H = 0 and from (4) we have
Viga =V, + aﬁ”)VyH + ag/)Vl,Jrg. So we get

(12) VV+3 = bI/VI/ + CVVV+1
with
y agu) . ag/) _ agu)ag/) . agu)agu)

We shall prove that |b,| + |c,| < 1. Using (3) we have

L [ o) W < ) a%””) <u>< ) 1 )}
bl,+c,,:1——{a —a ay  +—— | +a a; '+ ,

(v) (v)  (v+1)
by e, =1- 2 {1— P s (1+1)}.
o) azu O‘zu azu

Then —1 < b, + ¢, < 1 because the expression in brackets is clearly between
0 and 2.
Similarly, we have

(v+1)
1 a 1
b, —c, =1— {a(u) +a» (a(y) + > — o <a(y) + )}7
Ozg/) 2 1 2 Ozéu+1) 2 1 Ozéwrl)
(v) (v) (v+1)
1
by —ev=1- a?u) { T e T a?wa?um }
Qg Qg Qg "y

Then —1 < b, — ¢, < 1 because the expression in brackets is clearly between
0 and 2.

Now, since b, > 0 we deduce that |b,| + |c,| < 1. From (12) and |b,| +
lc,| < 1 we see that the components AZ(.V) — aiA(()V) of V,, are bounded by
max(|Vp|, [Vi],|V2|) for any v and any JPA development.
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Assume now that the JPA development is periodic, with al(»yo) = aEVOH).
Consider
m = max{|b,| + |c,| : vo < v < v+ 1}

Since m < 1, it is easy to get limyﬂoo(A(Ay) — oziAéy)) =0forl<i<2.

From Theorem 2, gq is a Pisot number of degree 3 and f is irreducible. m
COROLLARY. If the JPA development of (a1,az) is periodic, then 1,cq, a0
are Q-linearly independent and form a basis of a cubic number field.

Proof. We can assume that the JPA is purely periodic with length .
Since (1, a1, a2) is an eigenvector of M associated to go we have Q(ay, ag) C
Q(00)- From go = ag) . ag) and from (3) we have Q(oo) C Q(a1, a2) and
therefore Q(aq, a2) = Q(00). From Theorem 3, Q(0¢) is a cubic number field
and from Theorem 2, 1, oy, as are Q-linearly independent. m

ITII.a. The case n = 3. In this case, we consider the special cases of
purely periodic JPA with small length.
Consider first a purely periodic JPA with length [ = 1:

(13) (@”,a$”,a") = (a1,a2,a3) (v >0)

with (as,a2,a1) > (a2,a1,1) and (as,a2) > (a1, 1), where > denotes the
lexicographical order.

PROPOSITION 1. The characteristic polynomial of a JPA with period 1
defined by (13) is reducible if and only if az = asz and ay = 0. In this case
00 158 a Pisot number of degree 3 but the AEV) — aiAg/) do not converge to 0
and there exists a Q-linear relation between 1, o, o, 3. In the other case
(as > ag or ay #0), 0o is a Pisot number of degree 4.

Proof. Each step of the proof is elementary.

The characteristic polynomial is f(z) = 2% — azz® — as2? — @y — 1 and
the different steps are the following;:

If as = a3 and a1 = 0, then f(—1) = 0 and the root gg of f(z)/(z + 1)
is a Pisot number. If f is reducible we show that f is not the product of two
factors of degree two and that f(1) < 0. Then f(—1) = 0 gives az = a3 and
a1 = 0. m

Consider now a purely periodic JPA with length [ = 2,

(03,05 a5?) = (b1, ba, bs).

(14)

) (ag2u+1) : aé2V+1), a§2V+1)) _ (017 cs, 63)
wit
(15) (b3, c2,b1) > (b2, c1,1); (b3, c2) > (b1, 1);

(e3,b2,¢1) > (€2,b1,1);  (c3,b2) > (c1,1),

where > denotes the lexicographical order.



274 E. Dubois et al.

After some computing, we prove that the characteristic polynomial is
(16)  f(z) =2 — (bgcz + ba + c2)z® — (bzer + bics + 2 — baca)x?
— (b1€1 — by — Cz)l‘ + 1.

Using (15), we can see that f is not a product of two factors of degree 2.
f(—=1) =0 if and only if

(17) (cs=cirand e =0) or (bs=by and by =0),
f(1) =0 if and only if
(18) bg = bg, C3 = Cg and bl =C = 0.

In these two cases, it is an easy exercise to prove that gg is a Pisot number
and with Theorem 1 we get:

PROPOSITION 2. The characteristic polynomial of a JPA defined by (14)
and (15) is reducible if and only if (17) or (18) is true. In these cases gq is

a Pisot number of degree 3 but the Al(»u) — oziAéU) do not converge to 0 and
there exists a Q-linear relation between 1, a1, o, 3. The conjugates of og
are real if (17) holds and complez if (18) holds.

For periodic JPA with length 2 when (17) and (18) are not satisfied, the
characteristic polynomial, f, is irreducible. From f(1) < 0, f(1/00) > 0,
there is at least one root of f, say p;, which satisfies 0 < 1/09 < 01 < 1
and then the other roots o2, o3 satisfy |0203| = 1/(0001) < 1. So when 02, 03
are complex conjugates, max(|o1],|02],]03]) < 1 and o is a Pisot number.
In the other case we must locate o2, 03. To do this we consider the roots
B1, B2, B3 of f/ with B < (3 < f3. From a discussion of the signs of f/(0)
and f((1) it is easy to show that in any case g2, g3 belong to |—1, 1] and g
is a Pisot number. So we have

PROPOSITION 3. If the characteristic polynomial of JPA defined by (14)
and (15) is irreducible, then its root g is a Pisot number.

For a periodic JPA with length greater than 3, we can consider numerical
examples. For [ = 3, we consider the JPA with pure period (1,b,b+ 1);
(b,1,b); (b,b,b). The characteristic polynomial
flx)=2* — (0® + 36> +4b+ 1)z + (26° — 20 — b — 1)z + (b* — 3b)xr — 1
is irreducible when b > 6 and has two real roots greater than 1. So the root
0o is not a Pisot number.

III.b. The case n > 4. For n = 4, we consider the purely periodic JPA
with length one (a1, as,as, as) with the lexicographical conditions:
(as,a3,a2,a1) > (a3, az,a1,1); (as,a3,a2) > (az,a1,1);

(19) (a4,a3) > (a1,1).
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We have f(x) = 2° — agz* — azz® — asz? — a1z — 1.

Since f(—1) > 0, that is, a; + ag > as + a4 + 3, f has a root less than
—1 and hence gg, which is greater than 1, is not a Pisot number of degree 5.
For example as = a4 > a1 > as + 3 give many possibilities.

For every even n we can find examples with f(—1) > 0 and the same
conclusion.

For every odd n greater than 5 we can consider a purely periodic JPA
with length one. The condition f(—1) < 0 gives a root less than —1 and

a go which is not Pisot of degree n + 1. For example if n = 5 and [ = 1,

f(z) = 25 — as2® — ag2® — azx® — as2® — a;x — 1 has a root less than —1 if

a5+ a3+ a1 < az+ay4. This is compatible with the lexicographical condition
(6). For example (1,a,1,a,a) with a > 3 is suitable.
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