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The Jacobi–Perron Algorithm and Pisot numbers

by
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The Jacobi–Perron Algorithm introduced by Jacobi [7] and O. Perron
[9] is a generalization of the continued fraction algorithm. Applied to an
n-uple of real numbers, it gives simultaneous approximations. In case of
periodicity it yields a unit of a number field which commands the quality of
simultaneous approximations.

We prove that for n = 2 this unit is a Pisot number (positive algebraic
integer with each conjugate in |z| < 1) and that this is not necessarily the
case for n ≥ 3.

The problem of characterizing the periodicity of JPA (Jacobi–Perron
Algorithm) is still open for n ≥ 2. Many families of sets of n real numbers
for which the JPA is periodic were found by L. Bernstein [2], E. Dubois &
R. Paysant-Le Roux [5], C. Levesque & G. Rhin [8]. M. Bouhamza for n = 3
and n = 4 [3, 4], and then E. Dubois and R. Paysant-Le Roux for every
n [6] proved that there exists, in any real number field of degree n + 1, an
n-uple of real numbers with periodic JPA.

Recently B. Adam & G. Rhin [1] found a method yielding all pairs of
real numbers with periodic JPA which produce a given unit in a real cubic
field. In many examples they get no set with periodic JPA when the given
unit is not a Pisot number. So they ask if this is always true. In this paper
we give a positive answer in case n = 2 and we prove that this is not always
true for n ≥ 3.

I. The Jacobi–Perron Algorithm. The continued fraction algorithm,
applied to an irrational real number α, yields a sequence (αk)k≥0 of real
numbers, a sequence (ak)k≥0 of integers and a sequence (pk/qk)k≥−2 of
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rational approximations of α by the well known formula

(1) α0 = α, αk = ak +
1

αk+1
with ak = [αk] (k ≥ 0)

where [x] denotes the integer part of x,

(2)
p−2 = 0, p−1 = 1, pk = akpk−1 + pk−2 (k ≥ 0),

q−2 = 1, q−1 = 0, qk = akak−1 + qk−2 (k ≥ 0).

When αk0+l = αk0 , the continued fraction is periodic and the product % =
αk0αk0+1 . . . αk0+l−1 is a unit in the quadratic field Q(α). Moreover this unit
is clearly a Pisot number.

The JPA applied to an n-uple (α1, . . . , αn) determines three sequences:
(α(ν)

1 , . . . , α
(ν)
n )ν≥0 of real n-uples, (a(ν)

1 , . . . , a
(ν)
n )ν≥0 of integer n-uples and

(A(ν)
1 /A

(ν)
0 , . . . , A

(ν)
n /A

(ν)
0 )ν≥0 of simultaneous approximations of (α1, . . . , αn)

by the formulae

(3)

α
(0)
i = αi (1 ≤ i ≤ n);

α
(ν)
1 = a

(ν)
1 +

1

α
(n+1)
n

, α
(ν)
i = a

(ν)
i +

α
(ν+1)
i−1

α
(ν+1)
n

(2 ≤ i ≤ n)

and

A
(j)
i = δij (0 ≤ i, j ≤ n),

(4)
A

(ν+n+1)
i = A

(ν)
i + a

(ν)
1 A

(ν+1)
i + . . .+ a(ν)

n A
(ν+n)
i (0 ≤ i ≤ n, ν ≥ 0).

We say that the JPA is periodic when the sequence (α(ν)
1 , . . . , α

(ν)
n )ν≥k0

is

periodic, or equivalently when the sequence (a(ν)
1 , . . . , a

(ν)
n )ν≥k0

is periodic.

If α(0)
i = α

(l)
i (1 ≤ i ≤ n) we say that the JPA is purely periodic. We

assume that we are in this particular case. In the general case, it is easy to
imagine the formula.

The matrix

(5) M =



A

(l)
0 A

(l+1)
0 . . . A

(l+n)
0

. . . . . . . . . . . . . . . . . . . . . . . . .

A
(l)
n A

(l+1)
n . . . A

(l+n)
n




characterizes the development and contains much information.
The sequence (a(ν)

1 , . . . , a
(ν)
n )ν≥0 of nonnegative integer n-uples is a JPA

development if and only if

(6) (a(ν)
n , a

(ν+1)
n−1 , . . . , a

(ν+i)
n−i ) ≥ (a(ν)

i , a
(ν+1)
i−1 , . . . , a

(ν+i−1)
1 , 1)

(0 ≤ i ≤ n− 1, ν ≥ 1),

where ≥ denotes the lexicographical order.
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For every JPA development we have

det(A(ν+j)
i )0≤i,j≤n = (−1)nν (ν ≥ 0),(7)

αi =
A

(ν)
i + α

(ν)
1 A

(ν+1)
i + . . .+ α

(ν)
n A

(ν+n)
i

A
(ν)
0 + α

(ν)
1 A

(ν+1)
0 + . . .+ α

(ν)
n A

(ν+n)
0

(1 ≤ i ≤ n, ν ≥ 0),(8)

lim
ν→∞

A
(ν)
i

A
(ν)
0

= αi (1 ≤ i ≤ n),(9)

α(1)
n α(2)

n . . . α(ν)
n = A

(ν)
0 + α

(ν)
1 A

(ν+1)
0 + . . .+ α(ν)

n A
(ν+n)
0 (ν ≥ 1).(10)

In case of purely periodic JPA with minimal length l, %0 =α
(1)
n α

(2)
n . . . α

(l)
n

is an eigenvalue of M and (1, α(0)
1 , . . . , α

(0)
n ) is an eigenvector associated

to %0. The real value %0 is the maximal positive real root of the characteristic
polynomial

(11) f(X) = det(M −XI)

and %0 is a simple root of f . But f is not always irreducible.
Starting with a periodic sequence of nonnegative integer n-uples (a(ν)

1 , . . .

. . . , a
(ν)
n ) satisfying (6) we get a matrix M and an n-uple (α1, . . . , αn) which

have (a(ν)
1 , . . . , a

(ν)
n ) as JPA development.

We will use the following result:

Theorem 1 ([9]). Let %0, %1, . . . , %n be the roots of the characteristic
polynomial of a periodic JPA, with minimal length l, %0 ∈ R and %0 >
|%1| = max{|%i| : 1 ≤ i ≤ n}. Then

∀ε > 0,∃c > 0,∃ν0, ∀ν ≥ ν0,∣∣∣∣
A

(νl+λ)
i

A
(νl+λ)
0

− αi
∣∣∣∣ < c

∣∣∣∣
%1(1 + ε)

%0

∣∣∣∣
ν

(0 ≤ λ ≤ l − 1, 1 ≤ i ≤ n).

But there exist (i, λ) and c′ > 0 such that
∣∣∣∣
A

(νl+λ)
i

A
(νl+λ)
0

− αi
∣∣∣∣ > c′

∣∣∣∣
%1

%0

∣∣∣∣
ν

for infinitely many ν.

This theorem shows that the quality of these simultaneous approxima-
tions is given by %1. So it is important to know if %0 is a Pisot number or
not.

We will also use the following theorem:

Theorem 2 ([5]). Let be an n-uple of real numbers (α1, . . . , αn) with
periodic JPA. Then limν→∞(A(ν)

i − αiA(ν)
0 ) = 0 if and only if the char-

acteristic polynomial is irreducible with a Pisot number as root. We have
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Q(%0) = Q(α1, . . . , αn) and the degree of Q(%) is n + 1 if and only if
1, α1, . . . , αn are Q-linearly independent.

II. Main result in the case of two real numbers

Theorem 3. For any JPA the sequences (Aνi − αiAν0)ν≥0 are bounded
for i = 1, 2. For a periodic JPA of two real numbers (α1, α2), we have

lim
ν→∞

(A(ν)
i − αiA

(ν)
0 ) = 0 (i = 1, 2).

The characteristic polynomial is irreducible and its maximal real root is a
Pisot number.

Proof. We consider

Vν = (A(ν)
1 − α1A

(ν)
0 , A

(ν)
2 − α2A

(ν)
0 ) (ν ≥ 0).

From (8) we have Vν + α
(ν)
1 Vν+1 + α

(ν)
2 Vν+2 = 0 and from (4) we have

Vν+3 = Vν + a
(ν)
1 Vν+1 + a

(ν)
2 Vν+2. So we get

(12) Vν+3 = bνVν + cνVν+1

with

bν =
α

(ν)
2 − a(ν)

2

α
(ν)
2

, cν =
a

(ν)
1 α

(ν)
2 − a(ν)

2 α
(ν)
1

α
(ν)
2

.

We shall prove that |bν |+ |cν | < 1. Using (3) we have

bν + cν = 1− 1

α
(ν)
2

{
a

(ν)
2 − a(ν)

1

(
a

(ν)
2 +

α
(ν+1)
1

α
(ν+1)
2

)
+ a

(ν)
2

(
a

(ν)
1 +

1

α
(ν+1)
2

)}
,

bν + cν = 1− a
(ν)
2

α
(ν)
2

{
1− a

(ν)
1 α

(ν+1)
1

a
(ν)
2 α

(ν+1)
2

+
1

α
(ν+1)
2

}
.

Then −1 < bν +cν < 1 because the expression in brackets is clearly between
0 and 2.

Similarly, we have

bν − cν = 1− 1

α
(ν)
2

{
a

(ν)
2 + a

(ν)
1

(
a

(ν)
2 +

α
(ν+1)
1

α
(ν+1)
2

)
− a(ν)

2

(
a

(ν)
1 +

1

α
(ν+1)
2

)}
,

bν − cν = 1− a
(ν)
2

α
(ν)
2

{
1− 1

α
(ν+1)
2

+
a

(ν)
1 α

(ν+1)
1

a
(ν)
2 α

(ν+1)
2

}
.

Then −1 < bν−cν < 1 because the expression in brackets is clearly between
0 and 2.

Now, since bν > 0 we deduce that |bν | + |cν | < 1. From (12) and |bν | +
|cν | < 1 we see that the components A(ν)

i − αiA(ν)
0 of Vν are bounded by

max(|V0|, |V1|, |V2|) for any ν and any JPA development.
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Assume now that the JPA development is periodic, with α(ν0)
i = α

(ν0+l)
i .

Consider
m = max{|bν |+ |cν | : ν0 ≤ ν < ν0 + l}.

Since m < 1, it is easy to get limν→∞(A(ν)
i − αiA(ν)

0 ) = 0 for 1 ≤ i ≤ 2.
From Theorem 2, %0 is a Pisot number of degree 3 and f is irreducible.

Corollary. If the JPA development of (α1,α2) is periodic, then 1,α1,α2

are Q-linearly independent and form a basis of a cubic number field.

Proof. We can assume that the JPA is purely periodic with length l.
Since (1, α1, α2) is an eigenvector of M associated to %0 we have Q(α1, α2) ⊆
Q(%0). From %0 = α

(1)
2 . . . α

(l)
2 and from (3) we have Q(%0) ⊆ Q(α1, α2) and

therefore Q(α1, α2) = Q(%0). From Theorem 3, Q(%0) is a cubic number field
and from Theorem 2, 1, α1, α2 are Q-linearly independent.

III.a. The case n = 3. In this case, we consider the special cases of
purely periodic JPA with small length.

Consider first a purely periodic JPA with length l = 1:

(13) (a(ν)
1 , a

(ν)
2 , a

(ν)
3 ) = (a1, a2, a3) (ν ≥ 0)

with (a3, a2, a1) ≥ (a2, a1, 1) and (a3, a2) ≥ (a1, 1), where ≥ denotes the
lexicographical order.

Proposition 1. The characteristic polynomial of a JPA with period 1
defined by (13) is reducible if and only if a2 = a3 and a1 = 0. In this case
%0 is a Pisot number of degree 3 but the A(ν)

i − αiA
(ν)
0 do not converge to 0

and there exists a Q-linear relation between 1, α1, α2, α3. In the other case
(a3 > a2 or a1 6= 0), %0 is a Pisot number of degree 4.

Proof. Each step of the proof is elementary.
The characteristic polynomial is f(x) = x4 − a3x

3 − a2x
2 − a1x− 1 and

the different steps are the following:
If a2 = a3 and a1 = 0, then f(−1) = 0 and the root %0 of f(x)/(x+ 1)

is a Pisot number. If f is reducible we show that f is not the product of two
factors of degree two and that f(1) < 0. Then f(−1) = 0 gives a2 = a3 and
a1 = 0.

Consider now a purely periodic JPA with length l = 2,

(14)
(a(2ν)

1 , a
(2ν)
2 , a

(2ν)
3 ) = (b1, b2, b3),

(a(2ν+1)
1 , a

(2ν+1)
2 , a

(2ν+1)
3 ) = (c1, c2, c3)

with

(15)
(b3, c2, b1) ≥ (b2, c1, 1); (b3, c2) ≥ (b1, 1);

(c3, b2, c1) ≥ (c2, b1, 1); (c3, b2) ≥ (c1, 1),

where ≥ denotes the lexicographical order.
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After some computing, we prove that the characteristic polynomial is

f(x) = x4 − (b3c3 + b2 + c2)x3 − (b3c1 + b1c3 + 2− b2c2)x2(16)

− (b1c1 − b2 − c2)x+ 1.

Using (15), we can see that f is not a product of two factors of degree 2.
f(−1) = 0 if and only if

(17) (c3 = c1 and c2 = 0) or (b3 = b1 and b2 = 0),

f(1) = 0 if and only if

(18) b3 = b2, c3 = c2 and b1 = c1 = 0.

In these two cases, it is an easy exercise to prove that %0 is a Pisot number
and with Theorem 1 we get:

Proposition 2. The characteristic polynomial of a JPA defined by (14)
and (15) is reducible if and only if (17) or (18) is true. In these cases %0 is
a Pisot number of degree 3 but the A(ν)

i − αiA
(ν)
0 do not converge to 0 and

there exists a Q-linear relation between 1, α1, α2, α3. The conjugates of %0

are real if (17) holds and complex if (18) holds.

For periodic JPA with length 2 when (17) and (18) are not satisfied, the
characteristic polynomial, f , is irreducible. From f(1) < 0, f(1/%0) > 0,
there is at least one root of f , say %1, which satisfies 0 < 1/%0 < %1 < 1
and then the other roots %2, %3 satisfy |%2%3| = 1/(%0%1) < 1. So when %2, %3

are complex conjugates, max(|%1|, |%2|, |%3|) < 1 and %0 is a Pisot number.
In the other case we must locate %2, %3. To do this we consider the roots
β1, β2, β3 of f ′ with β1 ≤ β2 ≤ β3. From a discussion of the signs of f ′(0)
and f(β1) it is easy to show that in any case %2, %3 belong to ]−1, 1[ and %0

is a Pisot number. So we have

Proposition 3. If the characteristic polynomial of JPA defined by (14)
and (15) is irreducible, then its root %0 is a Pisot number.

For a periodic JPA with length greater than 3, we can consider numerical
examples. For l = 3, we consider the JPA with pure period (1, b, b+ 1);
(b, 1, b); (b, b, b). The characteristic polynomial

f(x) = x4 − (b3 + 3b2 + 4b+ 1)x3 + (2b3 − 2b2 − b− 1)x2 + (b2 − 3b)x− 1

is irreducible when b ≥ 6 and has two real roots greater than 1. So the root
%0 is not a Pisot number.

III.b. The case n ≥ 4. For n = 4, we consider the purely periodic JPA
with length one (a1, a2, a3, a4) with the lexicographical conditions:

(19)
(a4, a3, a2, a1) ≥ (a3, a2, a1, 1); (a4, a3, a2) ≥ (a2, a1, 1);

(a4, a3) ≥ (a1, 1).
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We have f(x) = x5 − a4x
4 − a3x

3 − a2x
2 − a1x− 1.

Since f(−1) > 0, that is, a1 + a3 ≥ a2 + a4 + 3, f has a root less than
−1 and hence %0, which is greater than 1, is not a Pisot number of degree 5.
For example a3 = a4 ≥ a1 ≥ a2 + 3 give many possibilities.

For every even n we can find examples with f(−1) > 0 and the same
conclusion.

For every odd n greater than 5 we can consider a purely periodic JPA
with length one. The condition f(−1) < 0 gives a root less than −1 and
a %0 which is not Pisot of degree n + 1. For example if n = 5 and l = 1,
f(x) = x6 − a5x

5 − a4x
4 − a3x

3 − a2x
2 − a1x− 1 has a root less than −1 if

a5 +a3 +a1 < a2 +a4. This is compatible with the lexicographical condition
(6). For example (1, a, 1, a, a) with a ≥ 3 is suitable.
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