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1. Introduction. This paper is mainly about our recent work on the
mean-value

(1.1) I(t, U, χ) =
1

2U

t+U�

t−U

∣∣∣∣L
(

1
2

+ iτ, χ

)∣∣∣∣
2

dτ,

where 1 ≤ U ≤ t and L(s, χ) is the Dirichlet L-function for a Dirichlet char-
acter χ that is primitive to the modulus r. The new results we have obtained
are of interest in some “local” cases, where U = o(t). In the “global” case
where U = t = T/2 (say), the mean-value is over the interval [0, T ], so we
write I1(T, χ) for I(T/2, T/2, χ). In [25] Motohashi has given an asymptotic
formula for I1(T, χ) with an error-term estimate sharp enough to imply that,
if one restricts to cases where r is prime and (rt)1/3+ε ≤ U ≤ t1−ε (with ε
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being any positive absolute constant), then

(1.2) I(t, U, χ) ∼ φ(r)
r

(
log
(
rt

2π

)
+ 2γ + 2

∑

p|r

log p
p− 1

)
(t→∞),

where p runs over the primes, γ is Euler’s constant and φ(r) is Euler’s
function. In unpublished work [26] Motohashi extends his results in [25] to
cover the case of composite r.

It is desirable to have information about I(t, U, χ) for U smaller than
(rt)1/3, since this can tell us more about the local behaviour of L(1/2+it, χ),
or even about its size at an individual value of t. This is the motivation for
our main result, which we now state.

Theorem 1. Let ε be an arbitrary positive constant. Let t > 0 and r �
t1/14, where either r is an odd prime, or r = 1. Suppose that

(1.3) t/2 ≥ U ≥ max
j=1,...,5

Uj(r, t) ≥ 1,

where

(1.4) Uj(r, t) =





r51/146+εt23/73(log t)E
′

if j = 1,

r5743/12910t2021/6455+ε if j = 2,

r1474/3151t985/3151+ε if j = 3,

r788/1193t365/1193+ε if j = 4,

r47/57t17/57+ε if j = 5,

with E′ sufficiently large (in absolute terms). Then, when χ is a primitive
Dirichlet character modulo r,

(1.5) I(t, U, χ)� log t.

We make two initial observations. Firstly, the bound (1.5) is, in the
context of Theorem 1, of the same order of magnitude as the right-hand
side of (1.2). Secondly, when r = t1/14, the lower bound on U in (1.3)
is r47/57t17/57+ε = r1/3t1/3+ε, which shows that, outside of cases where
r ≥ t1/14−o(1), any result provided by Theorem 1 must penetrate to some
extent beyond the reach of Motohashi’s aforementioned work. We are not
the first to achieve this, since Dzhabbarov [5] essentially established that
(1.2) holds, for r ≤ t1/21, when U = r65/82t27/82+ε with ε positive and
absolute. Theorem 1 is much stronger than this last result, and we know of no
other previous work of this sort. There are, however, many more precedents
to Theorem 1 for the special case r = 1, in which one has χ = χ0, the
(trivial) principal character, and L(s, χ) = ζ(s), Riemann’s zeta-function.
In this one case we write I(t, U) for I(t, U, χ0) and I1(T ) for I1(T, χ0). Prior
to Theorem 1, Huxley (in [17]) had sharpened the bound for the error-
term in I1(T )’s asymptotic expansion, succeeding to the extent that (1.2)
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is implied for U ≥ t137/432(log t)A, some A > 0, r = 1 and χ = χ0. Note
that 137/432 > 0.3171, while Theorem 1 provides the upper bound (1.5)
for t/2 ≥ U ≥ t23/73(log t)A (some A > 1, r = 1 and χ = χ0), where
23/73 < 0.3151.

The number 23/73 also occurs as an exponent in results of Huxley’s
paper [11] on a class of lattice-point problems including the classical circle
and divisor problems. It is no accident that it resurfaces in this paper, for
Theorem 1 derives from bounds for certain exponential sums, S(H,M), that
are strongly analogous (despite two key differences) to the sums that had
to be estimated in [11]. Moreover, this paper also follows [11] in establish-
ing the crucial exponential sum estimates by an adaptation of Iwaniec and
Mozzochi’s variant [21] of the Bombieri–Iwaniec method [1]. For the record,
the sums S(H,M) we shall need to consider have the shape

(1.6)
∑

H1<h≤H

∑

M1<k≤M
χ

(
k + h

k − h

)
e
(
TF

(
k + h

M

)
− TF

(
k − h
M

))
,

where

H/2 ≤ H1 ≤ H, M/2 ≤M1 ≤M,(1.7)

H ≤M/U,(1.8)

M ≤
√

2rT ,(1.9)

T � t, F (X) = − logX, e(Y ) = exp(2πiY ) and the Dirichlet character
factor is our notation for χ(k + h)χ(k − h). We shall see that the case
M �

√
rT is a “worst case” when the maximum in (1.3) is attained at

j = 1, or j = 5, but not when that maximum is attained at j = 2, j = 3,
or j = 4. The greater part of our work, including the intermediate results
most central to this paper, does apply to a fairly general class of functions
F (X). It is only in the penultimate stages (after Lemma 9.2) that we begin
to assume F (X) = − logX.

Apart from the Dirichlet character factors, the sum (1.6) is the same
sum considered in the series of papers, [9], [16] and [17], on I1(T ), whereas
the sum one meets with in the circle, divisor, or lattice-point problems is

(1.10) S∗(H,M) =
∑

H1<h≤H

∑

M1<k≤M
e
(
hT

M
F ∗
(
k

M

))

(see [21], [10], [11] and [13]). As

F

(
k + h

M

)
− F

(
k − h
M

)
∼ 2h
M

F ′
(
k

M

)
(h = o(M)),

the analogy between (1.6) and (1.10) is clear: S(H,M) is a bit like the sum
S∗(H,M) with F ∗(x) = 2F ′(x). In practice, as was found in [9], this anal-
ogy is somewhat disrupted by third-order terms that have quite a marked
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effect on the subsequent analysis of S(H,M). Whereas, with S∗(H,M), one
ultimately needs to bound the number of integer solutions of a certain fairly
simple system of equations and inequalities, S∗ (for which see [21] or [32]),
it turns out that for S(H,M) one has to consider a perturbed version S∗∗
of the system S∗ (see [14, Section 13.3]). Counting the integer solutions of
S∗, or of S∗∗, is usually referred to as the “First Spacing Problem”. In [16]
and [17] the perturbation in S∗∗ was handled trivially (treated as an extra
error-term in the relevant inequality of the system). Consequently the error-
term bounds of those papers involve larger exponents than the error-term
bounds in [11] and [13], despite the analogy between (1.6) and (1.10). This
phenomenon is not evident between [10] and [9] since these two papers were
written before the advances made in [12], which led to the perturbation
error-term becoming significant (as some parameters changed size relative
to one another).

In Section 7 of this paper we make use of an alternative formulation of the
perturbed First Spacing Problem. Indeed, it turns out that S∗∗ is equivalent
(under a simple change of variables) to a system S similar to that discussed
in [2] and [31], but involving an extra constraint of the form |gi − hi| � L
(i = 1, . . . , 4), where g1, h1, . . . , g4, h4 ∈ [K, 2K] are the variables of the
system, and L = o(K) (see the discussion between Lemmas 7.10 and 7.11).
Note that this means there is essentially the same analogy between the
systems S and S∗ as there is between the sums S(H,M) and S∗(H,M)
in (1.6) and (1.10). The equivalence of S∗∗ and S seems not to have been
noticed before. Given the results of [31], the above new insight turns out
to be enough, when r = 1, to essentially close any existing gap between
our bound for the number of integer solutions of the perturbed system S∗∗
and the similar bound in respect of the simple system S∗. This is why our
exponent of t, in case j = 1 of (1.4) in Theorem 1, is the same as the
exponent of T , or of M2, in [11, Theorems 4, 5]. In [33] we establish new
results on the number of integer solutions of the system S. These turn out to
be useful for larger r, and are influential in making U3(r, t) of (1.4) smaller
than it would otherwise be.

In applying the Bombieri–Iwaniec method to bound the sum S(H,M)
of (1.6) we take the same approach as in our earlier paper [20] with Huxley,
and carry the Dirichlet characters through all stages of the calculation up
to and including the First Spacing Problem (Section 7). At that point there
arises naturally an opportunity to exploit the oscillations of the character,
through the application of Weil’s bound for sums

∑

xmod r

χ((x+ a1) . . . (x+ an))χ((x+ b1) . . . (x+ bn))e(cx/r),

with n = 4 and c = 0. Weil’s bound for the case n = 1 (with any c ∈ Z) is
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used for the major arc estimates (Section 3) and also, in the case of minor
arcs, for bounding error-terms in the first and second Poisson summation
steps (Sections 4 and 5). It is these Poisson summation errors that give rise
to the term U5(r, t) in (1.3)–(1.4) of Theorem 1. Despite the chronology [20]
is in fact the sequel to this paper, which has undergone the longer period of
gestation, and both were inspired by [19] in their handling of the Dirichlet
character.

In bounding the order of L(1/2 + it, χ), Theorem 1 can be put to good
use. We begin by observing that, for t ≥ (2 + log r)3 and ∆ = log(rt/2π),

(1.11)
∣∣∣∣L
(

1
2

+ it, χ

)∣∣∣∣
2

� 1 +∆

∞�

−∞

∣∣∣∣L
(

1
2

+ i(t+η), χ
)∣∣∣∣

2

sinc2
(
∆

π
η

)
dη.

This may be deduced from the bound
∣∣∣∣
∑

1≤m≤e∆

χ(m)√
m

m−it
∣∣∣∣
2

≤
∞�

−∞

∣∣∣∣
∑

max(0,x−1)≤(logm)/∆≤min(1,x+1)

χ(m)√
m

m−it
∣∣∣∣
2

dx

=
2∆
π

∞�

−∞

∣∣∣∣
∑

1≤m≤e∆

χ(m)√
m

m−i(t+η)

∣∣∣∣
2

sinc2
(
∆

π
η

)
dη,

with help from the Mean Value Theorem for Dirichlet polynomials [24],
Rane’s results [27] on L(s, χ)’s Approximate Functional Equation, and (for
partial sums where mi(t+η) barely oscillates) Poisson summation and the
bounds of the First and Second Derivative Tests for exponential integrals
(see [14, Lemmas 5.4.4, 5.1.2, 5.1.3], the first of which is missing a factor
1/q). Bounds such as (1.11) are not new: see, for example [6, Lemma 3].

Applying the uniform bound sinc2(x) ≤ 1 for |η| ≤ U , and the “convex-
ity” bound L(1/2+ iτ, χ)� (r(1+ |τ |))1/4 otherwise, we deduce from (1.11)
that, for t ≥ max(U, (2 + log r)3) and U > 0,

(1.12) |L(1/2 + it, χ)|2 � 1 + I(U, t, χ)U log(rt) +
√
rt/U.

As one always has t/2 ≥ U ≥ (rt)1/4 in Theorem 1, it follows from the above
that

L(1/2 + it, χ)� U1/2 log t,

if Theorem 1 applies and t ≥ 303. From this we deduce (with no need of
further proof):

Theorem 2. Let ε, r and t satisfy the hypotheses of Theorem 1. Then

L(1/2 + it, χ)� max
j=1,...,5

√
Uj(r, t),

where Uj(r, t) is as in (1.4), with E′ sufficiently large (in absolute terms).
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This theorem is weaker than the results of [20] whenever the maximum
is attained for j ≤ 2. For α = (log r)/ log t ≥ 8213/287317 = 0.028585 . . . ,
however, Theorem 2 does yield an improvement. We sharpen [20, Theorem
1.1] by at least a factor (rt)0.001 whenever r15.3 ≤ t ≤ r29.5, and the im-
provement is by a factor greater than (rt)0.0017 when α = 524/11155 =
1/21.288 . . . , which is the point at which certain Poisson summation errors
first become significant (as α increases).

We follow [20] in presenting the combined results of Theorem 2 and [20,
Theorem 1.1] in the form of a list of points (βj , E(j)) for which

(1.13) L(1/2 + it, χ)� (rt)E(j)+ε if log r = βj log(rt).

Points at which (1.13) is now established are:

(β0, E(0)) =
(

0,
89
570

)
= (0, 0.15614 . . .),

(β1, E(1)) =
(

2
755

,
1179
7550

)
= (0.00264 . . . , 0.15615 . . .),

(β2, E(2)) =
(

17333
729920

,
2296757
14598400

)
= (0.02374 . . . , 0.15732 . . .),

(β3, E(3)) =
(

8213
295530

,
31219
197020

)
= (0.0277907 . . . , 0.158455 . . .)

from [20, Theorem 1.1], and

(β4, E(4)) =
(

245
7348

,
2335
14696

)
= (0.033342406 . . . , 0.158886 . . .),

(β5, E(5)) =
(

524
11679

,
1253
7786

)
= (0.0448668 . . . , 0.160929 . . .),

(β6, E(6)) =
(

1
15
,

1
6

)
= (0.06666 . . . , 0.16666 . . .)

from Theorem 2. The advantage of this form of presentation is that if, say,
β7 ∈ (βj−1, βj), with j ∈ {1, . . . , 6}, then (1.13) holds for j = 7 if the three
points, (βj−1, E(j − 1)), (β7, E(7)) and (βj , E(j)), are collinear.

To put Theorem 2 in context, we now briefly survey something (not all)
of what is known beyond the cramped range r � t1/14. For t ∈ R, r ∈ N
and χ primitive modulo r there is Heath-Brown’s hybridization (for which
see [3], [8]) of Burgess’ bound:

(1.14) L(1/2 + it, χ)�ε (r(1 + |t|))3/16+ε (ε > 0).

For r prime, χ primitive modulo r, and t ≥ 2, the asymptotic formula (1.2),
in the range implied by Motohashi’s work [25], can be used in (1.12) to show,

(1.15) L(1/2 + it, χ)� ((rt)1/6 + r1/4)(log(rt))3,
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which is (in such cases) essentially of the same strength as Heath-Brown’s
other hybrid bound in [7] (Heath-Brown obtained stonger results for suit-
able composite r). More recently, Conrey and Iwaniec, in [4], have made
advances in the theory of central values of modular forms twisted by a real
primitive character χ modulo r. These include, in the non-holomorphic case,
a strikingly elegant and powerful result about L(s, χ) on its critical line. This
result is a kind of sixth-power moment (difficult to state here), from which
it follows that, if N and ε are sufficiently small positive absolute constants,
then

(1.16) L(1/2 + it, χ)� r1/6+ε(1 + |t|)1/N ,

for t ∈ R, r > 1 odd, χ real and non-principal modulo r. No admissible
value of N is given in [4], although it is stated that one should easily be
computable.

It is worth discussing what prevents us from improving (1.15) outside of
the range t� r14. Note first that, in order to achieve a noticeable improve-
ment over (1.15), we must have U = o((rt)1/3) in (1.12), and in Theorem 1.
As is clear from the proof of Theorem 1 given in Section 10, it follows from
this requirement that we must (at the very least) show

(1.17) S(H,M)�M

(where S(H,M) is the sum of (1.6)), for some M <
√

2rT �
√
rt and some

(1.18) H �M/U > (rT )−1/3M.

Unfortunately, even after Lemma 5.4, our bounds for the Poisson summation
errors (see (5.3) and (5.1)) make a total

EP �
M

N

√
rHN = M

√
rH

N
,

when account is taken of all the minor arcs (which are of uniform length N).
Therefore, in order to obtain (1.17), one is forced to accept the constraint

(1.19) H � N/r,

which, after (1.18), implies

N � r2/3T−1/3M, R� (rT )−1/3M � H,

where R is the integer parameter given by (2.6).
To understand the constraint t� r14, it will help to discuss the Second

Spacing Problem, which involves counting pairs of minor arcs that are in
some sense “coincident” (see Section 8 for details). There are O((M/N)2)
pairs of minor arcs altogether, and coincidence conditions (8.2) and (8.6)
ensure that, apart from the O(M/N) pairs on the diagonal, O(1) similar
sets of pairs of the same cardinality, and some pairs for which the expression
bounded by (8.2) vanishes, there are no more than O(Z) other coincident
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pairs, where

(1.20) Z = r−2∆1∆2(M/N)2 � R6M2

r2H2N4Q2 �
R4M2

H2N4r2 ,

when the parameter Q is in the “worst” range, Q � R. Using other condi-
tions we can do better than (1.20) if R = o(H). Yet (see Lemma 8.2), when
we choose N to optimise the result in the Second Spacing Problem it turns
out that, for M > (rT )4/9 (at least), the bound for the total number of
all coincident pairs of arcs is essentially the quantity β(Q) of (8.17), which
is itself O(Z) for Q � R � H. As this includes about M/N pairs on the
diagonal, so it follows by (1.20) and (2.6) that

1� Z

M/N
� R4M

H2N3r2 �
M7

r2T 2H2N5 .

From this and (1.19) it follows that

H � r−1T−2/7M,

which contradicts (1.18) unless T � r14. The conclusion we draw from this
is that, in order to progress beyond t � r14, one must adjust the optimal
choice of N mentioned above, leading to a worse result in the Second Spacing
Problem. This need not always conflict with the need to obtain (1.17), as
it is the Poisson summation error (not the “main-term”) which is dominant
for t� r11155/524 = r21.288....

Because of the diagonal contributions in both the First and Second Spac-
ing Problems, the best bound one could possibly get is:

(S(H,M))4 � r3M3NH6/R6

(see Lemma 9.1). Therefore, in order to obtain (1.17), we require r3NH6 �
MR6, which, by (2.6) and (1.19), implies

(1.21) H � r−7/10T−3/10M.

As (1.18) and (1.21) together imply T � r11, we conclude that any worth-
while extension of Theorem 1 to cases with t � r11 would require either
a solution for the problem of Poisson summation errors, or some radical
alteration of the Bombieri–Iwaniec method. It may also be of interest to
note that, if the constraint (1.19) could be relaxed to just H = O(N), or
(what is more likely) H = o(N), then in place of (1.21) we would have
H/M � (rT )−3/10. Apart from any other considerations, one can show,
by bounding below the mean-square contribution to S(H,M) of a single
arc (averaged over χ and T ), that (1.17) is definitely only attainable if
N � H, so that the constraint H = O(N) is mandatory. Therefore the case
U � (rt)3/10 of (1.5) is at or beyond the limit of what the Bombieri–Iwaniec
method might achieve.
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In [13] Huxley has obtained new results on lattice-point problems, in
which the exponent 23/73 is improved to 131/416 = 0.31490 . . . This im-
provement can be attributed to a new iterative method for treating the
Second Spacing Problem. The new method is also used in [15] and [17].
We have chosen not to use it here, on the grounds that the extent of the
improvement would likely be small, and, as it is, the Dirichlet character fac-
tors lead to complications enough. The application of the iterative method
to the case r = 1 is something worth returning to at a later date. Other
improvements that we expect could be made to Theorem 1 are the removal
of the constraint that r be prime, and the replacement of the bound (1.5)
with a bound of O(UT−1 log T ) for the error-term in I1(T, χ)’s asymptotic
formula. There is also the possibility of lowering the lower bound (1.4) for U ,
provided that better solutions could be found for certain technical problems,
such as the Second Spacing Problem, the First Spacing Problem for large
r, and the problem of obtaining a useful uniform bound for just the single
sum over k in (1.6), or for similar sums with χ(k + h)χ(k − h) replaced by
χ(f(k))χ(g(k)), where the polynomials f and g factorise completely over Z.
Progress on the last problem might lead to a better version of Lemma 9.3,
and so improve cases j = 2, 3, 4 of (1.4).

We leave the proof of Theorem 1 until Section 10, where it can be deduced
as a corollary of our results on the sum S(H,M). The groundwork for these
results is laid in Sections 2–8, which cover all the steps of the Bombieri–
Iwaniec method, in its application to S(H,M). The outcomes are worked
out in Section 9, where they are combined with a lemma derived from [12,
Theorems 1, 3] in order to get the needed results on S(H,M) of (1.6) in the
case F (X) = − logX.

The author is pleased to acknowledge the profound influence of Prof.
M. N. Huxley. He instigated our collaboration on [19], which opened the way
to [20], and to the work presented in this paper. Moreover, his continuing
interested correspondence, offering advice, encouragement and criticism, has
been a great stimulus.

Notation and conventions. Throughout Sections 2–10, r shall denote ei-
ther the number 1, or an odd prime number. We shall hardly ever need to
make a distinction between the case where r = 1 and the cases where r
is an odd prime. By χ we shall mean a Dirichlet character that is primi-
tive to the modulus r. The associated Gauss sum is τ(χ) (see (3.1)). The
mean-value I(t, U, χ) and sum S(H,M) will be as in (1.1) and (1.6)–(1.9).
In the Introduction we have used α for (log r)/log t.

The Farey sequence of order q is F(q) =
⋃q
n=1{x | nx ∈ Z}. In expres-

sions such as “a (mod b)”, or “e(ca/b)”, the a denotes a solution x for ax ≡ 1
(mod b) (it being implicit that (a, b) = 1); where this usage does not apply
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we use y to denote the complex-conjugate of any complex-valued y. The
latter usage should be applied to χ “modulo r”, since the former usage only
applies in the sense that χ(a) = χ(a) for aa ≡ 1 (mod r).

The Weil sum W (x, y) is given by (3.3). Note that a term χ(f) will
denote χ(x)χ(y), whenever f is given as the quotient x/y. The algebraic
function %l(ξ) is given by either of the equivalent definitions (5.7), (5.8).

By a | b we mean that a divides b: when the letter “p” is used with this
notation it denotes a prime. The “divisor” and “sum of divisor” functions
are d(n) =

∑
d|n 1 and σ(n) =

∑
d|n d, respectively.

The greatest integer not exceeding x is [x], and the distance from x
to the nearest integer is ‖x‖ = min({x}, {−x}), where the fractional part,
{x} = x − [x], should be distinguished from the singleton set by context.
We write e(x), sinc(x) and Λ(x), respectively, for the functions exp(2πix),
(πx)−1 sin(πx) and max(1 − |x|, 0). For z ∈ C we use <e(z) to denote the
real part of z. By log x we mean the natural logarithm.

The o(x) and O(x) notation is standard. We use a� b, a � b and a ∼ b
to mean a = O(b), a� b� a and a/b = 1 + o(1), respectively. The implicit
constants in these notations depend (at most) upon parameters explicitly de-
clared to be constant, or parameters appended to the notation as subscripts.
We use E,E′, C0, C2, C3, . . . , C

∗, ε, ε0 and (sometimes) δ, η, λ0, Λ0 to denote
positive constants. The constants E and E′ are supposed to be absolute,
and, except in Theorem 2 (where E′ should be greater by 2 than the E′ of
Theorem 1), one may take E = 26562 and E′ = 26560 +2 throughout. For our
proofs we assume that ε0 is sufficiently small in terms of C3. Our ε’s need
only be sufficiently small in absolute terms: unlike that of ε0, the value of ε
may change from lemma to lemma. In Lemma 9.4 and in Section 10 (while
finishing the proof of Theorem 1), we shall find it convenient to assume that
ε ≥ 8E′ε0. Apart from these constraints, the positive constants ε and ε0

are arbitrary. The constants C2, . . . , C5 depend on the choice of function
F (X) in (1.6). As a matter of convenience (for the proof of Lemma 8.3),
we make the harmless assumption throughout our working that C3 ≥ 27/2.
In the application of our work to L(s, χ) one has F (X) = − logX, so that
C2, . . . , C5, and therefore also ε and ε0, may be chosen absolutely (with
C3 = (2!)33 > 27/2, for example).

2. The approximation step of the Bombieri–Iwaniec method. In
the sum S(H,M) of (1.6)–(1.9) we write

(2.1) TF

(
x+ y

M

)
− TF

(
x− y
M

)
= yf(x, y),

where F (X) is now taken to be an arbitrary real function, five times con-
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tinuously differentiable and such that, for 1/3 ≤ X ≤ 3,

|F (j)(X)| ≤ Cj (j = 2, 3, 4, 5),(2.2)

|F (j)(X)| ≥ 1/Cj (j = 2, 3, 4).(2.3)

Either by considering S(H,M) in place of S(H,M), or by substituting

k1 =
[
M +M1

r

]
r − k, F1(X) = −F

([
M +M1

r

]
r

M
−X

)
,

or by a combination of both tactics, one can see that, provided

(2.4) M ≥ 4r,

it is enough to consider only those cases where both F (2)(X) and F (3)(X)
are positive-valued. Then, by (2.1), we have

(2.5)
∂i

∂xi
f(x, 0) =

2T
M i+1 F

(i+1)
(
x

M

)
� T

M i+1 ,

for M/3 < x < 3M and i = 1, 2, 3.
As in Section 9.1 of [14], we suppose it possible to choose integers N and

R with 2 ≤ R ≤ H ≤ N ≤M and

2(R− 1)2NT < C3M
3 ≤ 2R2NT,(2.6)

4C3

√
H ≤ R ≤ ε0H,(2.7)

64C3H ≤ N ≤M/36,(2.8)

HN3T ≤M4.(2.9)

Following the original approach of Iwaniec and Mozzochi [21], the interval
[M1 − 2N,M ] is covered by a minimal set of consecutive disjoint intervals
I0, I1, . . . , Il, each of length N . To each interval Ii there corresponds a short
arc Ji, which is the interval that ∂f

∂x (x, 0) runs over as x runs over Ii. By
(2.2), (2.3) and (2.5)–(2.7),

(2.10) 1/R2 ≤ |Ji| < (2C3/R)2 < 1.

Given i, let b/s be the (unique) rational of least denominator lying in Ji.
Then Ji is a minor arc if and only if

(2.11)
R2

12C3Hr
< s ≤ 24C3Hr.

Lemma 2.1. If s > 24C3Hr, then the midpoint , g, of Ji satisfies∣∣∣∣g −
c

d

∣∣∣∣ ≤
1

24C3rHd
,

for some reduced rational c/d with

(2.12) 1 ≤ d ≤ R2

12C3Hr
.
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Proof. This is an easy consequence of Dirichlet’s approximation theorem
(see [14, p. 169]).

To clarify matters we observe here that, if 12C3Hr > R2, then there
can be no reduced rational c/d satisfying (2.12), and so the upper bound of
(2.11) will hold for all arcs Ji. More trivially, as s ≥ 1, it follows that the
lower bound of (2.11) will also hold for all Ji if 12C3Hr > R2. We conclude
that when 12C3Hr > R2 all arcs are minor arcs.

The rational c/d in Lemma 2.1 will be a value of ∂f
∂x (x, 0) for some

x ∈ [M/3, 3M ]. Given such a rational c/d, we fuse all the short arcs Ji with
midpoint g satisfying

(2.13)
∣∣∣∣g −

c

d

∣∣∣∣ ≤
C3

rHd
,

so that together they become one long major arc J(c/d). The union of the
corresponding intervals Ii will be I(c/d). Note that, by virtue of (2.7), major
arcs are pairwise disjoint. A minor arc that becomes part of a major arc in
this way is still a minor arc in its own right.

The inequality (2.13) has been made weaker than that in Lemma 2.1.
By (2.10), this ensures that if Ji is not now part of a major arc, then either
i ≤ 1, or both Ji and Ji−2 are minor arcs. In the latter case we look again
at the rationals lying in Ji−2:

Suppose that b/s is the reduced rational of least denominator lying in the
minor arc Ji−2. In typical applications of the Bombieri–Iwaniec method one
uses (in place of b/s) the reduced rational b1/s1 of least denominator s1 ≥ R
lying in Ji−2 (see “Modification 1” [14, p. 168]). Here either b1/s1 = b/s, or
(from (2.10)) s1 ≥ R2/4C2

3s. That is,

(2.14) s1 ≥ max(R, s,R2/4C2
3s).

However, for our application of the Bombieri–Iwaniec method it is advanta-
geous to have a rational whose denominator is coprime to r.

Lemma 2.2. Let u be a positive integer. Then there is a rational a/q in
Ji−2 with (q, u) = 1 and

R ≤ q ≤ (ξ + 2) max(s, 2R2/s),

where
ξ = ξ(u) =

∏

p|u

2p
p− 1

.

Furthermore, one of the neighbours of a/q in F(q) will be b/s.

Proof. See [19, Lemma 2.3].

Since ξ(1) = 1 and ξ(r) = 2r/(r − 1) ≤ 3, for prime r ≥ 3, this lemma
and (2.14) show that we can find a/q in Ji−2 with (q, r) = 1, |as − qb| = 1
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and

(2.15) s1 ≤ q ≤ 40C2
3s1.

By (2.11), the above lemma also shows that

(2.16) R ≤ q ≤ 120C3Hr.

Let J(c/d) be a major arc. The corresponding portion of the sum
S(H,M) is

(2.17) B(c/d) =
∑

H1<h≤H
A(c/d;h),

where

A(c/d;h) =
∑

M1<k≤M
k∈I(c/d)

χ

(
k + h

k − h

)
e(hf(k, h))(2.18)

=
∑

A≤n≤B
χ

(
m+ n+ h

m+ n− h

)
e(hf(m+ n, h)),

say, with m being a nearest integer to the solution of ∂f
∂x (x, 0) = c/d,

(2.19)
∣∣∣∣
∂f

∂x
(m, 0)− c

d

∣∣∣∣ ≤
2C2

3

R2N
,

and with

(2.20) max(|A|, |B|) ≤ 2C3R
2N

rHd
> 24C2

3N.

Let Ji be a minor arc not belonging to any major arc. If i ≥ 2, then
there is a corresponding portion of the sum S(H,M) in (1.6):

(2.21) Bi =
∑

H1<h≤H
Ai(h),

where

Ai(h) =
∑

M1<k≤M
k∈Ii

χ

(
k + h

k − h

)
e(hf(k, h))(2.22)

=
∑

N1<n≤N0

χ

(
m+ n+ h

m+ n− h

)
e(hf(m+ n, h)),

say, with m being a nearest integer to the solution of ∂f
∂x (x, 0) = a/q ∈ Ji−2

(so that (2.19) holds with a/q in place of c/d), and with

(2.23) N ≤ N1 ≤ N0 ≤ 3N, N0 −N1 ≤ N.
To analyse the sums (2.18) and (2.22), we use:
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Lemma 2.3. Suppose that M/3 ≤ m ≤ 3M , M/2 ≤ m + u ≤ M and
0 ≤ v ≤ H. Put Φi = Φi(m), where

Φi(x) =
∂if

∂xi
(x, 0) =

2T
M i+1 F

(i+1)
(
x

M

)
(i = 0, 1, 2, 3, 4).

Then there exist w1, . . . , w4 ∈ [min(0, u− v),max(0, u+ v)] such that :

f(m+ u, v) = Φ0 + uΦ1 +
(

1
2
u2 +

1
6
v2
)
Φ2 +

(
1
6
u3 +

1
6
uv2
)
Φ3

+
(

1
24
u4 +

1
12
u2v2 +

1
120

v4
)
Φ4(m+ w1),

∂f

∂x
(m+ u, v) = Φ1 + uΦ2 +

(
1
2
u2 +

1
6
v2
)
Φ3(m+ w2),

∂f

∂y
(m+ u, v) =

1
3
vΦ2 +

1
3
uvΦ3 +

(
1
6
u2v +

1
30
v3
)
Φ4(m+ w3),

∂2f

∂x∂y
(m+ u, v) =

1
3
vΦ3(m+ w4).

Proof. This follows by use of elementary calculus, as in [9, Section 3].

For the major arc J(c/d) we simply write

(2.24) A(c/d;h) =
∑

A≤n≤B
χ

(
m+ n+ h

m+ n− h

)
e
(
hcn

d
+ g(n)

)
,

with
g(u) = hf(m+ u, h)− hcu/d.

By Lemma 2.3, (2.2) and (2.3) (and since F (3)(X) > 0),

(2.25)
g(1)(u) = h(Φ1 − c/d+ uΦ2) +O((u2 + h2)HTM−4),

g(2)(u) = h
∂2f

∂x2 (m+ u, u) � HTM−3 � H/NR2.

By (2.19), (2.2) and then (2.6), (2.8), it follows that

g(1)(u)� H

(
1

R2N
+ |u| T

M3 + (u2 +H2)
T

M4

)

� H

( |u|
R2N

(
1 +
|u|
M

)
+

1
R2

)
.

For A ≤ u ≤ B, (2.20), (2.6), (2.12) and (1.9) show

|u|
R2N

� 1
rHd

� 1
R2 ,

|u|
M
� R2N

rHM
� M2

TrH
� 1

H
� 1.

Therefore

(2.26) g(1)(u)� 1/rd (A ≤ u ≤ B).
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We rewrite the minor arc sum Ai(h) in (2.22) as

(2.27)
∑

N1<n≤N0

χ

(
m+ n+ h

m+ n− h

)

× e
(
hf(m, 0) +

han

q
+ hµn2 +

1
3
h3µ+ g(n, h)

)
,

where

µ =
1
2
∂2f

∂x2 (m, 0)

and (in the notation of Lemma 2.3)

g(u, v) = vf(m+ u, v)− vf(m, 0)− uva/q − u2vµ− v3µ/3

= vf(m+ u, v)− vΦ0 − uva/q − (u2v/2 + v3/6)Φ2.

Note that (2.5), (2.2), (2.3) and (2.6) imply

(2.28) 1/2NR2 ≤ µ < 2C2
3/NR

2.

By Lemma 2.3 and (2.2),

∂g

∂u
= v

(
∂f

∂x
(m+ u, v)− a

q
− uΦ2

)

= v

(
Φ1 −

a

q
+O

(
(u2 + v2)

T

M4

))
,

∂g

∂v
= f(m+ u, v) + v

∂f

∂y
(m+ u, v)− Φ0 − u

a

q
− 1

2
(u2 + v2)Φ2

= u

(
Φ1 −

a

q

)
+
(

1
6
u3 +

1
2
uv2
)
Φ3 +O

(
(u4 + v4)

T

M5

)
,

∂2g

∂u∂v
=

1
v

∂g

∂u
+ v

∂2f

∂x∂y
(m+ u, v) =

1
v

∂g

∂u
+O

(
v2 T

M4

)
.

Therefore, for N1 ≤ u ≤ N0 and H1 ≤ v ≤ H, (2.23), (2.19), (2.2) and
(2.7)–(2.9) show:

∂g

∂u
� H

(
1

R2N
+
N2T

M4

)
� 1

N
,

∂g

∂v
� 1

R2 +
N3T

M4 +
N4T

M5 �
1
H
,

∂2g

∂u∂v
� 1

HN
+
H2T

M4 �
1

HN
.

From this and (2.27), it follows by partial summation [14, Lemma 5.2.2],
that, for some choice of integers H2, H3, N2, N3, satisfying N3 −N2 ≤ N ,

(2.29) H/2 ≤ H2 < H3 ≤ H, N ≤ N2 < N3 ≤ 3N,



322 N. Watt

one has

(2.30) Bi =
∑

H1<h≤H
Ai(h)� |B′i|,

where B′i is the sum

(2.31)
∑

H2≤h≤H3

∑

N2≤n≤N3

χ

(
m+ n+ h

m+ n− h

)

× e
(
hf(m, 0) +

han

q
+ hµn2 +

1
3
h3µ

)
.

In anticipation of the Bombieri–Iwaniec Double Large Sieve (Section 6),
we seek to introduce at this stage a little variation into the value of the
coefficient of h in the exponential factor of B′i above. To this end we observe
that, since sinc2(x) = π−2x−2 sin2(πx) is decreasing, for 0 ≤ x ≤ 1/2, and is
(consequently) bounded below there by 4π−2, we may use partial summation
to bound B′i in terms of a similar sum, which may have h running over
only a subinterval of its original range, but otherwise differs only in having
sinc2(h/2H) as a factor in each of its terms. As sinc2(x) is the Fourier
transform of Λ(x) = max(0, 1− |x|), we are able to replace (2.30) with the
bound

(2.32) Bi =
∑

H1<h≤H
Ai(h)�

∞�

−∞
Λ(2η)|B′i,η| dη,

where B′i,η has the form of the sum B′i in (2.30)–(2.31), but with f(m, 0)
replaced by

(2.33) fη(m, 0) = f(m, 0) + η/H,

and with a possible change in the values of H2,H3, which values nevertheless
remain independent of η and continue to satisfy (2.29).

We shall use (2.30) for the minor arcs with q � H and (2.32) for the re-
mainder (with R� q � H). The treatment of the former case is completed
early in Section 5, while the latter case requires a further three sections. Our
analysis of minor arcs deals with B′i,η throughout, since B′i may be regarded
as the special case η = 0 of this sum (the particular values of H2,H3 in
(2.29) having no bearing on our arguments). We shall find it convenient to
write

(2.34) qfη(m, 0) = b0 + κ0,

where

(2.35) b0 = b0,i = [qf(m, 0)], κ0 = κ0,i(η) = {qf(m, 0)}+ qη/H.
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We shall never need to consider cases where |qη| > H, so it may be assumed
throughout that

(2.36) |κ0| < 2.

3. Major arcs. As χ is primitive modulo r,

(3.1) χ(n) =
1

τ(χ)

∑

vmod r

χ(v)e(vn/r)

for all integers n. Since r is odd, it follows that, for k ∈ Z,

χ

(
k + h

k − h

)
=

1
|τ(χ)|2

∑

umod r

∑

vmod r

χ

(
v

u

)
e
(

(v − u)k − (v + u)h
r

)
(3.2)

=
1
r

∑

umod r

∑

vmod r

χ

(
u+ v

u− v

)
e
(
vk − uh

r

)

=
1
r

∑

vmod r

W (v,−h)e
(
kv

r

)
,

where

(3.3) W (x, y) =
∑

umod r

χ

(
u+ x

u− x

)
e
(
y

r
u

)
.

By [28, Theorems 2G, 2C and Lemma 2C],

(3.4) |W (x, y)| ≤
{
r if x ≡ y ≡ 0 (mod r),

2
√
r otherwise.

Using (3.2), with k = m+ n, we rewrite (2.24) as

(3.5) A(c/d;h) =
1
r

∑

vmod r

W (v,−h)A(c/d;h, v)e
(
mv

r

)
,

where

A(c/d;h, v) =
∑

A≤n≤B
e
((

hc

d
+
v

r

)
n+ g(n)

)
.

By [14, Lemma 5.4.3],

(3.6) A(c/d;h, v) =
∑

(α−1/4)rd≤l≤(β+1/4)rd
l≡−(rhc+dv) (mod rd)

B�

A

e
(
g(u)− lu

rd

)
du

+O(log(β − α+ 2)),

where α = g(1)(A) and β = g(1)(B) (note that (2.25) implies that g(1)(u) is
both increasing and continuous). By (2.25) and (2.20),

(3.7) β − α� (B −A)H/NR2 � 1/rd.
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Using the Second Derivative Test [14, Lemma 5.1.3] with (2.25), one
finds

El =
∣∣∣∣
B�

A

e
(
g(u)− lu

rd

)
du

∣∣∣∣� R

√
N

H
.

Furthermore, as (2.26) implies that

g(1)(u)− l/rd = −(l +O(1))/rd (A ≤ u ≤ B),

it also follows from the First Derivative Test [14, Lemma 5.1.2] that

(3.8) El �
∑

|λ|≤Λ0

min
(
R

√
H

N
,

rd

|λ− l|

)
,

for some positive absolute constant Λ0.
By (3.4)–(3.6) we may write:

(3.9) A(c/d;h) = A0(c/d;h) +A1(c/d;h/r) +O(
√
r),

where

|A0(c/d;h)| ≤
∑

l≡−rhc (mod d)
α−1/4≤l/rd≤β+1/4

El
1
r

∑

vmod r
v≡−(rhc+l)/d (mod r)

2
√
r

and

|A1(c/d; k)| ≤





∑
l≡−r2kc (mod rd)
α−1/4≤l/rd≤β+1/4

El if k ∈ Z,

0 otherwise.
In the bound for A0(c/d;h) one has, for some integer j and any λ ∈ R,

l = −rhc+ jd,
λ

d
− l

d
=
rhc

d
+
λ

d
− j.

Therefore ∣∣∣∣
λ

d
− l

d

∣∣∣∣ ≥
∥∥∥∥
rhc

d
+
λ

d

∥∥∥∥ (λ ∈ R)

and, by (3.8) and (3.7),

A0(c/d;h)� √r
∑

|λ|≤Λ0

∑

l≡−rhc (mod d)
rα−r/4≤l/d≤rβ+r/4

min
(
R

r

√
H

N
,

∣∣∣∣
λ

d
− l

d

∣∣∣∣
−1)

�√r
∑

|λ|≤Λ0

(
min

(
R

r

√
H

N
,

∥∥∥∥
rhc

d
+
λ

d

∥∥∥∥
−1)

+ log r
)
.

Estimating A1(c/d;h) similarly, and applying (3.9), we deduce that B(c/d)
(the major arc sum in (2.17)) satisfies a formula of the shape

(3.10) B(c/d) =
√
r B0(c/d) + B1(c/d) +O(H

√
r log r),
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where, for some integer λ ∈ [−Λ0, Λ0],

B0(c/d)�
∑

H1<h≤H
min

(
R

r

√
N

H
,

∥∥∥∥
rch

d
+
λ

d

∥∥∥∥
−1)

,(3.11)

B1(c/d)�
∑

H1/r<k≤H/r
min

(
R

√
N

H
,

∥∥∥∥
rck

d
+

λ

rd

∥∥∥∥
−1)

.(3.12)

Lemma 3.1. Suppose that X ≥ 1, Y ≥ 1, (a′, q′) = 1, |θ−a′/q′| ≤ (q′)−2.
Then ∑

1≤x≤X
min(Y, ‖θx‖−1)� XY/q′ + (X + q′) log(2q′),

and , for real φ,
∑

1≤x≤X
min(Y, ‖θx− φ‖−1)� XY/q′ + Y + (X + q′) log(2q′).

Proof. This is due originally to Vinogradov (see [30, Lemma 1] for a
reference).

By (3.10)–(3.12) and the second part of the lemma above,

B(c/d)� R√
r

√
HN

(r, d)
d

+R

√
N

H
+
√
r (H + d) log(2d) = Gd (say).

Hence, and by (2.12), the total contribution S∞(H,M), from all the major
arcs to S(H,M) in (1.6), satisfies a bound:

S∞(H,M)�
∑

1≤d�R2/Hr

∑

c�dT/M2

Gd �
M

NR2

∑

1≤d�R2/Hr

dGd.

As 2 ≤ R < H < N (see (2.7)–(2.8)), this gives

S∞(H,M)� M

NR2

∑

1≤d�R2/Hr

R√
r

√
HN (r, d) logR(3.13)

� M

NR2

R√
r

√
HN

R2

Hr
d(r) logR� MR√

r3HN
logR.

4. Minor arcs: the first Poisson summation. From here on until
Section 9 we shall assume that

(4.1) 240C3Hr ≥ 2Q ≥ q ≥ Q ∈ {R, 2R, 22R, . . .}, (q, r) = 1

(see (2.15)–(2.16)). After (2.31)–(2.33) and (3.1)–(3.2), we may write
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B′i,η =
1
r

∑

umod r

∑

vmod r

χ

(
u+ v

u− v

)
(4.2)

×
∑

H2≤h≤H3

ωhe
(
vm− uh

r

)
Ai(h, v),

where
ωh = e

(
hfη(m, 0) + 1

3h
3µ
)

and

(4.3) Ai(h, v) =
∑

N2≤n≤N3

e
((

v

r
+
ha

q

)
n+ hµn2

)
.

Lemma 4.1. Let Ei(h, v) = Ai(h, v)−A∗i (h, v), where

A∗i (h, v) =

√
1

2µh

∑

2µrqhN2<l<2µrqhN3
l≡−(har+vq) (mod rq)

e
(

1
8
− l2h−1

4µr2q2

)
.

Then

Ei(h, v)� 1 +
3∑

j=2

min
(

1√
µh

,

∥∥∥∥
ha

q
+
v

r
+ 2µhNj

∥∥∥∥
−1)

.

Proof. By (4.3) and [14, Lemma 5.4.3],

(4.4) Ai(h, v) =
∑

rq(α2−1/4)≤l≤rq(α3+1/4)
l≡−(qv+rha) (mod rq)

N3�

N2

e
(
hµx2 − lx

rq

)
dx

+O(log(α3 − α2 + 2)),

where αj = 2hµNj . By (2.29), (2.28) and (2.7),

α3 − α2 = 2h(N3 −N2)µ < 4C2
3H/R

2 ≤ 1/4,

so that, on the right of (4.4), the O-term is O(1) and the sum has at most
one term.

By writing

hµx2 − lx

rq
= hµ

(
x2 − 2x

l/h

2µrq

)
= β(x2 − 2xxl/h) (say),

the factor e(−βx2
l/h) may be taken out of the integral in (4.4), leaving just:

N3−xl/h�

N2−xl/h
e(βx2) dx =

δ√
2β

e(1/8) +O

(
min

(
1√
β
,

3∑

j=2

1/β
|Nj − xl/h|

))
,

with δ = 1 for N2 < xl/h < N3, and δ = 0 otherwise (a straightforward
application of the First and Second Derivative Tests [14, Lemmas 5.1.2 and
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5.1.3], together with the well known evaluation of the integral from minus
to plus infinity). To complete the proof observe that, when l is as in (4.4),
one has

2β|Nj − xl/h| =
∣∣∣∣2µhNj −

l

rq

∣∣∣∣ =
∣∣∣∣
(

2µhNj +
v

r
+
ha

q

)
− k
∣∣∣∣

for some integer k.

By Lemma 4.1, (4.2)–(4.3) and (3.3),

(4.5) B′i,η = B∗i,η + Ei,η,
where

B∗i,η =
1
r

∑

umod r

∑

vmod r

χ

(
u+ v

u− v

)
(4.6)

×
∑

H2≤h≤H3

ωhe
(
vm− uh

r

)
A∗i (h, v)

and

Ei,η =
1
r

∑

vmod r

e
(
vm

r

) ∑

H2≤h≤H3

ωhW (v,−h)Ei(h, v)(4.7)

= O(Di) +O(Ei(N2) + Ei(N3)),

with

(4.8) Di =
1
r

∑

vmod r

∑

H2≤h≤H3

|W (v,−h)|,

and Ei(Nj) equal to

(4.9)
1
r

∑

vmod r

∑

H2≤h≤H3

|W (v,−h)|min
(

1√
µh

,

∥∥∥∥
ha

q
+
v

r
+ 2µhNj

∥∥∥∥
−1)

.

In the sum A∗i (h, v) of Lemma 4.1 the congruence condition on l is equiv-
alent to two simultaneous conditions:

l + qv ≡ 0 (mod r), l + rah ≡ 0 (mod q).

As (q, ra) = 1, this allows us to bring the sums over v and h of (4.6) inside
the summation over l of A∗i (h, v), and then to write v ≡ −ql (mod r),

χ

(
u+ v

u− v

)
= χ

(
qu− l
qu+ l

)
, e

(
vm

r

)
= e
(
−qlm

r

)
,

where q and ra are integers satisfying

(4.10) qq + rara = 1.
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Therefore, making the substitution

u ≡ −qs (mod r) (0 ≤ s ≤ r − 1),

we find that, after recalling the definitions made in (4.2)–(4.3) and Lemma
4.1, one has

B∗i,η =
e(1/8)
r

r−1∑

s=0

∑

L2<l<L3

χ

(
s+ l

s− l

)
e
(
−qml

r

)
(4.11)

×
∑

H4(l)≤h≤H5(l)
h≡−ral (mod q)

√
1

2µh
e
((

qs

r
+ fη(m, 0)

)
h

+
1
3
µh3 − l2h−1

4µr2q2

)

where

(4.12) Lj = 2µrqHjNj , Hj(l) = max(Hj−2, l/2µrqN7−j).

By (2.28), (2.29), (4.1), (2.16) and (2.7), we find that L2 < l < L3 implies

(4.13) H/2 ≤ H4(l) < H5(l) ≤ H, r � L = rQH/R2 < 2l < 48C2
3L.

Generalising (2.34)–(2.36), we shall write

(4.14) q(fη(m, 0) + qs/r) = bs + κs,

where bs is an integer and |κs| < 3. As it follows from (4.10) that

qqs

r
=

(1− rara)s
r

=
s

r
− rasa,

where 0 ≤ s/r < 1, it is possible to arrange it so that

(4.15) κs = κ0 + s/r, bs = b0 − rasa (0 ≤ s ≤ r − 1).

For the treatment of the error-terms in (4.7)–(4.9) we proceed as follows.
First (3.4) is applied to show that

Di ≤
1
r

∑

vmod r

∑

H2≤h≤H3

2
√
r +

1
r

∑

H2/r≤k≤H3/r

r � H
√
r,(4.16)

Ei(Nj) ≤
∑

H2/r≤k≤H3/r

Fk +
√
r

∑

H2≤h≤H3

F ′h (j = 2, 3),(4.17)

where



Mean squared modulus 329

Fk = min
(

(µH)−1/2,

∥∥∥∥
(
a

q
+ 2µNj

)
rk

∥∥∥∥
−1)

,(4.18)

F ′h =
1
r

∑

vmod r

min
(

(µH)−1/2,

∥∥∥∥
ha

q
+ 2µhNj +

v

r

∥∥∥∥
−1)

.

Now, for all integers v,∥∥∥∥
(
a

q
+ 2µNj

)
rh

∥∥∥∥ =
∥∥∥∥r
(
ha

q
+ 2µhNj +

v

r

)∥∥∥∥ ≤ r
∥∥∥∥
ha

q
+ 2µhNj +

v

r

∥∥∥∥.

Using this one can deduce:

(4.19) F ′h � min(r−1(µH)−1/2, ‖(a/q + 2µNj)rh‖−1) + log r.

By Dirichlet’s approximation theorem, there exists a reduced rational
a′/q′ with

(4.20)
∣∣∣∣
(
a

q
+ 2µNj

)
r − a′

q′

∣∣∣∣ ≤
1

3qq′
, 1 ≤ q′ ≤ 3q.

Here a′/q′ 6= ra/q, since otherwise one would have the contradiction

r/R2 ≤ 2rNµ ≤ 2µNjr ≤ 1/3q2 ≤ 1/3R2

(by (2.28), (2.29) and (4.1)). Therefore (4.20), (2.28) and (2.29) show that

1
qq′
≤
∣∣∣∣
ra

q
− a′

q′

∣∣∣∣ ≤
1

3qq′
+ 2rµNj <

1
3qq′

+
12C2

3r

R2 ,

from which it follows that

(4.21) q′ > R2/18C2
3rq.

By (4.17)–(4.20), the first part of Lemma 3.1 applies and shows:

Ei(Nj)�
√
r (Hr−1(µH)−1/2(q′)−1 + (H + q′) log(2rq′)).

By (2.28), (4.20) and (4.21), this implies

Ei(Nj)�
√
r

(√
HN

R
q + (H + q) log(2rq)

)
(j = 2, 3),

and we conclude (using (4.7), (4.16), and (4.1)) that Ei,η in (4.5) satisfies

(4.22) Ei,η �
√
r

(
Q

R

√
HN + (H +Q) log(rQ)

)
.

5. The second Poisson summation. By (3.3) and (3.4) we may es-
timate the minor arc sum, B∗i,η from (4.11), using:

|B∗i,η| ≤
1
r

∑

L2<l<L3

∑

H4(l)≤h≤H5(l)
h≡−ral (mod q)

1√
2µh
|W (l, qh)|
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≤
∑

L2<l<L3

∑

H4(l)≤h≤H5(l)
h≡−ral (mod q)

2√
2rµh

+
∑

L2/r<λ<L3/r

∑

H4(l)/r≤k≤H5(l)/r
k≡−raλ (mod q)

1√
2rµk

� L√
r

(
H

q
+ 1
)
R

√
N

H
+
L

r

(
H

rq
+ 1
)
R

√
N

H

�√r Q
R

√
HN

(
1 +

H

q

)

(by (4.13) and (2.28)). Hence (and by (2.31)–(2.33) and (4.1)),

(5.1) B∗i,η �
Q

R

√
rHN (η ∈ R and Q� H).

With reference to (4.1), suppose now that Q ≤ q ≤ 2Q with given

(5.2) Q ∈ [R, ε0H/2].

Note that as we effectively have |η| ≤ 1/2 in (2.32), the assumption of (5.2)
(with ε0 < 2) guarantees |ηq| < H, which is what we needed for (2.36).

Applying Poisson summation and stationary phase estimation of expo-
nential integrals to the sum over h in (4.11), one can quite easily show that,
for δ = 1,

(5.3) B∗i,η = B∗∗i (κ0) +O

(
Q

R
rδ
√
HN log (rN)

)
,

where

B∗∗i (κ) =
1

2
√
µrq

∑

L2<l<L3

Ci,l(κ)e
((

qm

r
+
rab0
q

)
l

)
,(5.4)

Ci,l(κ) =
∑

K4≤k−rκ−
√

(k−rκ)2−l2≤K5

((k − rκ)2 − l2)−1/4(5.5)

× χ
(
k + l

k − l

)
e
(
r2alk

q
+
%l(k − rκ)√

µr3q3

)
,

Kj = Kj(l) = 2µrqH2
j , Hj = Hj(l),(5.6)

%l(ξ) =

√
2

3

(√
1 +

√
1− (l/ξ)2 +

1√
1 +

√
1− (l/ξ)2

)
l
√
ξ,(5.7)

with b0, κ0 as in (2.32)–(2.36).
Rather than giving the proof mentioned above, we shall establish (5.3)

through the reciprocal procedure of applying the Poisson summation and
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stationary phase estimation to the sums Ci,l(κ0). By doing so we shall obtain
a slight improvement of the O-term in (5.3), something that seems to us
troublesome to achieve by the other mode of proof. The proof is divided
into four lemmas. Before giving these lemmas we will mention that (5.7)
gives %l(ξ) as we first found it. Somewhat late in the course of this work we
realised that it simplifies to an expression which one might guess:

(5.8) %l(ξ) = 1
3 ((ξ + l)3/2 − (ξ − l)3/2).

For a proof examine each expression in turn, verifying that the domain, sign
and square are the same. As (5.7) has its advantages, in places, we stick
with it through to the end of this section, switching to the form (5.8) after
that.

Lemma 5.1 (Crudely truncated Poisson summation). Let f(x) be a real
function with f ′(x) monotone and satisfying A ≤ f ′(x) ≤ B, for a < x < b.
Let g(x) be a twice continuously differentiable function on [a, b], and , for
κ ∈ R, define G(κ) by

G(κ) =
∑

a≤v+κ≤b
g(v + κ)e(f(v + κ)).

Then, for W1 ≥W0 = 2 max(|A|, |B|) and κ ∈ R, one has

G(κ) =
∑

−W1<w<W1

cwe(wκ) +O

(
W0Vg + Vg′

W1
+

∑

x∈{a,b}

|g(x)|
1 + ‖κ− x‖W1

)

where

(5.9) cw =
1�

0

G(ξ)e(−wξ) dξ =
b�

a

g(x)e(f(x)− wx) dx

and Vh denotes the total variation of h(x) on [a, b] plus the maximum mod-
ulus of h(x) on [a, b].

Proof. We first observe that Fourier’s Theorem may be applied to G(κ),
since G(κ) has period 1 and is of bounded total variation on [0, 1]: the latter
observation follows from the bounds

Vg ≤
b�

a

|g′(x)| dx+ max
a≤x≤b

|g(x)|, Ve(f) ≤ 2π
b�

a

|f ′(x)| dx+ 1,

on noting that
Vh+k ≤ Vh + Vk, Vhk ≤ VhVk

and that the only discontinuities of G(κ) occur where one, or both, of a−κ,
b− κ is an integer. Fourier’s Theorem shows that the limit

(5.10) F (κ) = lim
W→∞

∑

−W<w<W

cwe(wκ)
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(where cw is as given by the lemma) is equal to the sum
∑

a≤v+κ≤b

′
g(v + κ)e(f(v + κ)),

where the ′ next to the summation sign indicates that the sum is to be
interpreted as the arithmetic mean of the sum as given (over v + κ ∈ [a, b])
and the similar sum restricted to v + κ ∈ (a, b). Therefore, for W1 > 0 and
κ ∈ R,

(5.11) G(κ) = F (κ) +O

( ∑

x∈{a,b}

|g(x)|
1 + ‖κ− x‖W1

)
.

Integrating by parts in (5.9),

cw = cw(b)− cw(a)− c∗w(a, b),

where
cw(x) = (−2πiw)−1e(−wx)g(x)e(f(x)),

c∗w(a, b) = (−2πiw)−1
b�

a

γ(x)e(f(x)− wx) dx

with
γ(x) = 2πif ′(x)g(x) + g′(x).

For |w| ≥W0, one has f ′(x)− w monotone and

|f ′(x)− w| ≥ |w| − 1
2W0 ≥ |w|/2,

so the First Derivative Test [14, Lemma 5.1.2] may be applied to show that,
for |w| ≥W0,

|c∗w(a, b)| ≤ Vγ/π2|w|2 ≤ (2πVf ′Vg + Vg′)/π2|w|2

≤ (3πW0Vg + Vg′)/π2|w|2 < |w|−2(W0Vg + Vg′).

Therefore, for W > W1 ≥W0, one has
∑

W1≤|w|<W
cwe(wκ) = λb(W,W1)− λa(W,W1) +O(W−1

1 (W0Vg + Vg′)),

where
λx(W,W1) =

∑

W1≤|w|<W
cw(x)e(wκ)

= g(x)e(f(x))
∑

W1≤|w|<W

e(−w(x− κ))
−2πiw

= g(x)e(f(x))
∑

W1≤w<W

sin(2πw(x− κ))
πw

.
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If x−κ ∈ Z, then (trivially) λx(W,W1) = 0, for all W > W1. If x−κ 6∈ Z,
then, appealing once more to Fourier’s Theorem,

lim
W→∞

λx(W,W1) = g(x)e(f(x))
(

1
2
− {x− κ} −

∑

0<w<W1

sin(2πw(x− κ))
πw

)

= g(x)e(f(x)) ·O((1 + ‖κ− x‖W1)−1),

where the last step needs only trivial estimates if ‖x − κ‖ � 1/W1, and
otherwise follows by a partial summation of the sum from W1 to W (shown
a few lines above) and the summation formula for geometric series. It follows
that, for W1 ≥W0,

lim
W→∞

∑

W1≤|w|<W
cwe(wκ)� W0Vg + Vg′

W1
+

∑

x∈{a,b}

|g(x)|
1 + ‖κ− x‖W1

.

By (5.10) and (5.11), this gives the lemma.

Lemma 5.2 (Stationary phase integrals). Let f(x) be a real function,
four times continuously differentiable for a ≤ x ≤ b. Let g(x), a complex-
valued function of the real variable x, be twice continuously differentiable for
a ≤ x ≤ b, and define Vg and Vg′ as in Lemma 5.1. Suppose that there are
positive parameters X, Z with X ≥ b − a, and positive constants Cr such
that

|f (r)(x)| ≤ CrZX−r (a ≤ x ≤ b, r = 2, 3, 4),

f ′′(x) ≤ −C−1
2 ZX−2 (a ≤ x ≤ b).

Put A = f ′(b) and B = f ′(a). Then, provided only that Z be sufficiently
large in terms of C2, C3, C4, we have, for y < A or y > B,

b�

a

g(x)e(f(x)− xy) dx = O

(
Vg√

Z/X + max(A− y, y −B)

)
,

and , for A ≤ y ≤ B,
b�

a

g(x)e(f(x)− xy) dx = g(xy)(−f ′′(xy))−1/2e(f(xy)− yxy − 1/8)

+O

(
Vg√

Z/X + min(y − A,B − y)
+

Vg′

Z/X2

)
,

where x = xy is the unique solution of the equation f ′(x) = y in the interval
[a, b], and x∗y is some member of the same interval [a, b]. The last O-term
above is redundant if Vg′/Vg � 1/X.

Proof. The first result of the lemma follows from the First and Second
Derivative Tests [14, Lemmas 5.1.2, 5.1.3].
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Turning now to the lemma’s second result, we consider first the special
case in which g(x) is identically equal to 1. As Z is assumed to be suffi-
ciently large, this special case is an immediate consequence of [14, Lemma
5.1.3] (the Second Derivative Test) and [14, Lemma 5.5.2] (stationary phase
integration), with the latter result only being called upon where

min(y − A,B − y) >
√
Z/X.

We shall obtain the general case by application of the special case to the
second term in the identity,

b�

a

g(x)e(f(x)− xy) dx

= g(xy)
b�

a

e(f(x)− xy) dx+
1

2πi

b�

a

G(x) de(f(x)− xy),

where

G(x) =
g(x)− g(xy)
f ′(x)− y =

g(x)− g(xy)
f ′(x)− f ′(xy)

,

which, l’Hôpital’s rule permits us to ascertain, is a continuously differentiable
real function on the interval [a, b]. As g(xy) = O(Vg) and since integration
by parts shows the last integral above to be O(VG), the general case will
follow if only we can show

VG �
Vg′

ZX−2 .

Using the truncated Taylor series, centred at x, for f ′(xy) in

G′(x) =
g′(x)(f ′(x)− f ′(xy))− (g(x)− g(xy))f ′′(x)

(f ′(x)− f ′(xy))2 ,

one can show that, for a ≤ x ≤ b and x 6= xy, there exist x0, x1 ∈ [a, b] such
that

G′(x) = − f ′′′(x1)
2(f ′′(x0))2 g

′(x)− f ′′(x)
(f ′′(x0))2 g2(x),

where

g2(x) =
g(x)− g(xy)− g′(x)(x− xy)

(x− xy)2 =
−1

(x− xy)2

x�

xy

(u− xy)g′′(u) du.

Since
b�

a

|g2(x)| dx ≤
b�

a

1
(x− xy)2

x�

xy

|g′′(u)|(u− xy) du dx
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=
b�

xy

|g′′(u)|(u− xy)
b�

u

1
(x− xy)2 dx du

+
xy�

a

|g′′(u)|(xy − u)
u�

a

1
(x− xy)2 dx du

≤
b�

xy

|g′′(u)|(u− xy)
∞�

u

1
(x− xy)2 dx du

+
xy�

a

|g′′(u)|(xy − u)
u�

−∞

1
(x− xy)2 dx du

=
b�

a

|g′′(u)| du,

it follows that we may use the conditions bounding f (r)(x) to show

b�

a

|G′(x)| dx� 1
ZX−1

b�

a

|g′(x)| dx+
1

ZX−2

b�

a

|g′′(x)| dx.

Bounding the first integral on the right by X times the maximum of its
integrand, and applying mean-value theorem (or l’Hôpital’s rule) to see that,
for a ≤ x ≤ b,

|G(x)| ≤ maxa≤u≤b |g′(u)|
mina≤v≤b |f ′′(v)| �

1
ZX−2 max

a≤u≤b
|g′(u)|,

we obtain the desired bound on VG, so completing the proof of the second
part of the lemma.

All that remains to be explained is the final remark of the lemma. As
Z � 1, this is a consequence of the bounds

min(y −A,B − y) < B − A =
a�

b

f ′′(x) dx� X · ZX−2 = ZX−1.

Our next lemma will deal with the particular sums Ci,l(κ) found in (5.4)
and defined in (5.5)–(5.7). Before stating the lemma we find it convenient
to introduce some simplifying notation.

Given l ∈ Z satisfying

(5.12) L2 < l < L3,

we have it from (5.5)–(5.7) (and see (5.22) below) that

(5.13) Ci,l(κ) =
∑

α≤φ′(k−rκ)≤β
ψ(k)γ(k − rκ)e(φ(k − rκ) + nk/q),
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where

ψ(k) = χ

(
k + l

k − l

)
,(5.14)

n ≡ r2al (mod q),(5.15)

γ(ξ) = (ξ2 − l2)−1/4, φ(ξ) = %l(ξ)/
√
µr3q3,(5.16)

α = H4/rq, β = H5/rq.(5.17)

Lemma 5.3. Let i be the index of a minor arc for which q = qi satisfies
(5.2). Let l be an integer satisfying (5.12). Then the sum Ci,l(κ0), given by
(5.13)–(5.17) (with κ = κ0), is equal to

∑

rqα≤h≤rqβ
h≡−nr (mod q)

W (−l,−qh)
r

γ(ξh)√
−φ′′(ξh)

e
(
φ(ξh)− h

rq
(ξh + rκ0)− 1

8

)

+O

( |γ(ξ∗)|√
−φ′′(ξ∗)

(
1 +

(
H

N

)1/2

log
rH

R

))
,

where W (x, y) is as in (3.3), ξ = ξh is the unique solution in [l,∞) of

(5.18) φ′(ξh) = h/rq,

ξ∗ = ξy for some y ∈ [H4,H5], and , for l 6≡ 0 (mod r), it is allowed that the
O-term be made

√
r times smaller.

Proof. Writing k = −rv − s, where v ∈ Z and s ∈ {0, 1, . . . , r − 1}, we
have (from (5.13) and (5.14)):

(5.19) Ci,l(κ0) =
r−1∑

s=0

ψ(−s)e(−sd/r + θκ0)G(κs),

with

d = [nr/q], θ = {nr/q},(5.20)

G(κ)=
∑

α≤φ′(−r(v+κ))≤β
γ(−r(v + κ))e(φ(−r(v + κ))− (v + κ)θ).(5.21)

The real function

(5.22) φ′(ξ) =
l/
√

2µr3q3
√
ξ +

√
ξ2 − l2

=

√
ξ −

√
ξ2 − l2

√
2µr3q3

has the domain [l,∞), on which it decreases strictly monotonically (tending
to 0 in the limit as ξ → ∞). Therefore φ′(ξ) has the range (0,

√
l/2µr3q3].
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Note that α, β in (5.17) do lie properly in this range, since it follows from
(5.12), (4.12), (2.29), (2.8) and (4.13) that

(5.23)
√
l/2µr3q3 >

√
H2N2/rq ≥

√
HN/2rq ≥ H/rq ≥ β > α.

This shows that G(κ) in (5.21) has the form of the sum in Lemma 5.1, with

g(x) = γ(−rx), f(x) = φ(−rx)− θx,(5.24)

a < b < −l/r, φ′(−ra) = α, φ′(−rb) = β,(5.25)

so that we may take, in Lemma 5.1,

(5.26) A = −rβ − θ, B = −rα− θ
with, by (5.23) and (5.2),

(5.27) W0 = 2 max(|A|, |B|) ≤ 2(H/q + 1) < 4H/Q.

By (5.24) and (5.16),

(5.28) g(x) = (r2x2 − l2)−1/4,

which is positive-valued, increasing and concave-up on the interval [a, b] (see
(5.25)). Therefore, with reference to Lemma 5.1, we have

(5.29) Vg ≤ 2g(b), Vg′ ≤ 2g′(b).

By (5.22), (5.25),

α ≤ l/
√

2µr3q3
√−rx ,

l/
√

2µr3q3
√
−2rx

≤ β (a ≤ x ≤ b),

from which it follows, by (5.17), (4.12), (2.29) and (2.8), that

(5.30)
6N
H
≥ N3

H2
≥ −rx

l
≥ N2

2H3
≥ N

2H
≥ 32C3 (a ≤ x ≤ b).

By (5.28)–(5.30) and (4.13), (4.1), (2.7) and (2.8),

(5.31) Vg � r−1/2X−1/2 � XVg′ with X =
6Nl
Hr
� QN

R2 > 1.

Hence, and by virtue of (5.27), application of Lemma 5.1 yields the result
that, for

(5.32) W1 ≥ 4H/Q,

the sum G(κs), given by (5.21), will equal

(5.33)
∑

−W1<w<W1

cwe(wκs) +O

(
HVg
QW1

+
∑

x∈{a,b}

Vg
1 + ‖κs − x‖W1

)
,

where cw is as in (5.9).
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By (4.15) and (5.14), putting (5.33) into (5.19) gives

Ci,l(κ0) =
∑

−W1<w<W1

cwW (−l, w − d)e((w + θ)κ0)(5.34)

+O

(
Vg

(
rH

QW1
+ 1 +

(r−1)/2∑

s=1

1
W1s/r

))
,

where W (x, y) is the Weil sum given by (3.3). We choose

(5.35) W1 = 4r(H/Q+ log r) ≥ 2

(see (5.2)), so that (5.32) is satisfied. This choice reduces the O-term in
(5.34) to just O(Vg).

By (5.22),

(5.36) φ′′(ξ) = − φ′(ξ)

2
√
ξ2 − l2

,

so it follows from (5.24)–(5.26), (5.30), (5.17), (4.13), (2.8), (4.1) and (5.2)
that the conditions of Lemma 5.2 hold with X as in (5.31) and

Z =
r2(H/2rq)

3
√
r2X2

X2 =
HX

6q
=
Nl

qr
(5.37)

>
NL

4Qr
=
HN

4R2 ≥
(
H

2Q

)2

≥ ε−2
0 .

By (4.1) and (4.13), one also has

(5.38) Z = Nl/qr ≤ 24C2
3HN/R

2.

A sufficiently small choice of the positive constant ε0 in (5.37) will ensure
that Z is large enough for Lemma 5.2 to apply, yielding estimates for the
exponential integral cw given by (5.9). By substituting these estimates into
(5.34), and appealing to no more than the trivial bound of order O(r) for
W (−l, w − d) (see (3.3)), one finds that Ci,l(κ0) is equal to

(5.39)
∑

A≤w≤B
W (−l, w−d)

g(xw)√
−f ′′(xw)

e
(
f(xw)−wxw+(w+θ)κ0−

1
8

)

+O(Vg) +O

(
Vg

(
X√
Z

+
2W1∑

u=1

1
u

)
r

)

(by (5.31) the last remark of Lemma 5.2 applies).
When l 6≡ 0 (mod r), Weil’s bound (3.4) for W (−l, w − d) is of order

O(
√
r), which leads to a sharpening of the last O-term in (5.39) by a factor

of
√
r. Even with this sharpening, the second O-term will still dominate the

first O-term, which is therefore redundant in all cases. It follows that the
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O-terms in (5.39) may be subsumed within a single term:

(5.40) O

(
rVg

(
X√
Z

+ logW1

))
� g(b)√

−f ′′(b)/r2

(
1 +

√
H

N
log

Hr

R

)

(see (5.29), (5.31), (5.35), (5.38), (2.7), (2.8) and (4.1)). Since (q, r) = 1, the
lemma will follow after (5.24), (5.26), (5.20), (3.3) and the substitutions

−qw − qθ = h ≡ −nr (mod q), −rxw = ξh

are used to rewrite (5.40) and (5.39) (in which, by Lemma 5.2, f ′(xw) = w).
The sharper O-terms for the case l 6≡ 0 (mod r) are inferred from the remarks
made at the start of this paragraph.

Lemma 5.4. Let i be the index of a minor arc for which q = qi satisfies
(5.2). Then (5.3) holds with δ = 1/2.

Proof. Our starting point is the result of Lemma 5.3, which we prepare
for substitution into (5.4) by carrying out a reversal of the notational sub-
stitutions made in (5.14)–(5.17).

First note that, by (5.16), (5.36) and (5.18),

(5.41)
γ(ξh)√
−φ′′(ξh)

=
1√

−φ′′(ξh)
√
ξ2
h − l2

=

√
2

φ′(ξh)
=

√
2rq
h
.

By (5.18) and (5.22),

(5.42)

√
ξh +

√
ξ2
h − l2 =

l

h
√

2µrq
,

√
ξh −

√
ξ2
h − l2 = h

√
2µrq.

From this, (5.16) and (5.7), it follows that

φ(ξh) =

√
2 l

3
√
µr3q3

(
l

h
√

2µrq
+
h
√

2µrq
l

ξh

)
=

l2

3µr2q2h
+

2h
3rq

ξh

and

(5.43) φ(ξh)− h

rq
ξh =

l2

3µr2q2h
− h

3rq
ξh.

By (5.42),

ξh =
1
2

(
l2

2µrqh2 + 2µrqh2
)

=
l2

4µrqh2 + µrqh2.

Substituting this into (5.43) yields

φ(ξh)− h

rq
ξh =

l2

4µr2q2h
− µh3

3
.



340 N. Watt

Using this, (5.41), (5.15) and (5.17) with the result of Lemma 5.3, we find
the following approximate formula for Ci,l(κ0):

∑

H4≤h≤H5
h≡−ral (mod q)

W (−l,−qh)
r

√
2rq
h

e
(

l2

4µr2q2h
− µh3

3
− rκ0

h

rq
− 1

8

)

+O

(√
rq

H

(
1 +

√
H

N
log

rH

R

))
,

with the O-term smaller by a factor of
√
r when l 6≡ 0 (mod r).

By (4.13) there are no more than O(L/r) choices for l in (5.4) with l ≡ 0
(mod r). Therefore substitution of the last result (above) into (5.4) shows
us that B∗∗i (κ0) is equal to

(5.44)
∑

L2<l<L3

e
(
qml

r

) ∑

H4(l)≤h≤H5(l)
h≡−ral (mod q)

W (−l,−qh)
r

1√
2µh

× e
(

l2

4µr2q2h
− µh3

3
− (b0 + κ0)h

q
− 1

8

)

+O

(
L√
µrq

√
q

H

(
1 +

√
H

N
log

rH

R

))
.

By (3.3) and (4.14) (for s = 0), the sums in (5.44) are the complex conjugates
of those defining B∗i,η in (4.11). To complete the proof of the lemma, it suffices
to observe that (4.12), (4.13) and (2.29) imply

L√
µrq
�
√
LHN �

√
rQH2N

R2 =
Q

R

√
r H

√
N

Q
,

so that, by (4.1) and (2.8), the O-term in (5.44) is

O

(
Q

R

√
rHN

(
1 +

√
H

N
log

rH

R

))
= O

(
Q

R

√
rHN log (rN)

)
.

6. The Bombieri–Iwaniec Double Large Sieve. By (5.4)–(5.5), the
sum B∗∗i (κ) can be written as

(6.1)
∑

L2<l<L3

∑

k

K4(l)≤k−rκ−
√

(k−rκ)2−l2≤K5(l)

ψk,l(κ)√
4µrq

e(y(i) · x(k,l)(κ)),

where

(6.2) ψk,l(κ) = ((k − rκ)2 − l2)−1/4χ

(
k + l

k − l

)
,
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x(k,l)(κ) = (kl, l, %l(k − rκ)),(6.3)

y(i) =
({

r2a

q

}
,

{
qm

r
+
rab0
q

}
,

1√
µr3q3

)
.(6.4)

Before we can apply the Double Large Sieve it is necessary to dissolve
all but one of the ties linking the ranges of summation for k and l to the
minor arc index i. By (4.12) and (5.6), the restrictions on k and l in (6.1)
are that

(6.5) 2µrqH2N2 < l < 2µrqH3N3

and that k − rκ− ((k − rκ)2 − l2)1/2 should lie in the interval

[2µrqmax(H2
2 , (l/2µrqN3)2), 2µrqmin(H2

3 , (l/2µrqN2)2)].

The last constraint is satisfied if and only if both

2µrqH2
2 ≤ k − rκ−

√
(k − rκ)2 − l2 ≤ 2µrqH2

3

and
2µrqN2

2 ≤ k − rκ+
√

(k − rκ)2 − l2 ≤ 2µrqN2
3 ,

or equivalently (given (6.5)) if both

(6.6) 2H2
√
µrq ≤

√
k − rκ+ l −

√
k − rκ− l ≤ 2H3

√
µrq

and

(6.7) 2N2
√
µrq ≤

√
k − rκ+ l +

√
k − rκ− l ≤ 2N3

√
µrq.

Note that (6.6) and (6.7) multiply together to give (6.5). Recalling (5.13),
(5.25) and (5.30) (from Lemma 5.3 and its proof), we see that in (5.4)–(5.5)
the ratio (k− rκ)/l will always lie between half and six times N/H. Hence,
and by (4.13) and (5.30), we may write

(6.8) B∗∗i (κ0) =
∑

K0

∑

L0

B∗∗i (K0, L0;κ0),

with K0, L0 running over the bounded number of integer powers of 2 such
that

(6.9)
1
8
≤ K0

K
,
L0

L
≤ 144C2

3 ,
12N
H
≥ K0

L0
≥ N

4H
≥ 16,

where, by (5.2),

(6.10) K =
N

H
L =

rQN

R2 ≥ rN

Q
≥ r 64H

Q
> 64r,

and with

(6.11) B∗∗i (K0, L0;κ) =
∑

L0<l≤2L0

∑

K0<k−rκ≤2K0

(i) ψk,l(κ)√
4µrq

e(y(i) · x(k,l)(κ)),
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where the superfix (i) to the summation sign indicates that (6.6) and (6.7)
are conditions of summation: note that we can drop (6.5) here as it is im-
plicit.

Lemma 6.1. Let n be a positive integer constant. Let F be any finite
set and c(x) and f(x) any functions from F into (respectively) Rn and C.
Suppose also that ai ≤ bi for i = 1, . . . , n. Put

S =
∑

x∈F
c(x)∈[a1,b1]×...×[an,bn]

f(x)

and , for u ∈ Rn,
S(u) =

∑

x∈F
f(x)e(−c(x) · u).

Then for U1, . . . , Un > 0,

S �
U1�

−U1

. . .

Un�

−Un
|S(u)|λ(δ1, u1) du1 . . . λ(δn, un) dun +

n∑

i=1

Ei,

where λ(δ, u) = δ/(1 + δ|u|), δi = bi − ai and

Ei =
∑

x∈F
|f(x)|

(
1

1 + Ui|ci(x)− ai|
+

1
1 + Ui|ci(x)− bi|

)
.

Proof. This is a standard type of result which follows by application of
the asymptotic formula

1
2πi

U�

−U
(e(vu)− 1)

du

u
= O

(
1

1 + U |v|

)
+





1/2 if v > 0,

0 if v = 0,

−1/2 if v < 0

(with U = Ui > 0 and v = bi − ci(x), or v = ai − ci(x)) to estimate the
integral

U1�

−U1

. . .

Un�

−Un
S(u)

(e(b1u1)− e(a1u1)) du1

2πiu1
. . .

(e(bnun)− e(anun)) dun
2πiun

,

while (separately) using the inequality∣∣∣∣
e(vu)− 1

2πiu

∣∣∣∣ = |v sinc(vu)| ≤ |v|
1 + π|vu| ≤ λ(|v|, u) (v, u ∈ R)

(with v = δi) to bound the same integral.

We apply Lemma 6.1 to bound the sum B∗∗i (K0, L0;κ) in (6.11) in terms
of a similar sum not subject to the conditions (6.6) and (6.7). To this end
the lemma is applied with n = 2,

F = {(k, l) ∈ Z2 | K0 < k − rκ ≤ 2K0, L0 < l ≤ 2L0},
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c(k, l) = (
√
k − rκ+ l −

√
k − rκ− l,

√
k − rκ+ l +

√
k − rκ− l),(6.12)

f(k, l) = ψk,l(κ)e(y(i) · x(k,l)(κ)),

a = 2
√
µrq (H2, N2), b = 2

√
µrq (H3, N3), U = K

3/2
0 (1, 1).(6.13)

With a linear change of variable in the integral, Lemma 6.1 yields

(6.14) B∗∗i (K0, L0;κ)

�
1�

−1

1�

−1

|B∗∗i,w(K0, L0;κ)|λ1(w1) dw1λ2(w2) dw2 + (E1 + E2)/
√

4µrq,

where B∗∗i,w(K0, L0;κ) is

(6.15)
1√

4µrq

∑

L0<l≤2L0

∑

K0<k−rκ≤2K0

ψk,l(K
3/2
0 w;κ)e(y(i) · x(k,l)(κ))

with

(6.16) ψk,l(u;κ) = ψk,l(κ)e(−u · c(k, l)),

and where, by (2.29), (2.8), (2.28), (5.2), (6.10), (6.9), (6.13) and the mono-
tonicity (with respect to δ) of λ(δ, u),

(6.17) 0 ≤ λi(w) = λ(Ui(bi − ai), w) ≤ λ(O(K2
0 ), w)� λ(K2

0 , w).

Furthermore, as one can show that, for k − rκ > |l|,
∂

∂k
c1(k, l) ≤ − l

2(k − rκ)3/2
,

∂

∂k
c2(k, l) ≥ 1√

2(k − rκ)
,

it follows that, for fixed integer l in [L0, 2L0] and i ∈ {1, 2}, the function
ci(k, l), restricted to the strip K0 ≤ k−rκ ≤ 2K0, is strictly monotonic in k,
with values at consecutive integer values of k always an interval of length
greater than (4K0)−3/2 apart. Therefore, for i = 1, 2,

Ei �
∑

L0<l≤2L0

(
1 +

∑

0<k1≤K0

1
(4K0)−3/2k1Ui

)
max

K0≤k−rκ≤2K0

|f(k, l)|

� (L0 logK0) max
L0<l≤2L0

K0≤k−rκ≤2K0

|ψk,l(κ)| � (L0 logK0)(K2
0 − 4L2

0)−1/4

and
Ei√
µrq
� (K/N2)−1/2L0K

−1/2
0 logK0 � N

L

K
logK � H log(rN)

(see (2.28), (5.2), (6.2), (6.9) and (6.10)).
This completes the process of simplifying the dependence on arc index

(i) of the sums over k, l in (6.11). By the last bound, (2.32), (2.35), (4.5),
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(4.22), Lemma 5.4, (6.8)–(6.10), (6.14)–(6.17), (5.2) and (2.8),

Bi �
1/2�

−1/2

(∑

K0

∑

L0

1�

−1

1�

−1

|B∗∗i,w(K0, L0;κ0,i(η))|

× λ(K2
0 , w1) dw1 λ(K2

0 , w2) dw2

)
Λ(2η) dη

+
Q

R

√
rHN log(rN).

Hence, if we let S(H,M ;Q) be the total contribution to the sum S(H,M),
in (1.6), from all those minor arcs Ji that belong to no major arc and for
which the chosen rational a/q has Q ≤ q ≤ 2Q, then (see (2.21)):

S(H,M ;Q) =
∑

i

(Q)
Bi (say)

�
∑

K0

∑

L0

1�

−1

1�

−1

∑

i

(Q)
1/2�

−1/2

|B∗∗i,w(K0, L0;κ0,i(η))|

× Λ(2η) dη λ(K2
0 , w1) dw1 λ(K2

0 , w2) dw2

+
∑

i

(Q) Q

R

√
rHN log(rN).

As there are O(1) choices of K0, L0 as integer powers of 2 satisfying (6.9),
and since, in Lemma 6.1,

1�

−1

λ(δ, w) dw = 2 log(1 + δ) (δ ≥ 0),

application of the First Mean-Value Theorem of integral calculus now per-
mits us to conclude that either

(6.18) S(H,M ;Q)�
(
Q

R

√
rHN log(rN)

)
W (Q),

where

(6.19) W (Q) =
∑

i

(Q)
1,

or, for some K0, L0 satisfying (6.9), and some w ∈ R2,

(6.20) S(H,M ;Q)� (log2K0)
∑

i

(Q)
1/2�

−1/2

|B∗∗i,w(K0, L0;κ0,i(η))|Λ(2η) dη.

As it follows from (2.15) and (2.5) that q ≥ Q implies both s1 � Q and
b1 � P (where P/Q � T/M2 and b1/s1 is as described above (2.14)), one
may choose either to apply [18, Lemma 2.1] in order to bound the number



Mean squared modulus 345

of relevant subintervals Ji−2 3 b1/s1 directly, or to apply it to bound the
number of “reciprocal” subintervals, J−1

i−2 = {1/x | x ∈ Ji−2} 3 s1/b1. The
resulting two bounds combine to show

W (Q)� MR2

NQ2 + min
(
R2

Q
,
M

NQ

)
� MR2

NQ2 +

√
MR2

NQ2 .

Therefore, given that W (Q) ∈ Z, one has

(6.21) W (Q)� MR2

NQ2 .

Assuming (6.20) (and recalling (6.15) and (6.3)), the Cauchy–Schwarz
inequality and (2.28) show that, for some u ∈ R2,

(6.22) (S(H,M ;Q))2 � (logN)4W (Q)
NR2

rQ
σ,

where

(6.23) σ =
∑

i

(Q)
∞�

−∞

∑

j

Ψj(κ0,i(η))e(y(i) · x(j)(κ0,i(η)))Λ(2η) dη

with j = (k, k′, l, l′) running over Z4,

(6.24) Ψj(κ) =




ψj1,j3(u;κ)ψj2,j4(u;κ)

if (jh − rκ)/K0, jh+2/L0 ∈ (1, 2] for h = 1, 2,

0 otherwise
and

(6.25) x(j)(κ) = (j1j3 − j2j4, j3 − j4, %j3(j1 − rκ)− %j4(j2 − rκ)).

By (6.25), (5.7), (2.35), (2.36), (6.9), (6.10), (6.4), (2.28) and (5.2), we
find that, for all j, i and η relevant to (6.23)–(6.24),

−Xh/2 ≤ x(j)
h (κ0,i(η)) ≤ Xh/2, −Yh/2 ≤ y(i)

h ≤ Yh/2 (h = 1, 2, 3),

where

(6.26)
X
C0

=
(
KL,L,

H
√
r3Q3N

R3

)
,

Y
C0

=
(

1, 1,
R

Q

√
N

r3Q

)

for some C0 ≥ 1, with C0 = O(1).
Recalling (2.33)–(2.36), we may rewrite (6.23) by substitution of the

variable of integration

η = (κ0,i(η)− κ0,i(0))H/q = (κ0 − κ0,i)H/q (say),

where

(6.27) κ0,i = {qf(m, 0)} ∈ [0, 1).
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We then have (see (5.2)),

σ =
∑

i

(Q)
∞�

−∞
Λ

(
κ0 − κ0,i

q/2H

)∑

j

Ψj(κ0)e(y(i) · x(j)(κ0))
dκ0

q/H
(6.28)

=
1+ε0/2�

−ε0/2
σ(κ0) dκ0,

where

σ(κ) =
∑

i

(Q)∑

j

e(y(i) · x(j)(κ))Φi(κ)Ψj(κ),

with

(6.29) Φi(κ) =
H

q
Λ

(
κ− κ0,i

q/2H

)
.

Applying the Double Large Sieve [14, Lemma 5.6.6] yields the result
that, for −2 < κ < 2,

(6.30) (σ(κ))2 � A(κ)B(κ)
3∏

h=1

(XhYh + 1),

where

A(κ) =
∑

j

∑

j′
Ψj(κ)Ψj′(κ)

3∏

h=1

Λ

(
x

(j)
h (κ)− x(j′)

h (κ)
Xh/Zh

)
,(6.31)

B(κ) =
∑

i

(Q)∑

i′

(Q)
|Φi(κ)Φi′(κ)|

3∏

h=1

Λ

(
y

(i)
h − y

(i′)
h

Yh/(1 + Zh)

)
,(6.32)

with

(6.33) Zh = XhYh (h = 1, 2, 3).

Note that, by (6.26), (4.13), (6.10) and (2.7)–(2.8),

(6.34) Z1 � KL� 1, Z2 � L� 1, Z3 �
HN

R2 � 1.

Hence (6.30) implies

σ(κ)� L

R

√
HNK

√
A(κ)

√
B(κ) (−2 < κ < 2).

Using this bound in (6.28) and applying the Cauchy–Schwarz inequality, we
find

(6.35) σ2 � HNKL2

R2 AB,
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where, recall of definitions pertinent to A(κ) reveals,

(6.36) A ≤
2�

−1

A(κ) dκ = 3
1�

0

A(κ) dκ = 3A1 (say)

and where, by (6.29) and (6.32),

B =
∞�

−∞
B(κ) dκ(6.37)

=
∑

i

(Q)∑

i′

(Q)
∞�

−∞
Φi(κ)Φi′(κ) dκ

3∏

i=1

Λ

(
y

(i)
h − y

(i′)
h

Yh/(1 + Zh)

)

≤
∑

i

(Q)∑

i′

(Q) 2H
Q
Λ

(
κ0,i − κ0,i′

2Q/H

) 3∏

i=1

Λ

(
y

(i)
h − y

(i′)
h

Yh/(1 + Zh)

)

=
2H
Q
B1 (say).

7. The First Spacing Problem with a Dirichlet character fac-
tor. By (6.33) and (6.26), X1/Z1 = 1/Y1 = X2/Z2 = 1/Y2 = 1/C0 ≤ 1.
Therefore, and by (6.23)–(6.25) and (6.31),

(7.1) A(κ) =
∑

p

∑

k

′
Λp,k(κ)Πp,k(κ),

where the ′ following the summation sign indicates that the sum is over
integer quadruplets, p = (l1, . . . , l4) and k = (k1, . . . , k4), satisfying both

(7.2) l1 + l2 = l3 + l4

and

(7.3) l1k1 + l2k2 = l3k3 + l4k4,

while

(7.4) Λp,k(κ) = Λ(Y3(xj
3(κ)− xj′

3 (κ))), Πp,k(κ) = Ψj(κ)Ψj′(κ),

with j = (k1, k4, l1, l4) and j′ = (k3, k2, l3, l2).
The real solutions of (7.2) and (7.3) may be grouped into equivalence

classes, called families, with two solutions, (p,k) and (p′,k′) (say), belong-
ing to the same class (family) if and only if

(7.5) p′ = p, k′i − k′4 = ki − k4 (i = 1, 2, 3).

We only need to consider those families that contain an integer point. Such
families automatically contain an infinite number of integer points, since the
system (7.2), (7.3) is invariant under the addition of the “diagonal” vector
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(1, 1, 1, 1) to k. By (6.24), (7.4) and (7.1), the contribution to A(κ) coming
from one such family, F (say), is zero unless

(7.6) p = (l1, . . . , l4) ∈ (L0, 2L0]4,

in which case it is

(7.7) AF (κ) =
∑

t

Λp,k(t)(κ)Πp,k(t)(κ),

where k(t) = (k1(t), . . . , k4(t)) and, for i = 1, . . . , 4, ki(t) denotes a real
linear function of t, with

(7.8) ki(0) ∈ Z, k′i(t) = 1 for t ∈ R,

so that, as t runs over R, the point (p,k) = (p,k(t)) runs over all the real
solutions of (7.2), (7.3) in the family.

By (7.2), (6.24), (6.16), (6.2) and (6.12),

(7.9) Πp,k(t)(κ) = g(t− rκ)χ(α(t))e(Ξ(t− rκ)),

with

g(t) =





∏4
i=1(k2

i (t)− l2i )−1/4

if K0 < ki(t) ≤ 2K0 for i = 1, . . . , 4,

0 otherwise,

(7.10)

α(t) =
(k1(t) + l1)(k2(t) + l2)(k3(t)− l3)(k4(t)− l4)
(k1(t)− l1)(k2(t)− l2)(k3(t) + l3)(k4(t) + l4)

(7.11)

and

(7.12) Ξ(t) = −
∑

σ=±1

(σu1 + u2)
2∑

i=1

(
√
ki(t) + σli −

√
ki+2(t) + σli+2)

(where u1, u2 ∈ R), while

(7.13) Λp,k(t)(κ) = Λ(Y3J(t− rκ)),

with

(7.14) J(t) = %l1(k1(t)) + %l2(k2(t))− %l3(k3(t))− %l4(k4(t)).

By (7.7)–(7.14),

AF (κ) =
∑

t

δ(t− rκ)χ(α(t)),

where

(7.15) δ(t) = g(t)e(Ξ(t))Λ(Y3J(t)).

Therefore, for τ ∈ R, s ∈ Z,

AF ((s+ τ)/r) =
∑

t

δ(t− s− τ)χ(α(t)) =
∑

t

δ(t− τ)χ(α(s+ t))
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and it follows that
1�

0

AF (κ) dκ =
1
r

r−1∑

s=0

1�

0

AF

(
s+ τ

r

)
dτ

=
1
r

r−1∑

s=0

1�

0

∑

t

δ(t− τ)χ(α(s+ t)) dτ

=
1
r

∑

t

r−1+t∑

s=t

χ(α(s))
t�

t−1

δ(τ) dτ =
1
r
WFDF ,

where

(7.16) WF =
∑

smod r

χ(α(s)), DF =
∞�

−∞
δ(t) dt.

Hence, and by (6.36),

(7.17) A1 =
1
r

∑

F

′
WFDF ,

where the summation is over all families F containing at least one integer
solution of (7.2), (7.3) and (7.6).

For the estimation of WF we have recourse to the following lemma,
which, by virtue of permitting an exponential factor in the summand, covers
some cases superfluous to this paper. Note that this is the “Lemma 9.3”
referred to in [20, page 406].

Lemma 7.1. Let

Wc =
∑

xmod r

χ

(
(x+ a1) . . . (x+ a4)
(x+ b1) . . . (x+ b4)

)
e
(
cx

r

)
,

where a1, . . . , a4, b1, . . . , b4 and c are integers. Then either

|Wc| ≤ 12
√
r,

or , after some renumbering of a1, . . . , a4 and of b1, . . . , b4, we are in one of
the following four cases:

ai ≡ bi (mod r) (i = 1, . . . , 4);(7.18)

a1 ≡ a2 6≡ b1 ≡ b2 (mod r), ai ≡ bi (mod r) (i = 3, 4);(7.19)

a1 ≡ a2 ≡ a3 6≡ b1 ≡ b2 ≡ b3 (mod r), a4 ≡ b4 (mod r);(7.20)

a1 ≡ a2 6≡ b1 ≡ b2 6≡ a3 ≡ a4 6≡ b3 ≡ b4 6≡ a1 (mod r).(7.21)

Proof. We begin by writing

Wc =
∑

xmod r

χ((x+ α1) . . . (x+ α4)(x+ β1)r−2 . . . (x+ β4)r−2)e(cx/r),
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where α1, . . . , α4 and β1, . . . , β4 are integers satisfying

0 ≤ αi, βi ≤ r − 1, αi ≡ ai (mod r), βi ≡ bi (mod r)

for i = 1, . . . , 4. Suppose αi = βj . Then we have

(x+ αi)(x+ βj)r−2 ≡ (x+ αi)r−1 ≡ 1 (mod r),

except when x ≡ −αi (mod r). Repeating this step if possible, we find that
there exist permutations (A1, . . . , A4) and (B1, . . . , B4) of (α1, . . . , α4) and
(β1, . . . , β4), respectively, and n ∈ {0, 1, . . . , 4} such that:

Ai = Bi (i = n+ 1, . . . , 4), Ai 6= Bj (1 ≤ i, j ≤ n),

Ai ≤ Ai+1, Bi ≤ Bi+1 (i = 1, . . . , n− 1)

and

|Wc| ≤
∣∣∣∣
∑

xmod r

χ(P(x))e
(
cx

r

)∣∣∣∣+ 4,

where

P(x) = (x+ A1) . . . (x+ An)(x+B1)r−2 . . . (x+Bn)r−2

(P(x) = 1 if n = 0).
If n = 0, then we are in case (7.18) and have nothing more to prove. For

n = 1, 2, 3, 4, we first observe that Y d − P(X) (where d is the order of χ)
is absolutely irreducible unless there is a non-trivial factor dividing both d
and each of the multiplicities of the roots of P(X) (see [28, Lemma 2C(iii)]).
Secondly, the polynomial Zr −Z −X is, in all cases, absolutely irreducible.
We conclude, by appealing to [28, Theorems 2C and 2G(ii)], that either we
have

|Wc| ≤ 8
√
r + 4 ≤ 12

√
r,

or we have n = 2, A1 = A2, B1 = B2 and 2 | d, or we have n = 3, A1 =
A2 = A3, B1 = B2 = B3 and 3 | d, or we have n = 4, A1 = A2, A3 = A4,
B1 = B2, B3 = B4 and 2 | d. Recalling our conclusion for n = 0, these are
exactly the alternatives listed by the lemma.

Referring to the definition of α(t) in (7.11), we can see that Lemma 7.1
is of no avail when dealing with a family containing integer solutions of (7.2)
and (7.3) such that one of (7.18)–(7.21) holds with a1, . . . , a4 and b1, . . . , b4
given, modulo independent renumberings of both quadruples, by

(7.22) ai = ki(0) + λi, bi = ki(0)− λi (i = 1, . . . , 4),

where

(7.23) (λ1, . . . , λ4) = (l1, l2,−l3,−l4).

We boldly label such awkward families “exceptional”.
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For any non-exceptional family O the case c = 0 of Lemma 7.1 does
apply:

(7.24) WO �
√
r.

Using this in (7.17) when possible, and the trivial universal bound of O(r)
otherwise, one obtains

(7.25) A1 �
1√
r
A′1 +A∗1,

where

(7.26) A′1 =
∑

F

′
|DF |, A∗1 =

∑

E

∗
|DE |,

with the ′ having the same effect as in (7.17) and the ∗ signifying its sum
is over the exceptional families E containing at least one integer solution of
(7.2), (7.3) and (7.6).

We now take some steps aimed at clearing away some non-essential com-
plicating features of these sums (in (7.26)), before starting the estimation
proper. Suppose that F is a family containing an integer solution of (7.2),
(7.3) and (7.6). Then, by (7.16), (7.15), (7.10), (7.6) and (6.9),

DF � K−2
0

∞�

−∞
∆F(K0, 1/Y3; t) dt(7.27)

= K−2
0

1�

0

( ∞∑

t=−∞
∆F (K0, 1/Y3; t− τ)

)
dτ,

where

(7.28) ∆F (X, θ; t) =
{

1 if |J(t)| ≤ θ and k(t) ∈ (X, 2X]4,

0 otherwise.
Here we should recall that, by (7.14) and (5.8),

(7.29) J(t) =
1
3

4∑

i=1

((ki(t) + λi)3/2 − (ki(t)− λi)3/2),

where λ1, . . . , λ4 are as in (7.23), and that, by (6.26), (6.33), (6.34) and
(6.9),

(7.30) Y −1
3 = X3/Z3 = Z−1

3 C0L
√
K = ΓL0

√
K0 (say),

where

(7.31) Γ � 1/Z3 � R2/HN � 1.

Lemma 7.2. Let F be a family of solutions of (7.2) and (7.3). Let
∆F (X, θ; t) be as defined in (7.28)–(7.29), with X, θ > 0, and suppose that
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m ∈ N and τ ∈ R. Then
∞∑

t=−∞
∆F (X, θ; t− τ) = O(m) +

∞∑

t=−∞
t≡0 (modm)

m∆F(X, θ; t).

Proof. Apart from the factor 1/3 the function J(t) in (7.28)–(7.29) is
the same function named as M3/2(F , t) in [31]. Reprising an argument used
in that paper, we observe that the product of the expression x − J(t) to-
gether with (see (7.29)) all 28 − 1 algebraically conjugate expressions, such
as x + J(t), is a polynomial of degree at most 384 in t, the coefficients of
which polynomial are themselves polynomials, this time in x, that may, or
may not, all have x as a factor, but certainly cannot have (as such a com-
mon factor) any other one of the real monic linear polynomials (this follows
by considering the behaviour of x − J(t), or any conjugate, in the limit as
t→∞). As θ is real and non-zero, and since the constraints on k in (7.28)
restrict t to an interval where J(t) is continuous, it follows from the ob-
servations made in the last paragraph that the support of ∆F(X, θ; t) is a
union of no more than 386 disjoint intervals. Let I1, . . . , In be the relevant
intervals, and let µ(I1), . . . , µ(In) be their respective lengths. Then we have
the equalities

∞∑

t=−∞
∆F(X, θ; t− τ) =

n∑

i=1

∞∑

t=−∞
t−τ∈Ii

1 =
n∑

i=1

(µ(Ii) +O(1))

= O(1) +
n∑

i=1

µ(Ii)
and

∞∑

t=−∞
t≡0 (modm)

∆F (X, θ; t) =
n∑

i=1

∞∑

s=−∞
ms∈Ii

1 =
n∑

i=1

(m−1µ(Ii) +O(1))

= O(1) +
1
m

n∑

i=1

µ(Ii).

The lemma follows on using the second of these equalities to eliminate the
last sum over i from the first equality.

Using the case m = 1 of Lemma 7.2 in (7.27) we have, after (7.30),
(7.31),

DF �
1
K2

0

1�

0

(
O(1) +

∞∑

t=−∞
∆F (K0, ΓL0

√
K0; t)

)
dτ

=
1
K2

0

(
O(1) +

∞∑

t=−∞
∆F (K0, ΓL0

√
K0; t)

)
,
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which, when applied to the sums of (7.26), yields

A′1 � K−2
0

(
P (Γ,K0, L0) +

∑

F

′
1
)
,(7.32)

A∗1 � K−2
0

(
P ∗r (Γ,K0, L0) +

∑

E

∗
1
)
,(7.33)

where, while it is now implicit that there must be at least one member (p,k)
satisfying

(7.34) K0 < k1, . . . , k4 ≤ 2K0

in the relevant family (F or E), the significance of the ′ and the ∗ is otherwise
what it was in (7.17) and (7.26), and where, for 0 < η � 1 and 0 < Y ≤ X/2,
we let P (η,X, Y ) be the number of integer solutions (p,k) of (7.2) and (7.3)
satisfying both

(7.35) X < k1, . . . , k4 ≤ 2X, Y < l1, . . . , l4 ≤ 2Y

and the condition

(7.36) |%l1(k1) + %l2(k2)− %l3(k3)− %l4(k4)| ≤ ηY
√
X,

while defining P ∗r (η,X, Y ) to be the number of the same solutions present
in exceptional families (for which see the paragraph containing (7.22) and
(7.23)).

Turning to the estimation of the sums over F and E in (7.32) and
(7.33), we begin with a lemma classifying the families for which the sets
{k1(t), k2(t)} and {k3(t), k4(t)} are equal (the “symmetric families”) as ei-
ther “totally symmetric” or “semi-symmetric”. All other families are to be
styled “asymmetric”. The distinction between symmetric and asymmetric
here is exactly the same as between the “trivial” and “non-trivial” fami-
lies in [32], but we reserve the latter two adjectives for making the slightly
different distinction that they marked in [31].

Lemma 7.3. There are only two sorts of symmetric families of solutions
of (7.2), (7.3):

(i) the “totally symmetric” families, for which

{(k1(t), l1), (k2(t), l2)} = {(k3(t), l3), (k4(t), l4)};
(ii) the “semi-symmetric” families, for which

k1(t) = k2(t) = k3(t) = k4(t), {l1, l2} 6= {l3, l4}.
Proof. This is evident from the analysis into cases given in the proof of

[32, Lemma 1].

Lemma 7.4. Let X,Y > 0. The number of totally symmetric families
containing at least one integer solution of (7.2), (7.3) and (7.35) is O(XY 2).
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Proof. In order to fully determine a family it suffices to know the val-
ues of l1, . . . , l4 and k1(t) − k2(t), k3(t) − k2(t) and k4(t) − k2(t) (all are
quantities independent of t). As we have {k3(t) − k2(t), k4(t) − k2(t)} =
{k1(t)− k2(t), k2(t)− k2(t)} = {k1(t)− k2(t), 0}, and also {l3, l4} = {l1, l2},
it follows that, after one has chosen integer values for l1, l2 (there are O(Y 2)
choices) and k1(t) − k2(t) (another O(X) choices), there remain just O(1)
choices for l3, l4, k3(t)− k2(t) and k4(t)− k2(t), and hence for the family.

Lemma 7.5. Let X,Y > 0. The number of semi-symmetric families con-
taining at least one integer solution of (7.2) and (7.35) is O(Y 3).

Proof. The bound is just the number of choices for integers l1, l2, l3 sat-
isfying (7.35). By (7.2) these values determine that of l4, which completes
determination of the family, since (given that it is singularly trivial) all
differences of the form ki(t)− kj(t) are zero.

Lemma 7.6. Let X,Y > 0. The number of asymmetric families contain-
ing at least one integer solution of (7.2), (7.3) and (7.35) is O(X2Y 2).

Proof. See [32, Lemma 3].

Lemma 7.7. The sums of (7.32), (7.33) satisfy
∑

E

∗
1 ≤

∑

F

′
1� K0L

2
0 + L3

0 +K2
0L

2
0 � K2

0L
2
0

and , as a consequence of this, we have

A′1 � K−2
0 P (Γ,K0, L0), A∗1 � K−2

0 P ∗r (Γ,K0, L0).

Proof. The first two bounds follow by (6.9) from Lemmas 7.3–7.6, with
X = K0 and Y = L0 (the first sum is a subsum of the second sum, in
which the family F must contain at least one integer solution of (7.2),
(7.3), (7.6) and (7.34)). The conclusion follows since both P (Γ,K0, L0)
and P ∗r (Γ,K0, L0) count no less than K2

0L
2
0 totally symmetric integer solu-

tions of (7.2), (7.3), (7.6) and (7.34) (see Lemma 7.3(i), (7.11) and (7.18) of
Lemma 7.1).

Lemma 7.8. Let η > 0 and 0 < Y ≤ X/4. Then

P (η,X, Y ) ≤ B(η +O(Y 2/X2),X, Y ),

where B(δ,X, Y ) is the number of integer solutions (p,k) of (7.2) and (7.3)
satisfying (7.35) and (in place of (7.36)) the condition

(7.37) |l1
√
k1 + l2

√
k2 − l3

√
k3 − l4

√
k4| ≤ δY

√
X.

Proof. Let i ∈ {1, 2, 3, 4}. By (7.35) and the hypothesis that 0 < Y ≤
X/4 we may suppose that 0 < li/ki < 2Y/X ≤ 1/2. It follows that we may
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make use of the obvious binomial expansion of (5.8),

%li(k) =
1
3
k3/2

∞∑

r=0

(
3/2
r

)((
li
k

)r
−
(
− li
k

)r)

= lik
1/2

∞∑

s=0

2
3

(
3/2

2s+ 1

)(
li
k

)2s

,

from which we deduce

%li(ki) = (1 +O(Y 2/X2))li
√
ki.

The lemma follows by substituting this in (7.36): just observe that li
√
ki �

Y
√
X for i = 1, . . . , 4.

Lemma 7.9. Let 0 ≤ δ ≤ 1 and X,Y > 0. Then the number of integer
solutions of (7.2), (7.3), (7.35) and (7.37) that lie in asymmetric families is
O((X2Y 2 + δX3Y 2) log(1 +X)).

Proof. By [32, Lemmas 2 and 3] and the first displayed inequality below
the middle of [32, page 59], one can see that it follows from the first of
the two bounds given in [32, Theorem, page 64] that the number of integer
solutions of (7.2), (7.3), (7.35) and (7.37) is

�
∑

1≤d<X

∑

1≤e<2Y

(
X2Y 2

de2 + d

((
X

d

)2(
Y

e

)
log3

(
2 +

Y

e

)

+ δ

(
X

d

)3(
Y

e

)2

log
(

2 +
X

d

)))

and the lemma follows.

Lemma 7.10 (Lemma 13.3.1 of [14]). Let η > 0 and 0 < Y ≤ X/4. Then

P (η,X, Y )� (X2Y 2 +XY 4 + ηX3Y 2) log(1 +X).

Proof. This follows by an application of Lemma 7.8, in conjunction with
Lemmas 7.9, 7.4, 7.5 and the trivial observation that there cannot be more
than X integer solutions of (7.35) in any one family.

While Lemma 7.10 is entirely satisfactory when Y 2 � X, we shall need
better bounds for other cases. To this end we recast the problem of bounding
P (η,X, Y ) as a variant of the problem on semicubical powers treated in [2]
and [31]. The first step is to observe that (7.2), (7.3) and (see (5.8)) (7.36)
are merely the cases β = 1, 3/2, 2 of the inequality

∣∣∣
4∑

i=1

((ki + λi)β − (ki − λi)β)
∣∣∣ ≤ 12(2− β)(β − 1)ηY

√
X,
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where the λi’s are as in (7.23). By making the substitutions

(7.38) ki + λi = gi, ki − λi = hi (i = 1, . . . , 4),

we find that the relevant three cases of the last inequality are equivalent to
the conditions that

(7.39)
4∑

i=1

(g2
i − h2

i ) =
4∑

i=1

(gi − hi) = 0

and

(7.40)
∣∣∣

4∑

i=1

(g3/2
i − h3/2

i )
∣∣∣ ≤ 3∆X3/2,

where

(7.41) ∆ =
Y

X
η.

If we suppose that 0 < Y ≤ X/12, then (7.23), (7.35) and (7.38) imply

(7.42) 5X/6 < g1, . . . , g4, h1, . . . , h4 ≤ 13X/6

and

(7.43) 2Y < |gi − hi| ≤ 4Y (i = 1, . . . , 4).

Note also that, since −λi ≡ λi (mod 2), we will always have

(7.44) gi ≡ hi (mod 2) (i = 1, . . . , 4).

From these observations one may deduce the following lemma.

Lemma 7.11. Let η > 0 and 0 < Y ≤ X/12. If ∆ is given by (7.41),
then for some X1 satisfying

(7.45) 5X/6 ≤ X1 ≤ 2X

one has
P (η,X, Y )� I8(X1, Y,∆)� P (η,X1, Y ),

where I8(X1, Y,∆) is the number of integer solutions (g,h) of (7.39), (7.43)
and (7.44) satisfying both

(7.46)
∣∣∣

4∑

i=1

(g3/2
i − h3/2

i )
∣∣∣ ≤ ∆X3/2

1

and

(7.47) X1 < g1, h1, . . . , g4, h4 ≤ 2X1.

Proof. As the substitution (7.38) gives a one-to-one correspondence be-
tween the (p,k)’s and the (g,h)’s (see (7.6) and (7.23)), and since Y ≤
X/12, it follows that we may establish the claimed upper bound on
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P (η,X, Y ) by showing that, for some X1 satisfying (7.45), the number of in-
teger solutions (g,h) of (7.39), (7.40) and (7.42)–(7.44) is O(I8(X1, Y,∆)).
Since the Fourier transform of sinc2(x) = (sin(πx)/πx)2 equals Λ(x) =
max(0, 1− |x|), which is bounded below by 1/2 on the interval [−1/2, 1/2],
this number of integer solutions is a lower bound for the quantity

12∆
∞�

−∞

1�

0

1�

0

sinc2(6∆γ)S4(α, β, γ) dαdβ dγ,

where S(α, β, γ) is the sum
∑∑

5X/6<g,h≤13X/6
2Y <|g−h|≤4Y
h≡g (mod 2)

e(α(g2 − h2) + β(g − h) + γ((g/X)3/2 − (h/X)3/2)).

Therefore, the observations that sinc2(x) ≤ sinc2(x/n), for x ∈ R and n ∈ N,
and that

S(α, β, γ) =
12∑

m=5

Tm(α, β, γ1),

where γ1 = X−3/2γ and Tm(α, β, γ1) is the sum

[(m+1)X/6]∑

g=[mX/6]+1

∑

5X/6<h≤13X/6
2Y <|h−g|≤4Y
h≡g (mod 2)

e(α(g2 − h2) + β(g − h) + γ1(g3/2 − h3/2)),

show that a simple application of the Cauchy–Schwarz inequality enables us
to infer the existence of m ∈ {5, . . . , 12} for which

P (η,X, Y )� ∆

∞�

−∞

1�

0

1�

0

sinc2(∆γ/2)|Tm(α, β,X−3/2γ)|4 dα dβ dγ.

As |T |4 = T 2(T )2, the last quantity may be evaluated by multiplying out
the product of four sums (two Tm’s and two conjugate sums) and then in-
tegrating term by term. Providing the labelling of variables of summation
is done appropriately (with “g” and “h” exchanging places in the two con-
jugate sums), the result appears as a sum trivially bounded above by the
number of integer solutions (g,h) of (7.39), (7.43) and (7.44) satisfying

∣∣∣
4∑

i=1

(g3/2
i − h3/2

i )
∣∣∣ ≤ ∆

2
X3/2

and, for i = 1, . . . , 4,

max(5X/6,mX/6− 4Y ) < gi, hi ≤ (m+ 1)X/6 + 4Y.
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Since 1/2 < (5/6)3/2 and

(m+ 1)X/6 + 4Y
max(5X/6,mX/6− 4Y )

≤ m+ 3
max(5,m− 2)

≤ 2,

it follows that (7.46) and (7.47) hold with X1 = max(5X/6,mX/6 − 4Y )
(satisfying (7.45)). This completes the proof of the lemma’s upper bound
for P (η,X, Y ).

The upper bound claimed for I8(X1, Y,∆) follows directly from a reversal
of the substitutions (7.38). One only has to observe that Y ≤ X1/10 and
that, given (5.8), (7.23), (7.41) and (7.45), all except one of the required
conditions on (p,k) are consequences of (7.39), (7.43), (7.44), (7.46) and
(7.47). The single deficiency is that one obtains just Y < |λ1|, . . . , |λ4| ≤ 2Y
instead of the desired condition Y < l1, . . . , l4 ≤ 2Y . This is easily remedied,
since the equation λ1 + . . . + λ4 = 0 (which is (7.2)) enables us to deduce
from the bounds on the λi that exactly two of them are positive. There
are 6 possible cases (depending on which two of the four λi are positive).
For any one case there is a fixed permutation of the subscripts 1, . . . , 4
that, when applied to both λ1, . . . , λ4 and k1, . . . , k4, leads to the condition
Y < l1, . . . , l4 ≤ 2Y being recovered, but does not disturb any of the other
conditions. Therefore there are at most P (η,X1, Y ) solutions counted by
I8(X1, Y,∆) in each of the 6 cases, so the bound claimed for I8(X1, Y,∆) is
obtained and the proof of the lemma is complete.

The fact that (7.38) gives a correspondence that is both one-to-one and
onto implies that the partitioning of the set of (p,k) into equivalence classes
(families) by the relation (7.5) will carry over to the set of (g,h) counted
by I8(X1, Y,∆) in Lemma 7.11. The equivalence relation (7.5) holds if and
only if p′ = p and k′ − k lies on the diagonal of R4. Since translation of
k parallel to the diagonal of R4, with p = (l1, . . . , l4) = (λ1, λ2,−λ3,−λ4)
fixed, corresponds to translation of (g,h) parallel to the diagonal in R8 (see
(7.38)) it is clear that, as in [31], a family of the points (g,h) is a set of real
solutions of (7.39) of the form {(g1 + t, . . . , g4 + t, h1 + t, . . . , h4 + t) | t ∈ R}.
We follow [31] in defining a family to be trivial if and only if it contains (g,h)
such that the coordinates (g1, . . . , g4) of g are equal to some permutation of
those of h.

Lemma 7.12. Let X1, Y > 0. The number of trivial families containing
an integer solution (g,h) of (7.43) and (7.47) is O(X1Y

2).

Proof. First note that (7.43) and (7.47) do not have integer solutions
unless X1, Y > 1/4, so this may be assumed to hold.

Each of the families we are counting will contain a unique member
(g,h) ∈ Z8 such that h4 = 0. This member will satisfy (7.43) and, in place
of (7.47), the condition that max(|g1|, . . . , |g4|) ≤ X1 (as the family is trivial
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(h1, . . . , h4) will be a permutation of (g1, . . . , g4)). To count the families we
only have to count these members.

Since h4 = 0 the number of these members with max(|g1|, . . . , |g4|) ≤ 8Y
is O((min(X1, Y ))3) = O(X1Y

2). Suppose that there exists x ∈ {g1, . . . , g4}
with |x| > 8Y . Then {0, x} ⊆ {g1, . . . , g4} = {h1, . . . , h4}. It follows by
(7.43) that there exist y, z ∈ {g1, . . . , g4} with 2Y < |y − 0| ≤ 4Y and
2Y < |z − x| ≤ 4Y . Plainly 0 6= |y| ≤ 4Y , z 6= x and (since |x| > 8Y )
|z| > 8Y − 4Y = 4Y . The four numbers 0, x, y, z are distinct. It follows
that {g1, . . . , g4} = {h1, . . . , h4} = {0, x, y, z}. To complete the proof of the
lemma we have merely to observe that there are O(X1) choices for x with
|x| ≤ X1, then O(Y ) choices for y with |y| ≤ 4Y and O(Y ) choices for z with
|z − x| ≤ 4Y , followed by O(1) choices of two permutations of (0, x, y, z) to
form g and h.

Lemma 7.13. The number of families containing an integer solution of
(7.39), (7.43), (7.44) and (7.47) is O(X2

1Y
2).

Proof. We refer to the proof of the upper bound on I8(X1, Y,∆) in
Lemma 7.11, and to the comments which follow that proof, where it was
established that there is a 6-to-1 mapping from the set of integer solutions
(g,h) of (7.39), (7.43), (7.44) and (7.47) into the set of integer solutions
(p,k) of (7.2), (7.3) and (7.35). This mapping maps families to families
and, since one member of a family determines the whole family, it corre-
sponds to a 6-to-1 mapping from the set of families of points (g,h) into the
set of families of points (p,k). Therefore, by applying Lemmas 7.4–7.6, we
may conclude that the number of families containing an integer solution of
(7.39), (7.43), (7.44) and (7.47) is at most O(X1Y

2) + O(Y 3) + O(X2
1Y

2)
multiplied by 6. As one may assume that X1 ≥ Y + 1, the lemma follows.

Lemma 7.14. Let ∆,X1, Y > 0. Suppose that (g,h) is a member of a
non-trivial family F that contains µF integer solutions of (7.39), (7.43),
(7.46) and (7.47). Then at least one of the eight products

(g1 − hi) . . . (g4 − hi), (h1 − gi) . . . (h4 − gi) (i = 1, . . . , 4)

is non-zero, and either µF = O(1), or all these products are O(∆X5
1/µF).

Proof. The first assertion is taken from [31, Lemma 7]. To verify the sec-
ond assertion, we observe that, if µF is sufficiently large, then the argument
given as proof of [31, Theorem 1] shows that the conditions (3.6), (3.7) of
[31, Lemma 9] must hold with the H and δ there satisfying H = 2X1 and
δ � (X1/µF )∆ (see [31, page 139]). By [31, (3.5)] the last mentioned condi-
tions, taken with (7.39), permit the application of [31, Lemma 8] with the
parameters K,N, r there being given by K =

√
2X1, N = 4 and r = 2 (the

xi and yi there are of the form
√
gi + t or

√
hi + t). This yields the desired
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bound on (g1 − hi) . . . (g4 − hi) for i = 1, . . . , 4. The case of the other four
products follows by symmetry.

Lemma 7.15. Let u∈Z4 and i∈{1, 2, 3, 4} be given. The number of fam-
ilies of integer solutions (g,h) of (7.39) that have either (g1−hi, . . . , g4−hi),
or (h1 − gi, . . . , h4 − gi), equal to u does not exceed 12d∗(F (u)), where

d∗(n) =
{∑

d|n 1 if n 6= 0,

1 if n = 0,
and

F (u) = u2
1 + . . .+ u2

4 − u1u2 − u1u3 − u1u4 − u2u3 − u2u4 − u3u4.

Proof. This follows by using [31, Lemma 1] to count the number of
choices for the three not identically zero factors x1, x2, x3 either from the
expression (h1−hi) . . . (h4−hi), or from the expression (g1−gi) . . . (g4−gi).

Lemma 7.16. Let η > 0 and 0 < Y ≤ X/12. Then

P (η,X, Y )� X2Y 2 + ηX4Y log6(1 +X).

Proof. By Lemmas 7.11, 7.12 and the trivial upper bound, X1, for the
number of integer solutions of (7.47) lying in one family, we only have to
count the integer solutions of (7.39), (7.43), (7.44), (7.46) and (7.47) from
non-trivial families F (for a given X1 satisfying (7.45)). Let µF be as in
Lemma 7.14. By Lemma 7.13 there are at most O(X2

1Y
2) = O(X2Y 2)

integer solutions in those families with µF � 1, and all that remains is to
treat the cases where all the eight products in that lemma are O(∆X5

1/µF).
We may assume

(7.48) 0 6= (g1 − h4) . . . (g4 − h4)� ∆X5
1/µF ,

since the other seven cases are all similar. By (7.47) we may also assume
∆� 1 in (7.46).

Consider now the subcase where M ≤ µF < 2M , for some given M � 1.
By Lemma 7.15, (7.43) and (7.48), the number of such families is

(7.49) �
∑

06=u1u2u3�∆X5
1/MY

∑

|u4|�Y
d∗(F (u1, . . . , u4)).

We can divide this sum into O(log3 X1) sums of the form

(7.50)
∑

U1≤|u1|<2U1

. . .
∑

U4≤|u4|<2U4

d∗(F (u1, . . . , u4)),

where U4 � Y . Supposing that max(U1, . . . , U4) = Ui (say), it is a simple
exercise to show that, if Uj ≤ uj < 2Uj for j ∈ {1, 2, 3, 4}\{i}, then

∑

Ui≤|ui|<2Ui

d∗(F (u1, . . . , u4))� Ui log3 Ui.
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It follows that the sum (7.50) is O(U1 . . . U4 log3 X1). Summing this over
values of U1, . . . , U4 which are integer powers of 2 satisfying 1� U1U2U3 �
∆X5

1/MY and U4 � Y we find that the sum (7.49) is

�
∑

U4�Y

∑

1≤U1,U2�X1

∑

U3�∆X5
1/MY U1U2

U1 . . . U4 log3 X1

�
∑

1≤U1,U2�X1

∆X5
1

M
log3 X1 �

∆X5

M
log5 X.

Since each family contains less than 2M solutions, we conclude that there
are just O(∆X5 log5 X) solutions of (7.39), (7.43), (7.44), (7.46) and (7.47)
from the families with M ≤ µF < 2M . As ∆ = ηY/X in (7.41), and since
O(logX) intervals [M, 2M) are sufficient to cover the range [2,X1] for µF ,
we obtain the claimed result of the lemma.

The power of the logarithm in Lemma 7.16 can be halved, as was shown
(for Y � X) in [31]. We accept this small unnecessary loss as it is desirable
to have the simpler proof here, where it may serve as an uncomplicated
starting point for a useful generalisation (see Lemma 7.23 below).

The upper bounds of Lemmas 7.16 and 7.10 should be compared to the
lower bound

P (η,X, Y )� X2Y 2 + ηX3Y 2 = X2Y 2 +∆X4Y,

which is an easy corollary of the Cauchy–Schwarz inequality. The compari-
son makes it clear that Lemma 7.16 is only a bounded power of logX weaker
than the best-possible bound for the case ∆� Y 2/X3. The same observa-
tion holds true of Lemma 7.10 in respect of both the case where Y �

√
X

and the case where ∆� Y 3/X3. In the case that remains (complementary
to the union of the three just discussed) we shall apply the following lemma,
established in [33] by an argument involving an iteration adapted to the
conditions (7.39), (7.43), (7.46) and (7.47).

Lemma 7.17. Let η > 0,
√
X � Y ≤ X/12 and Y 2/X3 � ∆� Y 3/X3,

where ∆ = (Y/X)η (as in (7.41)). Then

P (η,X, Y )

� Xε min(X3/2Y 3 +∆1/3X2Y 3,∆X11/2/Y +∆X14/3Y 1/3) +X2Y 2.

Proof. This follows by way of Lemma 7.11 from [33, Theorem 1.1].

Lemma 7.18. Let ∆ = ΓL0/K0. Then

P (Γ,K0, L0)� K2
0L

2
0 log6 K0 +Kε

0 min(∆1/3K2
0L

3
0,∆K

14/3
0 L

1/3
0 )

+ ΓK3
0L

2
0 logK0 +Kε

0 min(K3/2
0 L3

0,∆K
11/2
0 L−1

0 )



362 N. Watt

with

(7.51) Γ �
(
Q

R

)2
r2

K0L0
, ∆ �

(
Q

R

)2
r2

K2
0
�
(
Qr

RK0

)2

� R2

N2 .

Proof. By (5.2) and (6.9), r ≥ 1, Q ≥ R and 16L0 ≤ K0, so it follows by
the discussion preceding Lemma 7.17 that we only have to consider the cases
where that lemma applies, with η = Γ , X = K0 and Y = L0. Examining
Lemma 7.17, we can observe that ∆X11/2Y −1 � X3/2Y 3 if and only if
∆ � (Y/X)4, and that the same is true of the inequality ∆X14/3Y 1/3 �
∆1/3X2Y 3. Therefore the bound claimed by this lemma follows from that
given by Lemma 7.17. The bounds given for Γ and ∆ in (7.51) are derived
from (7.31), (6.9) and (6.10).

Because of the cancellation from the character (see (7.24), (7.25)) we
can accept a weaker bound for P (Γ,K0, L0) than we can for P ∗r (Γ,K0, L0).
In order to bound the latter quantity effectively we shall need to use the
fact that, in light of (7.38) and the remarks around (7.22) and (7.23), an
integer solution (g,h) of (7.39) comes from an exceptional family if and
only if there exists a permutation a = (a1, . . . , a4) of (g1, . . . , g4) and a
permutation b = (b1, . . . , b4) of (h1, . . . , h4) such that (a,b) satisfies one of
the congruence conditions (7.18)–(7.21). These congruence conditions have
in common the property that, given any one solution (a,b), there is a union
of four or less residue classes modulo r that contains all the eight integers
a1, b1, . . . , a4, b4. It follows that g,h can come from an exceptional family
only if there exist u1, . . . , u4 ∈ {0, . . . , r − 1} and some pair of functions
s, t : {1, . . . , 4} → {1, . . . , 4} such that, for i = 1, . . . , 4,

(7.52) gi ≡ us(i) (mod r), hi ≡ ut(i) (mod r).

Therefore, appealing (as in the proof of Lemma 7.11) to the one-to-one
nature of the correspondence given by (7.38), one certainly has

P ∗r (η,X, Y ) ≤
r−1∑

u1=0

. . .

r−1∑

u4=0

∑

s,t

I∗8 (X,Y,∆; r,u, s, t)(7.53)

≤ 48 max
s,t

( r−1∑

u1=0

. . .
r−1∑

u4=0

I∗8 (X,Y,∆; r,u, s, t)
)
,

where I∗8 (X,Y,∆; r,u, s, t) is the number of integer solutions of (7.39), (7.40),
(7.42)–(7.44) and (7.52).

Lemma 7.19. Let η > 0 and 0 < Y ≤ X/12. If ∆ is as in (7.41), then
for some X1 satisfying (7.45),

P ∗r (η,X, Y )� r3I ′8(X1, Y,∆, r) + r2I ′′8 (X1, Y,∆, r),
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where I ′8(X1, Y,∆, r) is the number of integer solutions of (7.39), (7.43),
(7.44), (7.46) and (7.47) satisfying

(7.54) g1 ≡ h1 ≡ g2 ≡ h2 ≡ g3 ≡ h3 ≡ g4 ≡ h4 (mod r),

while I ′′8 (X1, Y,∆, r) counts the number of the same solutions that instead
satisfy

(7.55) g1 ≡ g2 ≡ h3 ≡ h4 6≡ h1 ≡ h2 ≡ g3 ≡ g4 (mod r).

Proof. Arguing as in the proof of Lemma 7.11, we find that the number
I∗8 (X,Y,∆; r,u, s, t) in (7.53) is a lower bound for

12∆
∞�

−∞

1�

0

1�

0

sinc2(6∆γ)
( 4∏

i=1

Si(α, β, γ)
)
dα dβ dγ,

where Si(α, β, γ) is similar to the sum S(α, β, γ) (from the proof of Lemma
7.11), the only difference being that, for Si(α, β, γ), there are two additional
conditions,

(7.56) g ≡ us(i) (mod r), h ≡ ut(i) (mod r),

further restricting summation over g and h. By the arithmetic-geometric
mean inequality,

4∏

i=1

|Si(α, β, γ)| ≤ 1
4

4∑

j=1

|Sj(α, β, γ)|4.

Using subdivision and the Cauchy–Schwarz inequality, as in the proof of
Lemma 7.11, one finds that

|Sj(α, β, γ)|4 ≤ 83
12∑

m=5

|Tj,m(α, β,X−3/2γ)|4,

where Tj,m(α, β, γ1) is the subsum of the sum Tm(α, β, γ1) (from the proof
of Lemma 7.11) in which the variables of summation, g, h, satisfy the extra
constraints in (7.56). Finally (see the proof of Lemma 7.11 again), for j =
1, . . . , 4 and m = 5, . . . , 12,

∆

∞�

−∞

1�

0

1�

0

sinc2(6∆γ)|Tj,m(α, β,X−3/2γ)|4 dα dβ dγ

≤ ∆
∞�

−∞

1�

0

1�

0

sinc2(∆γ/2)T 2
j,mT

2
j,m(α, β,X−3/2γ) dα dβ dγ

� I∼8 (X1,m, Y,∆; r, us(j), ut(j)),
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where X1,m = max(5X/6,mX/6− 4Y ) and I∼8 (X1, Y,∆; r, a, b) is the num-
ber of integer solutions of (7.39), (7.43), (7.44), (7.46) and (7.47) with

g1 ≡ g2 ≡ h3 ≡ h4 ≡ a (mod r), h1 ≡ h2 ≡ g3 ≡ g4 ≡ b (mod r).

Applying (7.53) and the last five inequalities in sequence, we find that there
exist functions s and t such that

P ∗r (η,X, Y )�
4∑

j=1

12∑

m=5

r−1∑

u1=0

. . .

r−1∑

u4=0

I∼8 (X1,m, Y,∆; r, us(j), ut(j)).

Therefore, for some σ, τ ∈ {1, . . . , 4} and some X1 ∈ [5X/6, 2X],

P ∗r (η,X, Y )�
r−1∑

u1=0

. . .
r−1∑

u4=0

I∼8 (X1, Y,∆; r, uσ, uτ )

=
{
r3∑

amod r I
∼
8 (X1, Y,∆; r, a, a) if σ = τ ,

r2∑
amod r

∑
bmod r I

∼
8 (X1, Y,∆; r, a, b) if σ 6= τ .

The lemma follows directly from this, as the single sum over a mod r above
is I ′8(X1, Y,∆, r), while the double sum over a mod r and b mod r is
I ′8(X1, Y,∆, r) + I ′′8 (X1, Y,∆, r).

Lemma 7.20. Let η > 0 and 0 < Y ≤ X/12. If ∆ is as in (7.41) and X1

as in (7.45), then

I ′8(X1, Y,∆, r)� P ′r(η,X1, Y ), I ′′8 (X1, Y,∆, r)� P ′′r (η,X1, Y ),

where P ′r(η,X, Y ) is the number of integer solutions (l1, . . . , l4, k1, . . . , k4)
= (p,k) (say) for (7.2), (7.3), (7.35) and (7.36) that , in addition, satisfy

(7.57) ki − k4 ≡ li ≡ 0 (mod r) (i = 1, . . . , 4),

while P ′′r (η,X, Y ) is the number of the same solutions that , in place of (7.57),
satisfy

(7.58) l21 ≡ . . . ≡ l24 6≡ 0 (mod r), k1 ≡ . . . ≡ k4 (mod r).

Proof. Since r is odd, reversing the substitution (7.38) in (7.54) yields
the conditions that λi ≡ 0 (mod r) (i = 1, . . . , 4) and k1 ≡ . . . ≡ k4 (mod r),
which (by (7.23)) imply (7.57). Similarly, reversing the substitution (7.38)
in (7.55) yields λ1 ≡ λ2 ≡ −λ3 ≡ −λ4 6≡ 0 (mod r) and k1 ≡ . . . ≡ k4

(mod r), which imply (7.58). As permutation of the subscripts 1, . . . , 4 does
not change the effect either of (7.57) or of (7.58), it follows that the same
argument as was used in the last paragraph of the proof given for Lemma
7.11 may be used here to establish 6-to-1 mappings that imply the claims
of this lemma.

Lemma 7.21. Let η > 0 and 0 < Y ≤ X1/10. Then

P ′r(η,X1, Y )� r−3X2
1Y

2 + rP (η,X1/r, Y/r).
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Proof. First note that, by (7.35) (with X = X1) and (7.57), it follows
that P ′r(η,X1, Y ) = 0 unless r ≤ 2Y . Since Y ≤ X1/10, we may therefore
assume that r ≤ X1/5.

By (7.35) (with X = X1) and (7.57), any family contributing to P ′r(η,
X1, Y ) contains some member (p,k) = (l1, . . . , l4, k1, . . . , k4) with k1 ≡
. . . ≡ k4 ≡ 0 (mod r) and 2X1 < k1, . . . , k4 ≤ 3X1 + 1 + r < 4X1. Given
that, put (p′,k′) = (p/r,k/r) ∈ Z4 × Z4 (see (7.57)). Then (7.2), (7.3)
and (7.35) will all hold with p, k, X and Y replaced by p′, k′, 2X1/r and
Y/r. The mapping from the family of (p,k) to the family of (p′,k′) is well-
defined and injective, so the number of families contributing to P ′r(η,X, Y )
does not exceed the number of families containing an integer solution of
(7.2), (7.3) and (7.35) with X and Y replaced by 2X1/r and Y/r, respec-
tively. By Lemmas 7.3–7.6, this number is O((2X1/r)(Y/r)2)+O((Y/r)3)+
O((2X1/r)2(Y/r)2) = O((X1/r)2(Y/r)2) = O(r−4X2

1Y
2).

Applying Lemma 7.2 with X = X1, θ = ηY
√
X1 and m = r, we find (see

(7.28), (7.29) and (5.8)) that the number of solutions of (7.35) and (7.36)
(with X = X1) that lie in any one family F is

µ(F) = rµr(F) +O(r),

where µr(F) is the number of those solutions that also satisfy k4 ≡ 0 (mod r)
(say). Summing over the relevant families F (see (7.57)) and applying our
bound from the last paragraph, we find that

P ′r(η,X1, Y ) = rP×r (η,X1, Y ) +O(r−3X2
1Y

2),

where P×r (η,X, Y ) is the number of integer solutions (l1, . . . , l4, k1, . . . , k4)
= (p,k) of (7.2), (7.3), (7.35) and (7.36) with ki ≡ li ≡ 0 (mod r) for i =
1, . . . , 4. Since (see (5.8)) all the conditions (7.2), (7.3), (7.35) and (7.36) are
homogeneous in k1, . . . , k4, l1, . . . , l4,X, Y , it follows that P×r (η,X1, Y ) =
P×1 (η,X1/r, Y/r) = P (η,X1/r, Y/r), and that our last approximate formula
is all that was claimed by the lemma.

Lemma 7.22. Let η > 0 and 0 < Y ≤ X1/12. Then

P ′r(η,X1, Y )� (r−3X2
1Y

2 + r−4ηX3
1Y

2) log(1 +X1/r)

+ r−4η1/2(X1Y )5/2 log7/2(1 +X1/r).

Proof. Since the lesser of the terms η(X1/r)4(Y/r) log6(1 + X1/r) and
(X1/r)(Y/r)4 log(1+X1/r) does not exceed the geometric mean, the bound
claimed by the lemma follows by Lemma 7.21 from whichever is the stronger
of the two Lemmas 7.10 and 7.16.

Lemma 7.23. Let ∆ > 0, X1 > 0 and Y � r. Then

I ′′8 (X1, Y,∆, r)� r−2X2
1Y

2 + r−3∆X5+ε
1 .



366 N. Watt

Proof. By (7.43) and (7.47), I ′′8 (X1, Y,∆, r) = 0 unless Y < X1/2. We
may therefore assume that X1 � Y � r.

It is evident from the proof of Lemma 7.12 that if a trivial family con-
tributes to I ′′8 (X1, Y,∆, r), then it contains a member (g,h) = (g1, . . . , g4,
h1, . . . , h4) with {g1, . . . , g4} = {h1, . . . , h4} = {0, x, y, z}, for some integers
x, y, z that are either all O(Y ), or satisfy the conditions that |x| ≤ X1 and
|y|, |z − x| ≤ 4Y . By (7.55), the elements of {0, x, y, z} coprime to r all
lie in the same residue class modulo r. Having chosen this reduced residue
class (O(r) choices), there then remain O((Y/r)3) + O((X1/r)(Y/r)2) =
O(r−3X1Y

2) choices for x, y, z, followed by just O(1) choices for (g,h).
Therefore at most O(r−2X1Y

2) trivial families contribute anything to
I ′′8 (X1, Y,∆, r), and their combined contribution is (trivially) a total of no
more than O(r−2X2

1Y
2) trivial integer solutions of (7.47).

Before proceeding further we need a bound on the total number of all
families that may contribute to I ′′8 (X1, Y,∆, r). Defining ki = (gi + hi)/2
(i = 1, . . . , 4), li = (gi − hi)/2 (i = 1, 2), and li = (hi − gi)/2 (i = 3, 4),
we set up a one-to-one correspondence between the integer solutions (g,h)
of (7.39) and (7.44) and the integer solutions (k, l) of [32, formulas (1),
(2)] (equations (7.2) and (7.3) in this paper). This also sets up a one-to-one
correspondence between families of (g,h)’s and families of (k, l)’s (where the
notion of a family is as defined in [32]), so it follows from (7.43), (7.47) and
(7.55) that the number of families contributing to I ′′8 (X1, Y,∆, r) is at most
the number of families of (k, l)’s containing at least one integer solution
of (7.2), (7.3) with X1 < ki ≤ 2X1 and Y < |li| ≤ 2Y (i = 1, . . . , 4),
k1 ≡ k2 ≡ k3 ≡ k4 (mod r) and l1 ≡ l2 ≡ l3 ≡ l4 (mod r) (r being odd). As
the last congruence implies that r|d = (k1−k4, k2−k4, k3−k4) it follows that
the same argument used in the proof of [32, Lemma 3] permits us to conclude
here that the relevant number of “non-trivial” (asymmetric) families is

�
∑

1≤d≤X1
d≡0 (mod r)

∑

1≤e<2Y

(
X1Y

de

)2

� r−2X2
1Y

2.

As for families of (k, l)’s that are trivial (in the sense of [32]), the proof of
[32, Lemma 1] makes it clear that the number of these families is at most
O(Y (Y/r)2 + (X1/r)Y (Y/r)) = O(r−2XY 2). Therefore the combined con-
tribution to I ′′8 (X1, Y,∆, r) from all the families F with µF (of Lemma 7.14)
bounded above by O(1) is just O(r−2X2

1Y
2).

We model the remainder of the proof on that of Lemma 7.16 (the ar-
gument from around (7.48) onwards). It suffices to consider the single case
represented by (7.48), since neither it nor any of the seven alternative cases
holds any special position in relation to the congruence conditions (7.55).
We obtain a bound similar to (7.49), differing only in that there are extra
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congruence conditions, u1 ≡ u2 ≡ 0 6≡ u3 ≡ u4 (mod r), for the summation
on the right of (7.49). It therefore suffices to bound sums similar to (7.50),
but with u1, . . . , u4 there also subject to the additional congruence condi-
tions just mentioned. Noting the definitions made in Lemma 7.15, we have
a crude uniform bound, d∗(F (u1, . . . , u4)) = O(Xε/2

1 ), for each term of the
relevant subsum of (7.50). After employing this bound it becomes possible
to use the extra congruence conditions to save by a factor of r in respect
of each one of the first two summations shown in (7.50), and also (since
Y � r) in respect of the last summation over u4 � Y there. As a result
we find that the non-trivial families F with µF � 1 contribute altogether
at most O(Xε/2

1 r−3∆X5
1 log3 X1) = O(r−3∆X5+ε

1 ) to the number of integer
solutions counted by I ′′8 (X1, Y,∆, r). In light of the earlier bounds for cases
with F trivial or µF = O(1), the lemma is proved.

The one substantial task remaining, before we can bring our work in this
section to its conclusion, is the generalisation of Lemma 7.10 so as to pro-
vide a good bound for P ′′r (η,X, Y ) (and therefore also for I ′′8 (X,Y,∆, r))
of Lemma 7.20. By (7.58), we need only consider the integer solutions
(p,k) = (l1, . . . , l4, k1, . . . , k4) of (7.2), (7.3), (7.35) and (7.36) that satisfy

(7.59) k1 ≡ . . . ≡ k4 (mod r)

and, for some c ∈ {−1, 1}4 and some integer b 6≡ 0 (mod r),

(7.60) li ≡ cib (mod r) (i = 1, . . . , 4).

We shall say that a family of solutions of (7.2) and (7.3) is “congruent
modulo r” if and only if its members (p,k) have p = (l1, . . . , l4) satisfying
(7.60) for some c ∈ {−1, 1}4 and some integer b 6≡ 0 (mod r). Therefore what
we seek is an upper bound for the number of integer solutions (p,k) of (7.2),
(7.3), (7.35), (7.36) and (7.59) from families that are congruent modulo r. By
definition no family is congruent modulo 1, so whenever families congruent
modulo r are discussed there is an implicit assumption that r is an odd
prime.

Since (7.60) is unchanged if c and b are replaced by −c and −b it follows
that we may assume always that c1 = 1. Furthermore, by (7.2) and (7.60)
it follows that c ∈ {−1, 1}4 must satisfy c1 + c2 ≡ c3 + c4 (mod r) and, since
r is an odd prime, this implies that

(7.61) c1 + c2 = c3 + c4.

Therefore, for any family which is congruent modulo r, p = (l1, . . . , l4) will
satisfy (7.60) for some integer b 6≡ 0 (mod r), with either c = (1, 1, 1, 1), or
c = (1,−1, 1,−1), or c = (1,−1,−1, 1).

In addition to the totally symmetric and semi-symmetric families (de-
fined earlier in this section), we shall find it useful to reserve a special name
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for families congruent modulo r whose members (p,k) satisfy

(7.62) c1k1 + c2k2 = c3k3 + c4k4,

where c is the same as in (7.60) and (7.61): these families are “singularly
congruent modulo r”. The families which are congruent modulo r but whose
members do not satisfy (7.62) are “non-singularly congruent modulo r”.

Lemma 7.24. Let η > 0 and 0 < Y ≤ X/4. Then

P ′′r (η,X, Y ) ≤ B′′r (η +O(Y 2/X2),X, Y ),

where B′′r (δ,X, Y ) is the number of integer solutions (p,k) of (7.2), (7.3),
(7.35), (7.37) and (7.59) belonging to families that are congruent modulo r.

Proof. This follows from the above discussion and the argument given
as proof of Lemma 7.8.

For our treatment of the families non-singularly congruent modulo r we
shall follow the approach used in [32]. As in [32, formula (8)], we note that
(7.2) and (7.3) imply

(7.63) u1l1 + u2l2 = u3l3,

where ui = ki − k4 (i = 1, 2, 3), so that u1, u2, u3 are constants of the
family. We also follow [32] in writing l = (l1, l2, l3), u = (u1, u2, u3), while
d = (u1, u2, u3) and e = (l1, l2, l3) denote the relevant greatest common
divisors. As in [32], a family is “primitive” if and only if it contains integer
solutions of (7.2) and (7.3) satisfying the condition d = e = 1 (such families
become important after Lemma 7.28 below).

As we shall be referring often to [32] it is important to reemphasise one
discontinuity in terminology, which is that the families referred to in [32]
as “trivial” are here referred to as “symmetric”, so that the families here
termed “asymmetric” would be “non-trivial” in [32].

Lemma 7.25. Let X,Y > 0. For an asymmetric family that is non-
singularly congruent modulo r and contains an integer solution of (7.2),
(7.3) and (7.35), the greatest common divisors d and e defined above must
satisfy

1 ≤ d < 6X/r, 1 ≤ e ≤ 4Y/r, (e, r) = 1.

To any given pair d, e, there correspond no more than O(r−1(XY/de)2) fam-
ilies.

Proof. As a first step we shall establish the constraints on e = (l1, l2, l3).
The congruences (7.60) imply that (e, r) = 1 and that li/e ≡ cibe (mod r)
for i = 1, . . . , 4. As c ∈ {−1, 1}4 it follows that cili/e ≡ cjlj/e (mod r)
for 1 ≤ i < j ≤ 4, and therefore that, for j = 2, 3, 4, we have mj =
(c1l1 − cjlj)/er ∈ Z. If there exists j ∈ {2, 3, 4} for which cj = −1, then,
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since c1 = 1, it follows from (7.35) that the integer mj must lie in the
interval (2Y/er, 4Y/er], so that we must have 4Y/er ≥ 1. If on the other
hand c = (1, 1, 1, 1), then we find from (7.35) that |mj| < Y/er for j = 2, 3, 4,
so that either Y/er > 1 or m2 = m3 = m4 = 0. The latter eventuality can
be ruled out, since it would imply that l1 = . . . = l4 > Y , leading, by
way of (7.3), to the contradictory conclusion that a family, supposed to be
non-singularly congruent modulo r, has members that satisfy (7.62) for the
same c as in (7.60). We conclude that either 4Y/er ≥ 1, or Y/er > 1, so
that, in any event, e ≤ 4Y/r.

To bound the number of families, for given d, e, we shall follow the
proof of [32, Lemma 3], which considers the case where U ≤ |u| < 2U
for given U . It is shown there that, if U/d ≤ Y/e, then, given u, there are
O((Y/e)2/(U/d)) choices for l, while, if U/d > Y/e and l is given, then
there are O((U/d)2/(Y/e)) choices for u pertaining to asymmetric families.
We shall not improve these bounds. Instead we shall use the property of
“congruence modulo r” to cut down on the number of choices for whichever
one of u, l is to be chosen first. We shall assume that c, satisfying (7.61),
has already been chosen.

Since (e, r) = 1, the congruences (7.60) imply that the choice of l1 com-
pletely determines the residue classes of l2/e and l3/e modulo r. The number
of choices for l (when u is not given) is therefore at most

O((Y/e)(Y/re)2) = O(r−2(Y/e)3).

Now consider the choice of u when l is not given. We may observe that
(7.3) implies l1(u1/d) + l2(u2/d) = l3(u3/d), which, together with (7.60),
goes to show that

(7.64) c1(u1/d) + c2(u2/d) ≡ c3(u3/d) (mod r).

If it were the case that d ≥ 2
√

3U/r, then the bound

|c1(u1/d) + c2(u2/d)− c3(u3/d)| ≤
√

3 |u|/d < 2
√

3U/d

would now imply c1u1+c2u2−c3u3 = 0. This, however, would imply that the
family is singularly congruent modulo r (see (7.61) and (7.62)), contradicting
the hypotheses of the lemma. Therefore we conclude that, of necessity, d <
2
√

3U/r, which, together with the bounds |ui| < X (i = 1, 2, 3) from (7.35),
leads us to a confirmation of the lemma’s claim that d < 6X/r. Moreover, as
we found U � rd, so it follows from the congruence (7.64) that the number
of choices for u is at most O((U/d)2(U/rd)) = O(r−1(U/d)3).

In conclusion, when U/d ≤ Y/e the number of families is at most
O(r−1(U/d)3(Y/e)2/(U/d)) = O(r−1(U/d)2(Y/e)2), while, for U/d > Y/e,
it is at most O(r−2(Y/e)3(U/d)2/(Y/e)) = O(r−2(U/d)2(Y/e)2). Since there
were just three choices for c, the lemma follows from the last two bounds



370 N. Watt

applied to all the cases where U is an integer power of 2 satisfying rd/2
√

3 <
U <

√
3X.

Lemma 7.26. Let δ > 0 and let X ≥ Y ≥ r. Then the number of
families that are singularly congruent modulo r and contain an integer
solution (p,k) of (7.2), (7.3), (7.35), (7.37) and (7.59) is not more than
O(r−2XY (Y + δX) log(2 +X/r)).

Proof. Any such family must contain some member (p,k∗) with k∗1 ≡
. . . ≡ k∗4 ≡ 0 (mod r),

(7.65) 3X < k∗1 , . . . , k
∗
4 ≤ 4X + 1 + r, Y < l1, . . . , l4 ≤ 2Y.

By (7.60) it follows that p = (l1, . . . , l4) and k∗ here are given by

(7.66) li = rl′i + cib, k∗i = rk′i (i = 1, . . . , 4),

where c ∈ {−1, 1}4 satisfies (7.61), (l′1, . . . , l
′
4) = p′ ∈ Z4, (k′1, . . . , k

′
4) =

k′ ∈ Z4 and b is an integer satisfying 0 < |b| ≤ (r − 1)/2. It will suffice
to count how many families there can be for a given choice of c and b, so,
in what follows, we shall assume that the values of b and c1, . . . , c4 have
already been chosen.

As (p,k∗) comes from a singularly congruent family modulo r, it follows
that k∗ must satisfy the analog of (7.62). This, together with (7.61) and
(7.66), means that the analogs of (7.2) and (7.3) for p and k∗ imply the
analogs of (7.2) and (7.3) for p′ and k′. For given c and b, the mapping from
the family of (p,k∗) to the family of (p′,k′) is well-defined and injective. It
therefore suffices to bound the number of choices for the latter family. To
this end we observe that, since X,Y ≥ r, the conditions (7.65) and (7.66)
imply that

(7.67) Y/2r < l′i ≤ 5Y/2r, 3X/r < k′i ≤ 6X/r (i = 1, . . . , 4).

By (7.66), the analog of (7.62) for k′ will hold. Therefore, it follows by (7.61)
that

(7.68) c1u
′
1 + c2u

′
2 = c3u

′
3,

where u′i = k′i−k′4 (i = 1, 2, 3). Likewise, it follows from the analogs of (7.2)
and (7.3) for p′ and k′ that l′1u

′
1 + l′2u

′
2 = l′3u

′
3. Assuming (as we may) that

c1 = 1, the elimination, through (7.68), of u′1 from the last equation reveals
that a1b1 = a2b2, where

(7.69) a = (l′2 − c2l′1, l′3 − c3l′1), b = (u′2, u
′
3).

Let us consider first the case where a,b 6= 0. In this case either a1/a2 =
b2/b1 or a2/a1 = b1/b2. As both eventualities represent similar subcases,
we shall assume the former. Let α = (a1, a2) and β = (b1, b2) (greatest
common divisors). Then a′1/a

′
2 = b′2/b

′
1 with a′ = a/α, b′ = b/β and

(a′1, a
′
2) = (b′1, b

′
2) = 1, so that a′ = ±(b′2, b

′
1) (equivalently b′ = ±(a′2, a

′
1)).
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In light of this, and recalling (7.67), (7.69) and the definitions under (7.68),
we find that 0 6= |a′| = |b′| � min(Y/rα,X/rβ) and that the number of
choices for a and b is

�
∑

1≤α�Y/r

∑

1≤β�X/r
min

((
Y/r

α

)2

,

(
X/r

β

)2)
� XY

r2 log
(

2 +
Y

r

)
.

Once a and b are chosen, then, by (7.69) and (7.68), each of u′2, u′3 and u′1
is known. There will remain just O(Y/r) available choices for l′1 satisfying
(7.67). Given a, b and l′1, the values of l′2, l′3 and l′4 can be found from
(7.69) and the analog of (7.2), thereby determining the family of (p′,k′)
completely. We conclude that at most O((X/r)(Y/r)2 log(2 +Y/r)) families
belong in the case we have been discussing.

Now consider the case where b = 0. Here (7.68) and (7.69) show that
u′1 = u′2 = u′3 = 0, so it follows that the family is either semi-symmetric,
or totally symmetric (see Lemma 7.3). As the proofs of Lemmas 7.4 and
7.5 are easily adapted to work with (7.67) rather than an exact analog of
(7.35), so we may conclude that this case (where b = 0) covers at most
O((X/r)(Y/r)2) +O((Y/r)3) families.

Finally, consider the case where a = 0. By (7.69) and (7.67), this case
can only occur when c2, c3 > 0. By (7.61) and the remarks following it we
conclude that ci = 1 for i = 1, . . . , 4. By (7.69) and the analog of (7.2)
it follows that l′1, . . . , l

′
4 are all equal. The last two deductions, together

with (7.66), show that l1 = . . . = l4 ≡ b (mod r). It is given us by the
lemma that the family of (p,k∗) contains another integer member (p,k),
which is a solution of (7.35) and (7.37), as well as (7.2), (7.3) and (7.59).
Since p = (l1, . . . , l4) is a multiple of (1, . . . , 1), we have it by (7.35), (7.37)
and (7.3) that the k here satisfies k1 + k2 = k3 + k4 and |

√
k1 +

√
k2 −√

k3 −
√
k4| < δ

√
X. Comparing the expansions of (x−

√
k1)(x−

√
k2) and

(x−
√
k3)(x−

√
k4) at x =

√
k4, one deduces, by way of (7.35), (7.59) and the

above conditions, that u = (k1 − k4, k2 − k4, k3 − k4) satisfies u1u2 � δX2,
u3 = u1 + u2 � X and u1, u2, u3 ≡ 0 (mod r). Since X � r, the number of
choices for u is at most O(X/r) + O(δ(X/r)2 log(2 + X/r)). Since Y � r,
there are also at most O(Y/r) choices for p = l(1, . . . , 1) with Y < l ≤ 2Y
and l ≡ b (mod r). We conclude that there are at most O((X/r)(Y/r)) +
O(δ(X/r)2(Y/r) log(2 + X/r)) families belonging in the final one of our
three cases. Note that, since Y/r � 1, the first O-term in our last bound is
dominated by terms in the bounds for the previous two cases.

Collecting the results from the three cases considered, eliminating re-
dundant terms, and noting that there were only O(r) choices available for
the b and c that we have taken as given, we arrive at the bound claimed by
the lemma.
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Lemma 7.27. Let X ≥ Y ≥ r. The number of symmetric families that
are congruent modulo r and contain an integer solution (p,k) of (7.2), (7.3),
(7.35) and (7.59) is O(r−2XY 2).

Proof. Such a family will contain a unique member (p,k∗) satisfying
analogs of (7.2), (7.3), and with 0 = k∗1 ≡ . . . ≡ k∗4 (mod r), l21 ≡ . . . ≡ l24 6≡ 0
(mod r), |k∗i | < X and Y < li ≤ 2Y , for i = 1, . . . , 4. Since the member
determines the family, it suffices to bound the number of such (p,k∗).

If the family is totally symmetric, then we have O(X/r) choices for k∗2 ,
then O(Y ) choices for l1, followed by O(Y/r) choices for l2, then O(1) choices
for k∗3 , l3, k∗4 and l4 as in Lemma 7.3(i). It follows that there are at most
O(XY 2/r2) such totally symmetric families.

If the family is semi-symmetric, then 0 = k∗1 = . . . = k∗4 , and, by
(7.2) and the bounds and congruence conditions for l1, . . . , l4, there are just
O(Y (Y/r)2) choices for p = (l1, . . . , l4), and (therefore) for the family.

As Y ≤ X, the lemma follows from our bounds in the two cases.

Two concepts found useful in [32] are “renumbering” and “orderedness”.
They help to reduce the number of cases that need to be considered.

A “renumbering” is a permutation of the subscripts 1, . . . , 4 that fixes
the set of sets {{1, 2}, {3, 4}}. Note that conditions (7.2), (7.3), (7.35), (7.37)
and (7.59)–(7.62) are invariant under the action of the group of 8 renum-
berings (it being assumed that the same renumbering is applied to each of
c = (c1, . . . , c4), p = (l1, . . . , l4) and k = (k1, . . . , k4)). The invariance of
(7.60)–(7.62) under renumbering implies that the property of being non-
singularly congruent modulo r is conserved when a family is transformed
by any renumbering acting upon its members. Although renumbering may
change c, it remains an element of {−1, 1}4 satisfying (7.61) so we may con-
tinue to assume that c takes one of the three forms given under (7.61) (if
c1 = −1 replace b and c in (7.60)–(7.62) by −b and −c).

The family of (p,k) is “ordered” if and only if u1, u2, u3 in (7.63) satisfy
either 0 ≤ u2 ≤ u1, u3, or u1, u3 ≤ u2 ≤ 0. It is shown in [32, Lemma 2] that
every integer solution of (7.2), (7.3), (7.35) and (7.37) from an asymmetric
family is a renumbering of one which is from an ordered asymmetric family,
and that the correspondence is at most 8-to-1.

A third piece of terminology from [32] is “stability”. A solution, (p,k) =
(p∗,k∗) (say), for (7.2), (7.3), (7.35) and (7.37) is “stable” if and only if
(p,k) = (p∗,k∗+ t(1, . . . , 1)) represents a solution of both (7.35) and (7.37)
for all t ∈ (−1/2, 1/2) (not just at t = 0).

After the next lemma it will be important to establish a good upper
bound on how many of the stable integer solutions (p,k) of (7.2), (7.3),
(7.35) and (7.37) are members of families that are (simultaneously) primi-
tive, ordered, asymmetric and non-singularly congruent modulo r: whatever
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the exact number of these solutions may be, we are momentarily content
just to denote it by B+

r (δ,X, Y ).

Lemma 7.28. Let δ > 0 and X ≥ Y ≥ r. Then

B′′r (δ,X, Y )� r−2(X2Y 2 + δX3Y ) log(2 +X/r)

+
∑

1≤d<6X/r
d≡0 (mod r)

∑

1≤e≤4Y/r
(e,r)=1

B+
r (O(δ),X/d, Y/e)d.

Proof. As no family can contain more than X integer solutions of (7.35),
it follows from Lemmas 7.26 and 7.27 that the contribution from families
which are either symmetric or singularly congruent modulo r is covered by
the first term in the upper bound of the lemma. Therefore, and by the dis-
cussion preceding the lemma, it will suffice to bound the contribution to
B′′r (δ,X, Y ) from the ordered asymmetric families that are non-singularly
congruent modulo r. Given d, e ∈ N, let B×r (δ,X, Y ; d, e) stand for how
much (in absolute terms) of this last contribution arises from families with
(u1, u2, u3) = d and (l1, l2, l3) = e, where ui = ki − k4, as in (7.63). To
bound B×r (δ,X, Y ; d, e) we apply essentially the argument used in the proof
of [32, Lemma 4], but with Lemma 7.25 replacing [32, Lemma 3] in the
penultimate step. This gives B×r (δ,X, Y ; d, e) ≤ B+

r (O(δ),X/d, Y/e)d +
O(r−1X2Y 2/de2).

Since (7.59) implies ui ≡ 0 (mod r) for i = 1, 2, 3, we have d ≡ 0 (mod r),
as well as all the other conditions that d, e are known to satisfy (after Lemma
7.25). The constraint (e, r) = 1, in particular, plays a rôle in establishing
the last bound for B×r (δ,X, Y ; d, e), since it facilitates our adaptation of
the proof of [32, Lemma 4] by permitting us to show that (p/e,k/d) is
from a non-singularly congruent family modulo r if (p,k) is (see (7.60) and
(7.62)). Given its hypotheses, the lemma follows by summing the bound for
B×r (δ,X, Y ; d, e) over the available choices for d, e.

Lemma 7.29. Let δ > 0 and X,Y � r. Then

B+
r (δ,X, Y )� r−1X2Y 2 + r−1δX3Y 2 log2(1 +XY ).

Proof. This is, more or less, a generalisation of the first half of the The-
orem in [32], the proof of which is divided between [32, Lemma 7] and [32,
Lemma 8].

The proofs given in [32] for those lemmas are an essential reference for our
proof here. They succeed by dividing into cases and employing the results
of [32, Lemma 5] to bound the total number of choices for the pair of u, l
from (7.63), subject to certain conditions (determined by the case): this
number being itself a bound for the number of families pertinent to the
case. Each case depends on a pair of parameters, U,W , which are assumed
to be integer powers of 2 lying in the interval [1,X] and satisfying (at least)
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W � U . Given U,W , the case is determined by a set of conditions which (it
turns out) always imply |u1|, |u3| � U , |u1 − u3| � W and u2 � W . In the
proof of [32, Lemma 7] one has UW � δX2, and the bound for F (U,W ),
the number of families in the case, is whichever one is the lesser of the two
sums:

S(∆,U ;Y ) =
∑

l1,l2,l3�Y
(d(l3) +∆U2σ(l3))

with ∆ = 2W/U , and

S⊥(∆,Y ;U,W ) =
∑

|u1|,|u3|�U, |u2|�W
|u1−u3|�W

(d(|u3|) +∆Y 2σ(|u3|)/u2
3)

with∆ = 3/2. Apart from new choices for∆’s, the situation in [32, Lemma 8]
is similar, but UW � δX2, and S(∆,U ;Y ) becomes S′(∆,U,W, Y ), by
virtue of an extra condition 0 < l3 − l1 � (W/U)Y constraining the sum-
mation. Another difference (only important later) is that one actually has
|u2| �W in all cases relevant to [32, Lemma 8].

The sums we have to consider here are the subsums Sr(∆,U ;Y ),
S′r(∆,U,W, Y ) and S⊥r (∆,Y ;U,W ) of S(∆,U ;Y ), S′(∆,U,W, Y ) and
S⊥(∆,Y ;U,W ), respectively, where the former sums differ from the lat-
ter only in that the summations are made additionally contingent upon
compatibility of the variable of summation (u or l) with its supposed rôle
as one “half” of an integer solution (u, l) for (7.63) determining a family
of solutions of (7.2), (7.3) that is non-singularly congruent modulo r. Re-
call that a family is non-singularly congruent modulo r if and only if its
members (p,k) satisfy (7.60), with some b, c as described there, and do
not satisfy (7.62) (with the same c). Therefore, by (7.60) it follows that in
Sr(∆,U ;Y ) and S′r(∆,U,W, Y ) one must sum only over l that are solutions
of c1l1 ≡ c2l2 ≡ c3l3 6≡ 0 (mod r), so that lj ≡ ±l1 (mod r) for j = 2, 3. On
the other hand, it follows from (7.60) and (7.63) that u in S⊥r (∆,Y ;U,W )
must satisfy c1u1 + c2u2 ≡ c3u3 (mod r). As (7.62) must not hold, it follows
by (7.61) that one cannot have c1u1 + c2u2 = c3u3 in S⊥r (∆,Y ;U,W ).

Using the bounds d(n) = O(nε), σ(n) = O(n log(1 + n)) and Y ≥ r, it
is a trivial matter to show

Sr(∆,U ;Y )� (Y ε +∆U2Y −1 log(1 + Y ))Y (Y/r)2(7.70)

� r−2(Y 3+ε +∆U2Y 2 log(1 + Y )),

S′r(∆,U,W, Y )� (Y ε +∆U2Y −1 log(1 + Y ))(W/U)Y 3/r(7.71)

� r−1(U−1WY 3+ε +∆UWY 2 log(1 + Y ))

and
S⊥r (∆,Y ;U,W )� (Uε +∆Y 2U−1 log(2 + U))Tr(U,W ),
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where Tr(U,W ) is the number of u ∈ Z3 satisfying the conditions

|u1|, |u3| � U, u2 �W, |u1 − u3| �W,
0 6= c1u1 + c2u2 − c3u3 ≡ 0 (mod r).

In order to bound Tr(U,W ) we note that (c1u1+c2u2−c3u3)/r = m (say)
is restricted to non-zero integer values. Recall that c2, c3 ∈ {−1, 1}, and we
may assume c1 = 1. Hence, if c3 = 1, then |m| ≤ (|u1−u3|+ |u2|)/r �W/r,
while if c3 = −1, then |m| ≤ (|u1|+ |u2|+ |u3|)/r � (U +W )/r � U/r and
|u1 − rm/2| = |u1 − u2 − u3|/2 ≤ |u1 − u3|+ |u2| � W . In the former case
we have O(W/r) choices for m, O(U) independent choices for u1 and O(W )
independent choices for u2; u3 is then determined by c3u3 = c1u1+c2u2−rm.
In the latter case we have O(U/r) choices for m, then O(W ) choices for u1

(sufficiently near rm/2), followed by O(W ) independent choices for u2. In
any event, we find that Tr(U,W ) = O(UW 2/r) and so

S⊥r (∆,Y ;U,W )� (Uε +∆Y 2U−1 log(2 + U))UW 2/r(7.72)

� r−1(U1+εW 2 +∆Y 2W 2 log(2 + U)).

By (7.70) and (7.72), the number of families in the case considered in
the proof of [32, Lemma 7] is

Fr(U,W )� min(Sr(2W/U,U ;Y ), S⊥r (3/2, Y ;U,W ))(7.73)

� min(r−2(Y 3+ε + UWY 2 log(1 + Y )),

r−1(U1+εW 2 +W 2Y 2 log(2 + U)))

� r−1UWY 2 log(1 +XY ) + r−1 min(Y 3+ε, U1+εW 2)

� r−1UWY 2 log(1 +XY ),

where the last step follows on noting that

min(Y 3+ε, U1+εW 2) < min(Y 4, U2W 2)�
√
Y 4U2W 2 = UWY 2

(we may assume that 0 < ε < 1/3). By (7.71) and (7.72), the number of
families in the case considered in the proof of [32, Lemma 8] is

(7.74) F ′r(U,W )

� min
(
S′r

(
δX2

U2 +
W

X
,U,W, Y

)
, S⊥r

(
δX2

UW
+
U

X
,Y ;U,W

))

� r−1 min
(
W

U
Y 3+ε +

W

U

(
δX2

U2 +
W

X

)
U2Y 2 log(1 + Y ),

U1+εW 2 +
(
δX2

UW
+
U

X

)
W 2Y 2 log(U + 2)

)
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� r−1 min
(
W

U
Y 3+ε +

(
W

U
δX2Y 2 + UW 2 Y

2

X

)
log(1 + Y ),

U1+εW 2 +
(
W

U
δX2Y 2 + UW 2 Y

2

X

)
log(1 + U)

)

� r−1 W

U
δX2Y 2 log(1 +XY ) + r−1UW 2 Y

2

X
log(1 +XY )

+ r−1 min
(
W

U
Y 3+ε, U1+εW 2

)

� r−1 W

U
δX2Y 2 log(1 +XY ) + r−1UW 2 Y

2

X
log(1 +XY )

+ r−1 W

U
U1/9X8/9Y 2,

where the last step is justified by the observation that either U 1+εW 2 ≤
UW 2Y 2/X, or Y 2 < UεX, which would imply that Y � X(1+ε)/2 < X2/3

and (therefore) that (W/U)Y 3+ε � (W/U)Y 2Y 4/3 � (W/U)Y 2X8/9 �
(W/U)U1/9X8/9Y 2.

By (7.35) and [32, Lemma 6], each family has at most O(X) integer
members, and, if u1u2u3 6= 0, then at most O(δX4/|u1u2u3|) are stable
solutions of (7.2), (7.3), (7.35) and (7.37). As in [32] we use only the former
of these two bounds for cases in the proof of [32, Lemma 7], but choose
between them for cases in the proof of [32, Lemma 8], where one actually
has |u2| � W as well as |u1|, |u3| � U . In light of (7.73) and (7.74) we find
that, regarding the above two sorts of case, there are the two respective
upper bounds of

O(r−1UWXY 2 log(1 +XY ))

and
O

(
r−1 W

U
δX3Y 2 log(1 +XY ) + r−1 W

U
U1/9X17/9Y 2

)

for the number of stable integer solutions (p,k) of (7.2), (7.3), (7.35) and
(7.37) that are members of families simultaneously primitive, ordered, asym-
metric and non-singularly congruent modulo r. Summing these bounds,
with U,W running over integer powers of 2 satisfying UW � δX2 in re-
spect of the former bound, but UW � δX2 in respect of the latter (and
1�W � U � X in respect of both), one finds that the result is the upper
bound given for B+

r (δ,X, Y ) by the lemma. Since it was shown in [32] that
all contributing cases are covered in the last summation, we conclude that
the lemma is proved.

Lemma 7.30. Let δ > 0 and X ≥ Y ≥ r. Then

B′′r (δ,X, Y )� r−2X2Y 2 log(1 +X/r) + r−3δX3Y 2 log2(1 +X).
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Proof. The bound can be obtained by applying Lemma 7.29 to bound
the terms of the sum in the bound for B′′r (δ,X, Y ) given by Lemma 7.28.
After carrying out the relevant summations over d, e, one only has to note
that r−2δX3Y ≤ r−2δX3Y (Y/r) = r−2δX3Y 2.

Lemma 7.31. Let η > 0 and r ≤ Y ≤ X1/4. Then

P ′′r (η,X1, Y )� r−2X2
1Y

2 log(1 +X1/r)

+ r−3ηX3
1Y

2 log2(1 +X1) + r−3X1Y
4 log2(1 +X1).

Proof. This bound follows by applying Lemma 7.30, with X = X1 and
δ = η +O(Y 2/X2

1 ), in order to bound the bound given for P ′′r (η,X1, Y ) by
Lemma 7.24.

Lemma 7.32. Let η > 0 and r ≤ Y ≤ X/16. If ∆ is as in (7.41) and X1

as in (7.45), then

I ′8(X1, Y,∆, r)� (r−3X2
1Y

2 + r−4∆X4
1Y ) log(X1/r)

+ r−4∆1/2X3
1Y

2 log7/2(X1/r),

I ′′8 (X1, Y,∆, r)� r−2X2
1Y

2 log(X1/r) + r−3∆X4
1Y log2(X1)

+ r−3Xε
1 min(∆X5

1 ,X1Y
4).

Proof. Note first that conditions (7.41) and (7.45) imply X1 � X, η �
(X1/Y )∆ and (since Y ≤ X/16) Y ≤ 6X1/80 < X1/12. Therefore the
lemma’s claim concerning I ′8(X1, Y,∆, r) follows by Lemmas 7.20 and 7.22,
while out of Lemmas 7.23, 7.20 and 7.31 comes the bound

I ′′8 (X1, Y,∆, r)� r−2X2
1Y

2 log(X1/r)

+ r−3 min(∆X5+ε
1 , (∆X4

1Y +X1Y
4) log2(X1)),

which contains the lemma’s second claim.

Lemma 7.33. Let η > 0 and r ≤ Y ≤ X/16. Then

P ∗r (η,X, Y )� X2Y 2 log(X/r) + r−1η1/2X5/2Y 5/2 log7/2(X/r)

+ r−1ηX3Y 2 log2 X + r−1Xε min(ηX4Y,XY 4).

Proof. The consecutive application of Lemmas 7.19 and both parts of
Lemma 7.32 produces the bound

P ∗r (η,X, Y )� X2
1Y

2 log(1 +X1/r) + r−1∆1/2X3
1Y

2 log7/2(1 +X1/r)

+ r−1∆X4
1Y log2(1 +X1) + r−1Xε

1 min(∆X5
1 ,X1Y

4),

where ∆ and X1 are as in (7.41) and (7.45). This is, give or take a bounded
factor, just what the lemma claims.

Lemma 7.34.

P ∗r (Γ,K0, L0)� Q

R
K2

0L
2
0 log7/2 K0 + r−1Kε

0 min(ΓK4
0L0,K0L

4
0).
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Proof. By (7.51), Γ > 0. By (6.9), (6.10) and (5.2), we have L0 ≤ K0/16
and

L0 ≥
L

4
=
rQH

4R2 >
rQ2

2ε0R2 >

(
Q

R

)2

r ≥ r.

Therefore Lemma 7.33 applies to give

P ∗r (Γ,K0, L0)� K2
0L

2
0 log(K0/r) + r−1ΓK3

0L
2
0 log2 K0

+ r−1Γ 1/2K
5/2
0 L

5/2
0 log7/2(K0/r)

+ r−1Kε
0 min(ΓK4

0L0,K0L
4
0).

By (7.51), we have r−1Γ 1/2K
5/2
0 L

5/2
0 � (Q/R)K2

0L
2
0 and (see the above

lower bound for L0) r−1ΓK3
0L

2
0 � r(Q/R)2K2

0L0 < K2
0L

2
0, so the last bound

for P ∗r (Γ,K0, L0) implies the lemma.

Lemma 7.35. Suppose that A1 is as in (6.36) and that ∆ = ΓL0/K0,
where Γ is as in (7.30)–(7.31) (and (7.51)). Then

K2
0A1 �

Q

R
K2

0L
2
0 log6 K0 + r−1/2Kε

0 min(∆1/3K2
0L

3
0,∆K

14/3
0 L

1/3
0 )

+ r−1/2ΓK3
0L

2
0 logK0 + r−1Kε

0 min(∆1/4K2
0L

3
0,∆K

5
0 ).

Proof. By Lemmas 7.7, 7.34 and 7.18, we have

K2
0A
∗
1 �

Q

R
K2

0L
2
0 log7/2 K0 + r−1Kε

0 min(ΓK4
0L0,K0L

4
0),

K2
0A
′
1 � K2

0L
2
0 log6 K0 +Kε

0 min(∆1/3K2
0L

3
0,∆K

14/3
0 L

1/3
0 )

+ ΓK3
0L

2
0 logK0 +Kε

0 min(K3/2
0 L3

0,∆K
11/2
0 L−1

0 ).

As (7.25) implies K2
0A1 = O(K2

0A
∗
1)+O(r−1/2K2

0A
′
1), the lemma will follow

from the above bounds (and (5.2)) if we can only show

r−1 min(∆1/4K2
0L

3
0,∆K

5
0 )

� r−1 min(K0L
4
0, ΓK

4
0L0) + r−1/2 min(K3/2

0 L3
0,∆K

11/2
0 L−1

0 ).

As Γ = ∆K0/L0, the right-hand side above is

r−1(1 + r1/2K
1/2
0 L−1

0 ) min(K0L
4
0,∆K

5
0 ),

which, after (7.51) and (5.2), is

� r−1
(

1 +∆1/4 K0

L0

)
∆K5

0

(
1 +∆1/4 K0

L0

)−4

� r−1∆K5
0 min

(
1,∆−3/4 L

3
0

K3
0

)
.

As the last bound is all that was required, the lemma is proved.
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8. The Second Spacing Problem. The term B1 in (6.37) is bounded
above by the number of pairs of minor arc indices i, j, occurring in (6.20),
for which

Q ≤ qi, qj ≤ 2Q,(8.1)
∥∥∥∥
r2ai
qi
− r2aj

qj

∥∥∥∥ ≤
∆1

r2 =
Y1

1 + Z1
� 1
X1
� R4

r2HNQ2 ,(8.2)
∥∥∥∥
qimi

r
+
raib0,i
qi

− qjmj

r
− rajb0,j

qj

∥∥∥∥ ≤
Y2

1 + Z2
� 1
X2
� R2

rHQ
,(8.3)

∣∣∣∣
1√

µir3q3
i

− 1√
µjr

3q3
j

∣∣∣∣ ≤
Y3

1 + Z3
� 1
X3
� R2

HN
Y3(8.4)

(see (6.4), (6.26), (6.33), (6.34)) and

(8.5) |κ0,i − κ0,j | ≤
2Q
H

= ∆4 (say).

By (2.28), (8.1) and (6.26), we may substitute a condition

(8.6)
∣∣∣∣
µiq

3
i

µjq3
j

− 1
∣∣∣∣ ≤ ∆2 �

R2

HN
,

in place of (8.4). Having no idea how to use the full strength of (8.3), we
multiply through it by r to obtain a weaker, but usable, bound:

(8.7) ‖aib0,i/qi − ajb0,j/qj‖ ≤ ∆3 � R2/HQ.

As seen in [19, Section 4], conditions (8.1) and (8.2) imply a “magic
matrix relation”:

(8.8)
(
ai
qi

)
=
(
A B
C D

)(
aj
qj

)
,

where A, B, C and D are integers with

(8.9) AD −BC = 1, r2 |C
and

(8.10) |C| ≤ ∆1qiqj � ∆1Q
2 � R4/HN.

Note that, by the Cauchy–Schwarz inequality, one has

(8.11) B1 � V B1(∆1/V ) (V ≥ 1)

where B1(∆) is the number of pairs of minor arc indices i, j for which (8.1)
and (8.3)–(8.5) hold, while the leftmost inequality of (8.2) holds with ∆1

replaced by ∆. For the arc-index pairs i, j counted by B1(∆1/V ) there is,
in place of (8.10), the stronger bound

(8.12) |C| ≤ V −1∆1qiqj � ∆1Q
2/V � R4/V HN.
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The rôle of V here is exactly the same as in [19], although it was there found
convenient to introduce it while applying the Double Large Sieve (the effect
being similar to a later application of the Cauchy–Schwarz inequality). It is
a trivial observation that B1(∆) is a non-decreasing function. On the other
hand,

(8.13) B1(∆) = B1(0) (∆ ≤ r2/4Q2),

since it follows from (8.1) that the left-hand side of (8.2) cannot take any
positive value less than 1/2Q(2Q− 1).

Lemma 8.1. Suppose that (2.1)–(2.9) hold (with N,R ∈ N), and that Q
satisfies (5.2). Suppose also that P/Q � T/M2 ≥ 1/2r, that ∆1, . . . ,∆4 are
as in (8.2) and (8.5)–(8.7), and that

(8.14) H2N3 ≤MR4.

Then

B1(∆1/V )� R2

Q2

(
PQ+∆2∆

2/3
4 P 2 +∆1∆2∆

2/3
4

P 2Q2

r2−εV
logE R

)

for

(8.15) V ≥ C∗/∆4,

where C∗ is some positive constant determined by C2, . . . , C5 in (2.2), (2.3)
and (2.6)–(2.8).

If

(8.16) V ≥ 4∆1Q
2/r2,

then, irrespective of whether or not (8.15) holds,

B1(∆1/V )� R2

Q2 (PQ+∆2∆
2/3
4 P 2).

Proof. Conditions (8.1), (8.5)–(8.9) and (8.12) are, with one exception,
the self same conditions considered in [19, Sections 4 and 5] (see [19, (4.13)–
(4.16)]). The one exception is that here we have r2 |C, whereas [19] had
just r |C. As [19] allows r to be any positive integer, this means that the
situation here is simply a special case of that dealt with in [19]. There is also
a difference of appearance, since the ∆1 of [19] is ∆1/V in our notation here.
Note that ai/qi, mi, µi, b0,i and κ0,i (after (6.27) and (2.35)) are chosen in
exactly the same way as their counterparts in [19] (although in terms of
f(x, 0) rather than f(x)): even the parameters, T , M , H, N , R and Q,
are here subject to all the same constraints as in [19]. The first result of
our lemma is essentially just the case U � ∆

−2/3
4 of [19, Lemma 5.3] (with

r2 in place of r) although, in point of fact, one must do just a little more
work to adapt [19, Lemma 5.2] which is used in the counting of the magic
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matrices with K ≤ |C| ≤ 2K and r2 |C. The number of these matrices is
O(r−2(KP/Q)2) if P � Q, or O(r−2(KP/Q)2 logE(2 + K/r)) if P � Q
and K > r4, or Oε(r−2(KP/Q)2+ε/4) = Oε(rε−2(KP/Q)2) if P � Q and
K ≤ r4. Note that (8.10), (2.7) and (2.8) show one may assume K � R2,
so that logE(1 +K/r)� logE R.

To obtain the second result of the lemma we observe that it follows by
(8.13) and (8.16) that B1(∆1/V ) = B1(0) = B1(∆1/V

′) for V ′ ≥ V . It
therefore follows from the first result of the lemma that

B1(∆1/V )� R2

Q2

(
PQ+∆2∆

2/3
4 P 2 +∆1∆2∆

2/3
4

P 2Q2

r2−εV ′
logE R

)

for V ′ ≥ max(V,C∗/∆4). Taking the limit as V ′ → ∞ gives the second
result of the lemma.

Finally, we mention that as this proof is ultimately an application of
deep results from [14, Sections 14–16] we need to be assured that f(x, 0)
has the requisite properties. The only property we might want which does
not already follow from (2.5) is [14, (14.3.3)]. This property, however, has
no advantage over the simpler [14, (14.3.2)] (implied by (2.5)) except when
one deals with the case of lower triangular magic matrices other than the
identity. Our lower triangular matrices have C = (qi − qj)/aj � Q/P �
M2/T � r, so that there are at most a bounded number of them with
r2 |C. Therefore, as in [19], we have adjusted the scheme of [14, Section
14.2], by reclassifying all non-identity lower triangular matrices as Type 1
(rather than Type 2) of that scheme. Since the Type 1 matrices (including
the identity) will remain bounded in number, we estimate their total contri-
bution toB1(∆1/V ) asO(1) times the contribution from the identity matrix.
The assumption of [14, (14.3.3)] would offer no significant advantage here,
so we assume only (2.5) with its corollary, [14, (14.3.2)]. This suffices for the
estimation of the contributions to B1(∆1/V ) arising from the identity ma-
trix, from the Type 3 matrices, and from the remaining (upper triangular)
Type 2 matrices.

Lemma 8.2. Suppose the hypotheses of Lemma 8.1 (up to and including
(8.14)) are true. Then

(8.17) r−2∆1∆2∆
2/3
4 P 2R2 � M2R4

r2H2N4

(
Q

H

)2/3

= β(Q) (say).

If

(8.18)
N

2
< NI =

M

T

(
M

H

)22/35(
T 3

r2

)6/35

≤ N,

then

B1 � β(Q)
(

1 +
r2

Q2∆1∆4

)
rε logE R � β(Q)

(
1 +

r4T 4

HM9

)1/5

rε logE R.
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If
(8.19) NII = (M6/TH5)1/7, NIII = (M6/r2T 2H)1/3

and
(8.20) N/2 < min(NII, NIII) ≤ N,
then

B1 � β(Q).

Proof. The first result, (8.17), is trivial.
For the first bound on B1 we use (8.11) and the first bound of Lemma

8.1, taking V = C∗/∆4 in both. Note that (8.5) and (5.2) imply that we
will have V ≥ 1 here. The result obtained is

B1 � ∆−1
4

P

Q
R2 +∆−1

4
r2

∆1Q2 β(Q) + β(Q)rε logE R.

The desired result follows since, after (8.17) and (5.2),

∆−1
4

P

Q
R2/β(Q) � H

Q

M

N

r2H2N4

M2R4

(
H

Q

)2/3

(8.21)

� r2H2N3

MR4

(
H

R

)5/3

�
(
N

NI

)35/6

� 1,

and
r2

Q2∆1∆4
� r2H2N

R4Q
� r2H2N

R5 �
(
r4T 4

HM9

)1/5

,

when N � NI and R is as in (2.6).
For the lemma’s second bound on B1 we apply (8.11) and the second

bound of Lemma 8.1 with

V = 1 + 4∆1Q
2/r2.

Note that by (8.20) we have N � NIII, so it follows from (8.2), (2.6) and
(8.19) that

∆1Q
2/r2 � R4/r2HN �M6/r2T 2HN3 = N3

III/N
3

and

(8.22) V � ∆1Q
2/r2 � R4/r2HN � 1.

This application of (8.11) and Lemma 8.1 yields the bound

B1 �
(

PQ

∆2∆
2/3
4 P 2

+ 1
)
β(Q).

The claim of the lemma follows since

∆−1
2 ∆

−2/3
4 Q/P � HN

R2

(
H

Q

)2/3
N

M
R2 � HN2

M

(
H

R

)2/3

�
(
N

NII

)7/3

� 1.
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Lemma 8.3. Let

(8.23) 1 ≤ r ≤ ε3
0T

1/14

and

(8.24) M/(rT )1/3 ≤ H ≤ ε3
0N/r,

where either

(8.25) r−37/57T 23/57 ≤M ≤
√

2rT

and N ∈ N satisfies (8.18), or

(8.26) M ≤ r11/8T 7/16

and N ∈ N satisfies (8.19)–(8.20). Then, for some R ∈ N, every one of the
conditions (2.4), (2.6)–(2.9) and (8.14) holds.

Proof. We begin by showing that in order to verify (2.4), (2.6)–(2.9) and
(8.14) one need only check that

(8.27) 2R0/ε0 ≤ H ≤ R2
0/16C2

3

and

(8.28) H2N3 ≤MR4
0

when

(8.29) R0 = (C3M
3/2NT )1/2.

Indeed, assuming (8.27)–(8.29) and the hypotheses of the lemma, we can
note that (2.6) merely specifies that R be the unique integer in the positive
interval [R0, R0 + 1), so that (2.7) is implied by (8.27) (in which one must
have 2R0 ≥ R0 + 1), and (8.14) is implied by (8.28). The lower bound
on N in (2.8) is a direct consequence of our hypotheses, (8.23) and (8.24),
which ensure that H ≤ rH ≤ ε3

0N . Moreover, it follows from (8.27) that
we must have R0 ≥ 32C2

3/ε0 and 2R0 ≤ ε0H, so that we may assume that
32 ≤ R0 ≤ ε0H ≤ ε4

0N . It therefore follows from (8.28) that N ≤ ε10
0 M ,

so the upper bound of (2.8) may be assumed to hold. The same is true
of (2.4), since (2.8) implies M > N and we have already established that
N ≥ ε−3

0 rH and H ≥ ε−1
0 R0 ≥ 32/ε0. As for (2.9), it is equivalent to the

bound C3HN
2 ≤ 2MR2

0, which follows by one application each, in (8.28),
of the established inequalities R0 ≤ ε0H and R0 ≤ ε4

0N .
Now suppose that we are in the case described by the lemma where

(8.23)–(8.25) are supposed to hold with NI ≤ N < 2NI. In the course of
proving Lemma 8.2 we already found that

H2N3/MR4
0 � r−2(R0/H)5/3,
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with implicit constant independent of ε0 (see (8.21)), so it may be assumed
that (8.28) holds if (8.27) does. The latter condition will hold provided that

ε
−35/24
0 (r2/T 3)1/8M � H � (r2/T 3)6/13M48/13,

with suitable implicit constants independent of ε0. By virtue of (8.23), one
can show that the lower bound on H here is weaker than that in (8.24).
Likewise, (8.25) permits one to establish that the upper bound is weaker
than the one in (8.24), provided that ε0 is sufficiently small in terms of C3

and absolute constants.
It only remains to consider the second case covered by the lemma, so

(contrary to what was assumed for the last paragraph) we shall henceforth
suppose that (8.24) and (8.26) hold with N/2 < min(NII, NIII) ≤ N . As was
already observed in (8.22), while proving Lemma 8.2, we will have r2HN �
R4

0 when N � NIII. Therefore, and since (8.24) implies N ≥ ε−3
0 rH, it will

follow that H2 � ε3
0R

4/r3, which, by (8.23) and our assumptions about
ε0, will imply the upper bound on H in (8.27). Before turning to the lower
bound there, it will be helpful to observe that (8.24) has no solutions, H,
unless

M/(rT )1/3 � min(ε7/4
0 r−7/12T−1/12M1/2, ε

9/4
0 r−5/4T−1/2M3/2),

where any dependence on ε0 is explicit. This means that we have nothing
to prove unless

(8.30) ε
−9/2
0 r11/6T 1/3 �M � ε

7/2
0 r−1/2T 1/2.

By (8.29), the lower bound on H in (8.27) holds subject to a condition
of the form

H � ε−1
0 T−1/2M3/2 max(N−1/2

II , N
−1/2
III ),

which is equivalent to

H � max(ε−14/9
0 T−2/3M5/3, ε

−6/5
0 r2/5T−1/5M3/5).

This is weaker than the lower bound of (8.24) when M satisfies a condition
of the form

ε−3
0 r11/6T 1/3 �M � ε

7/3
0 r−1/2T 1/2.

As dependence on ε0 has been kept explicit, both in the last condition and
in (8.30), one can be sure that the latter implies the former, provided only
that ε0 be sufficiently small in terms of the implicit constants (which depend
only on C3). As (8.30) may be assumed, we conclude that the lower bound
on H in (8.27) does hold.

To complete the proof we need only establish (8.28). By (8.29) this may
be rewritten as the condition N 5 ≤ C2

3M
7/4T 2H2. Therefore, and by (8.19)
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and (8.20), we find that if (8.28) does not hold, then H must lie in the range

2−21C6
3r

10T 4M−9 < H < 249/11C
−14/11
3 T 9/11M−19/11.

If this range is not empty, then M > 2−7/2C3r
11/8T 7/16. Given that C3 ≥

27/2 (see “Notation and conventions”), the last bound contradicts (8.26), so
we conclude that (8.28) must hold. We have, in all cases, checked and verified
those conditions, (8.27)–(8.29), that we earlier showed were sufficient, so the
lemma is proved.

Lemma 8.4. Suppose that (2.1)–(2.3), (8.23) and (8.24) hold , and that
either

(8.31) (M/H)1/10(rT )2/5 ≤M ≤
√

2rT

and N ∈ N satisfies (8.18), or

(8.32) M < (M/H)1/10(rT )2/5

and N ∈ N satisfies (8.19)–(8.20). Then, for some R ∈ N, every one of the
conditions (2.4), (2.6)–(2.9) and (8.14) holds and , for Q satisfying (5.2), we
have

B1 � β(Q)rε logE R,

with β(Q) given by (8.17).

Proof. For the first assertion, about the conditions (2.4), (2.6)–(2.9) and
(8.14), two observations suffice. The first observation is that (8.18) and (8.24)
may be assumed to imply

(M/H)57/35 ≥ rT (r2/T 3)6/35 = r47/35T 17/35,

so that when (8.31) holds we will have

M ≥ (r47/57T 17/57)1/10(rT )2/5 = r55/114T 49/114,

which is stronger than (8.25). The second observation is that (8.24) alone
implies M/H ≤ (rT )1/3, so that when (8.32) holds we will have

M < (rT )1/30(rT )2/5 = (rT )13/30,

which is stronger than (8.26). These observations show that the hypotheses
of the lemma imply those of Lemma 8.3, which has the assertion we seek to
justify as its conclusion.

The bound for B1 follows from Lemma 8.2 (and the assertion just justi-
fied) on noting that the lower bound for M in (8.31) implies r4T 4 ≤ HM9.

9. Bounds for S(H,M)

Lemma 9.1. Suppose that the hypotheses of Lemma 8.4 hold. Then

S(H,M)�M

(
rH

N

)1/2

log(rN) +
M1/2H

r1/4R1/2
α1/4(β(R))1/4rε logE

′
N,
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where R� 1 is the integer satisfying (2.6) and

α = r4
(
N2H2

R4 log6(rN) + (rN)ε min
(
N3/2H3

R9/2
,
N3

R3

))

+ r9/2
(
N2H

R3 log(rN) + (rN)ε min
(
N4/3H3

R13/3
,
N8/3H1/3

R3

))
,

β(Q) =
M2R4

r2H2N4

(
Q

H

)2/3

.

Proof. By the construction in Section 2,

(9.1) S(H,M) = S∞(H,M) + Sπ(H,M),

where S∞(H,M) denotes the contribution from major arcs J(c/d), while
Sπ(H,M) is the contribution from all minor arcs Ji that belong to no major
arc (see (1.6), (2.1), (2.17)–(2.18) and (2.21)–(2.22)). By (3.13), (2.7) and
(2.8),

(9.2) S∞(H,M)� MR√
r3HN

logR�M

√
H

r3N
logN.

By (2.16),

(9.3) Sπ(H,M) =
∑

R≤Q=2kR≤120C3Hr

S(H,M ;Q),

where k runs over the integers and S(H,M ;Q) is the sum
∑(Q)
i Bi defined a

few lines above (6.18). By (2.30), (2.33), (4.5), (4.22), (5.1), (2.7) and (2.8),
one has

Bi � |B∗i,0|+
√
r

(
Q

R

√
HN +Q log(rQ)

)
� Q

R

√
rHN log(rN),

when (4.1) holds with H � Q � rH. Therefore, and by (6.18)–(6.22) and
(6.35)–(6.37), each sum S(H,M ;Q) in (9.3) is such that either it satisfies

S(H,M ;Q) =
∑

i

(Q)
Bi �

(
Q

R

√
rHN log(rN)

)
W (Q)(9.4)

� R

Q
M
√
rH/N log(rN),

or Q is in the range given by (5.2) and

(S(H,M ;Q))4 � (logN)8(W (Q))2 N
2R4

r2Q2

HNKL2

R2 A1
H

Q
B1(9.5)

� M2H4R4

rQ6 K2A1β(Q)rε logE+8N

(see (6.10), Lemma 8.4 and (8.17)).
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By (6.9), (6.10), (7.51) and (2.7), one finds that Lemma 7.35 implies
K2A1 � (Q/R)5α. Therefore it follows from (9.4), (9.5) and the definition
of β(Q) that, for Q relevant to (9.3), the sum S(H,M ;Q) is O((R/Q)1/12)
times the bound the lemma claims for S(H,M). As

∑∞
k=0 2−k/12 converges,

we may now deduce the claimed bound from (9.1)–(9.3) and our last obser-
vation, so the lemma is proved.

Lemma 9.2. Suppose that (2.2) and (2.3) hold , and that 1 ≤ r ≤ ε3
0T

1/14,
where T ≥ exp(ε−2

0 ). Let

(9.6) U ≥





rε(log T )E
′
r51/146T 23/73 if r ≤ T 2/93−√ε,

r149/384T 181/576+
√
ε if T 2/93−√ε < r < T 10/273,

r47/57T 17/57+
√
ε if T 10/273 < r ≤ ε3

0T
1/14

and suppose furthermore that

(9.7) max
i=1,...,5

Li(U) ≤M ≤
√

2rT ,

where

(9.8) Li(U) =





r5/2T
U2 (log T )3 if i = 1,

r
√
ε+17/8T 7/4

U17/4 (log T )9(2E′+3)/4 if i = 2,

r
√
ε+49/22T 25/22

U53/22 (log T )9(4E′+1)/11 if i = 3,

T
√
ε min

(
r37/19T 71/38

U175/38 , r
14/5T 13/10

U29/10

)
if i = 4,

T
√
ε min

(
r49/22T 37/22

U89/22 , r
41/14T 17/14

U37/14

)
if i = 5.

Then, for

(9.9) M/(rT )1/3 ≤ H ≤M/U,

we have
S(H,M)/M � (UH/M)λ (0 ≤ λ ≤ λ0),

where λ0 is some positive absolute constant.

Proof. We shall first treat the case λ = 0, postponing discussion of the
cases where λ > 0 until the end. By (2.6), (2.8) and (9.7), the bound given
for S(H,M) by Lemma 9.1 (when it applies) may be written in the form

(9.10)
S(H,M)

M
�
√
rH

N
log T +

r1/4T 1/6H5/6

M1/2N1/3
rε(logT )E

′+3/2
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+
r3/8T 1/24H7/12

M1/8N11/24
rε(log T )E

′+1/4

+ r1/4 min
(
T 11/48H13/12

M11/16N19/48
,
T 1/24H1/3

M1/8N5/24

)
T ε/4

+ r3/8 min
(
T 5/24H13/12

M5/8N11/24
,
T 1/24H5/12

M1/8N7/24

)
T ε/4.

We assert that, in order to prove the case λ = 0 of the lemma, it will suffice
to show that, subject to the stated hypotheses, every term on the right of
(9.10) is less than or equal to 1 if (8.31) holds and N = NI (from (8.18)), or if
(8.32) holds and N equals the minimum of NII and NIII (from (8.19)). This
assertion is justified since the first term on the right of (9.10) is greater than
1 unless N > rH log2 T , which (as log T ≥ ε−2

0 ) implies the upper bound
on H in (8.24), thereby verifying that, for some integer N , the hypotheses
of Lemma 8.4 will hold and Lemma 9.1 will apply (note that (8.24) implies
N ≥ ε−3

0 , so that both (8.18) and (8.20) allow that a non-integer N may be
replaced by the nearest greater integer).

Since all the powers of N in (9.10) are negative, and since (8.32) implies
NI < NII, it follows that, for λ = 0, all we need do now is verify that, if
(9.7) and (9.9) hold and N ∈ {NI, NIII}, then no term on the right of (9.10)
is greater than 1. The further observation that the powers of H in (9.10)
are positive, while NI and NIII from (8.18) and (8.19) involve only negative
powers of H, leads us to the conclusion that it is sufficient to consider only
the “worst” case, in which H = M/U . Substituting NI (from (8.18)) for N
in (9.10), the right hand side becomes:

r47/70T 17/70(H/M)57/70 log T + r51/140T 23/70(H/M)73/70rε(log T )E
′+3/2

+ r149/280T 37/140(H/M)61/90rε(log T )E
′+1/4

+ T ε/4 min(r27/70T 59/140(H/M)373/280, r9/28T 1/7(H/M)13/28)

+ T ε/4 min(r149/280T 181/420(H/M)48/35, r19/40T 11/60(H/M)3/5).

Given that H = M/U , all of the above terms will be less than or equal to 1,
provided only that

U ≥ max
j=1,...,5

U∗j ,

where

U∗j =





r47/57T 17/57(log T )70/57 if j = 1,

rε(log T )E
′
r51/146T 23/73 if j = 2,

r2ε(log T )2E′r149/244T 37/122 if j = 3,

T ε min(r9/13T 4/13, r108/373T 118/373) if j = 4,

T ε min(r149/384T 181/576, r19/24T 11/36) if j = 5.
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When r = T 2/93 the product r51/146T 23/73 and each of the four similar
products involved in the two minima above equate to T 10/31, while the
products r47/57T 17/57 and r149/244T 37/122 both equate to smaller powers
of T . Therefore a comparison of the relative sizes of the powers of r occurring
in the above lower bound for U allows us to conclude that, for r ≤ T 2/93−√ε,
we require only U ≥ rε(log T )E

′
r51/146T 23/73, while for r > T 2/93−√ε it is

sufficient that

U ≥ T
√
ε max(r47/57T 17/57, r149/244T 37/122, r149/384T 181/576).

As 47/57 > 149/244 > 149/384, and since the first and third terms within
the last maximum are equal to and greater than the second when r =
T 10/273, the requirements here are nothing other than (9.6).

Recalling the observations made earlier, we may now complete the proof
of the case λ = 0 by treating the cases where H = M/U and N = NIII

(from (8.19)). This is a trivial matter, since the left half of (9.7), with
L1(U), . . . , L5(U) as stated, is exactly what is required to guarantee that
no term on the right of (9.10) exceeds 1 in those cases.

For the case 0 < λ ≤ λ0, we recall our earlier implicit recognition that
(9.10) involves only positive powers of H when either NI or NIII is sub-
stituted for N . As we always substituted M/U for H in the case λ = 0,
it follows that in doing so we unnecessarily weakened our resulting bounds
for S(H,M) by some factor (M/UH)λ0 , where λ0 is a positive absolute
constant. It follows that we could actually show S(H,M)/M � (UH/M)λ0 ,
which, by (9.9), implies the bound claimed by the lemma for any λ ≤ λ0.

Lemma 9.3. Let δ and η be arbitrary positive constants. Let

(9.11) S =
∑

H1<h≤H

∑

M1<k≤M
χ

(
k + h

k − h

)(
k + h

k − h

)−2πiT

,

where (1.7) holds, T ≥ 1 and H/M ≤ 1/4. Then

(9.12) S/M � (rT )1/2(H/M)3/2 + r1/2T−1/2(H/M)1/2M.

Suppose additionally that H/M is sufficiently small in terms of δ, and that

(9.13) V =
H

M
T, ω =

logM
log V

∈
[

49
114

, 1− δ
]
.

Then

(9.14)
S

M
�√r H

M
V ηZ(M,V ),

where
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(9.15) Z(M,V ) =





M1/2V 89/570 if 49/114 ≤ ω ≤ 65/114,

M7/20V 29/120 if 65/114 ≤ ω ≤ 7/12,

M13/20V 1/15 if 7/12 ≤ ω ≤ 517/873,

M25/128V 43/128 if 517/873 ≤ ω ≤ 19/31,

M107/280V 31/140 if 19/31 ≤ ω ≤ 374/601,

M187/641V 178/641 if 374/601 ≤ ω ≤ 872/1295,

M53/244V 20/61 if 872/1295 ≤ ω ≤ 188/275,

M26/73V 17/73 if 188/275 ≤ ω ≤ 1− δ.

Proof. By (1.6) and (3.2),

S =
1
r

∑

bmod r

∑

H1<h≤H
W (b,−h)Sh(M ; b/r),

where W (x, y) is given by (3.3) and where, for θ ∈ R,

(9.16) Sh(M, θ) =
∑

M1<k≤M
e(T log(k − h)− T log(k + h) + θk).

Using the bound (3.4) we deduce that

|S| ≤
∑

H1<h≤H

(
|Sh(M ; 0)|+ 2√

r

r−1∑

b=1

|Sh(M ; b/r)|
)

(9.17)

≤ 3
√
rH max

0≤θ<1
h∈[H/2,H]

|Sh(M ; θ)|.

As for Sh(M ; θ) in (9.16)–(9.17), we note first that the application of [29,
Theorem 5.9], with

−f ′′(x) =
T

(k − h)2 −
T

(k + h)2 =
4khT

(k2 − h2)2 � λ2 =
HT

M3 ,

yields us the bound

Sh(M ; θ)�Mλ
1/2
2 + λ

−1/2
2 = (HT/M)1/2 + (HT/M)−1/2M

for H/2 ≤ h ≤ H ≤ M1/2 and θ ∈ R. Taken together with (9.17), this last
bound for Sh(M ; θ) immediately implies (9.12), the lemma’s first bound for
S/M .

The second part of the lemma (the bound (9.14)) will follow from the
uniform bound

(9.18) Sh(M ; θ)� V ηZ(M,V ) (H/2 ≤ h ≤ H, 0 ≤ θ < 1),

which is what we next establish. In doing so we may, and shall, assume that
all the stated conditions for the second part of the lemma do hold.
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Applying [14, Lemma 5.5.3] (inversion) to the sum in (9.16), we find
that, for % = (h/M)2 < 1/9,

Sh(M ; θ) =
∑

A≤n−θ≤B
γ(n− θ)e

(
φ(n− θ) +

1
8

)

+O

(
M√
V

+ log
(

1 +

√
V

M

))
,

where A = 2hT/(M2 − h2), B = 2hT/(M2
1 − h2),

γ(x) =

√
hT

x

(
2hT
x

+ h2
)−1/4

, φ(x) =
x�

0

√
2hT
y

+ h2 dy.

As γ(x) is monotone in x we may readily apply partial summation and a
division to deduce that if

(9.19) log2 V ≤M ≤ V/2,
then one has

(9.20) Sh(M ; θ)� M√
V

(∣∣∣
∑

N<n−θ≤N1

e(φ(n− θ))
∣∣∣+
√
N
)

for some pair N,N1 ∈ [A,B] with N ≤ N1 ≤ 3N/2. Since % < 1/9, for
some M2 ∈ [M/3,M ] we have here N = V2/M2, with V2 = 2hT/M2, and
φ(x) = V2Φ(x/N), where

Φ(z) =
z�

0

√
u−1 + %2 du,

with %2 = h/M2. Note that M2 �M , V2 � V , %2 � % and N � V/M .
Now write the sum over n in (9.20) as

(9.21)
∑

N<n≤N1+θ

e
(
V2Φ

(
n

N
− θ

N

))
−

∑

N<n−θ≤N+θ

e
(
V2Φ

(
n

N
− θ

N

))
.

We may assume M large enough that (9.19) guarantees 2 ≤ N ≤ V2/2. As
0 ≤ θ < 1 ≤ N/2 it follows that the last two sums above are suitable candi-
dates for the application of either one of [12, Theorems 1, 3], subject only to
the verification of certain conditions involving derivatives of Φ(x− θ/N) on
an interval [1−∆, 2+∆] ⊃ [1, 2] for x. Any positive absolute constant ∆ will
do, so take ∆ = 1/6 in our application. As translation commutes with differ-
entiation, these conditions may be reformulated as conditions to be satisfied
by derivatives of Φ(x) on the interval [1−1/6−θ/N, 2+1/6−θ/N ] ⊆ [1/3, 3].
From the observation that

Φ′(x) =
√
x−1 + %2 = x−1/2 +

√
1 + %2x− 1√

x
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(where %2 � H2/M2 is assumed to be sufficiently small), it follows that, in
respect of the interval [1/3, 3], for x, Φ(x) does satisfy the “virial” condition
discussed in [12, pages 38–39]. The utility of the virial condition is that
conditions involving derivatives of Φ(x) are implied by the corresponding
conditions involving derivatives of x−s, where s is some positive constant
(s = 1/2 in our application). Verification of the relevant conditions of [12,
Theorems 1, 3] therefore reduces to checking that certain polynomials do not
vanish at s. It so happens that this non-vanishing is guaranteed for s > 0,
it being evident from their factorisations over Q that all real roots of those
polynomials lie in (−∞, 0].

Having established the conditions we may bound the sums in (9.21)
using the results of [12, Theorems 1, 3] summarised on [12, page 39] within
rows 3–10 of the table given there (it being observed from [12, Theorem 3]
itself that the last of these results holds in a wider range of cases than
is indicated in the table). The reader may verify that, as N � V/M , the
resulting bounds for the sum over n in (9.20) do imply the desired bounds
for Sh(M ; θ), set out in (9.18) and (9.15). Points to note are that the term√
N in (9.20) is always dominated by the bound for the adjacent sum, and

that (9.19) is a valid assumption to make, given that M is large enough, for
it is then a consequence of our hypothesis (9.13) (that we may assume M is
so large follows from the hypothesis that M/H be sufficiently large and the
observation that S = 0 unless H ≥ 1).

Lemma 9.4. Let ε, ε0 be sufficiently small positive absolute constants
satisfying ε ≥ 8E′ε0. Let S be as in (9.11), where T ∈ R and (1.7) holds.
Suppose that T ≥ exp(ε−2

0 ), 1 ≤ r ≤ ε3
0T

1/14 and

(9.22) U ≥ max
j=1,...,5

U ′j ,

where

(9.23) U ′j = Uj(r, T )

and Uj(r, t) is as defined in (1.4). Then, for

(9.24) M ≤
√

2rT , M/(rT )1/3 ≤ H ≤M/U,

we have
S/M � (UH/M)λ (0 ≤ λ ≤ λ0),

where λ0 is some positive absolute constant.

Proof. With the possible exception of the lower bound for M in (9.7), we
have all the right conditions for applying Lemma 9.2. Indeed, the sum S in
(9.11) is merely the case F (X) = − logX of the sum S(H,M) in (1.6) and
Lemma 9.2, so (2.2) and (2.3) hold with Cj = ((j − 1)!)3j for j = 2, . . . , 5,
and it is therefore enough that ε0 be sufficiently small in absolute terms. As
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for (9.6), we may there replace each ε with ε2 (provided that we do likewise
in (9.8)). It is then seen that (9.6) holds by virtue of the bounds

U ≥ U ′3 ≥ r149/384T 181/576+ε (r ≥ T c),
where c = 5942/289551 < 2/93 − 10−4 (see (9.22), (9.23)). We conclude
from the above that, in cases where (9.7) does hold, an appeal to Lemma
9.2 yields the desired bound, S/M � (UH/M)λ, provided that λ is (in
absolute terms) sufficiently small.

As the case H < 1 is trivial, it follows from (9.9), the last paragraph and
(9.7) that the case yet to be settled is that where

(9.25) U ≤M < max
i=1,...,5

Li(U),

with the Li(U)’s as in (9.8). As the constraints on M and H can only weaken
if U be decreased (see (9.24) and (9.8)), while the lemma’s bound for S
would strengthen, so it suffices to treat just the special case where (9.22)
holds with equality. We make a division of this special case into narrower
cases, numbered 1 to 5, where it is supposed of Case j that U = U ′j and
U ′j ≥ U ′k for k = 1, . . . , 5.

By finding what values of r result in equalities amongst U ′1, . . . , U
′
5, we

are able to put limits on the range for r in each of Cases 1, . . . , 5. For
j = 1, . . . , 5, we obtain both upper and lower bounds for M in Case j by
substituting U ′j for U in (9.25). Comparison of L1(U), . . . , L5(U), in each
one of the five cases U = U ′1, . . . , U

′
5, leads to simplification of the upper

bound for M given by (9.25). Indeed it turns out that, if ε’s and the powers
of log T could be ignored, then we would have (in Case j)

M <





L2(U ′j) if j = 1, 2,

L5(U ′j) if j = 3,

L1(U ′j) if j = 4, 5.

As ε’s and powers of log T cannot safely be ignored the actual bounds are
marginally different. We pass over the details of the calculations to state the
following valid conclusions.

In Case 1,

(9.26) 1 ≤ r ≤ T 932/45017

and

(9.27) U = U ′1 ≤M < K1 = r187/292−εT 30/73(log T )E
′
.

In Case 2,

(9.28) T 932/45017−11ε ≤ r ≤ T 392/18297
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and

(9.29) U = U ′2 ≤M < K2 = r1513/6455+εT 2707/6455−ε(log T )5E′ .

In Case 3,

(9.30) T 392/18297 ≤ r ≤ T 245/7103

and

(9.31) U = U ′3 ≤M < K3 = r23213/69322+εT 14461/34661−ε(log T )5E′ .

In Case 4,

(9.32) T 245/7103 ≤ r ≤ T 524/11155

and

(9.33) U = U ′4 ≤M < K4 = r2813/2386+εT 463/1193−ε(log T )5E′ .

In Case 5,

(9.34) T 524/11155 ≤ r ≤ ε3
0T

1/14

and

(9.35) U = U ′5 ≤M < K5 = r97/114+εT 23/57−ε(log T )5E′ .

In order that Lemma 9.3 may be applied it suffices that

(9.36) (HT/M)49/114 ≤M ≤ (HT/M)1−δ

for some positive absolute constant δ. By (9.24) and (9.25), we are assured
of (9.36) if

(T/U)49/114 ≤ U, M ≤ (T/(rT )1/3)1−δ.

Therefore Lemma 9.3 will apply provided that

(9.37) U ≥ T 49/163, M ≤ r(δ−1)/3T 2(1−δ)/3.

The first condition here is immediate (on comparing the powers of T in-
volved) for all but the last of Cases 1, . . . , 5; and in Case 5 we have merely
to note from (9.34) that r > T 1/22 and therefore that (9.35) and (9.23)
imply

logU
log T

>
47/22 + 17

57
>

19
57

=
1
3
>

49
163

.

As for the upper bound on M in (9.37), we may set δ = 3ε and write it in
the form

(9.38) Mr1/3−εT−2/3 ≤ T−2ε.

By (9.26)–(9.35), we find that in none of the Cases 1, . . . , 5 does the left-hand
side of (9.38) exceed (log T )5E′T−5/28−ε, which is the bound calculated in
respect of Case 5. Given the constraints imposed on T , ε and ε0 by the
lemma, this last point implies that (9.38) holds throughout each of Cases
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1, . . . , 5. As this completes our verification of (9.36) for Cases 1, . . . , 5, we
may conclude that throughout each of those cases Lemma 9.3 will apply to
give the bound

S

M
� √r H

M

(
HT

M

)η
Z

(
M,

HT

M

)
,

where η is any positive absolute constant. By (9.15) one may observe that
the bound on S/M is H1+η times a continuous increasing function of H,
so (9.24) implies that, provided that 0 ≤ λ ≤ 1 + η, the last upper
bound for S/M is smaller, always by at least a factor (M/UH)λ, than√
r U−1(T/U)ηZ(M,T/U). The latter expression represents a continuous

increasing function of M , so we may conclude after (9.27), (9.29), (9.31),
(9.33) and (9.35) that, for j = 1, 2, 3, 4, 5 and λ ≤ 1, one has S/M �
(UH/M)λ throughout Case j, provided only that

(9.39) Ωj(r) =
√
r

U ′j
Z

(
Kj ,

T

U ′j

)

satisfy a bound

(9.40) Ωj(r)� T−η

(where η is some positive absolute constant), for all r satisfying whichever
one of (9.26), (9.28), (9.30), (9.32), (9.34) corresponded to Case j.

Turning first to Case 1, we need only discuss Z(M,V ) with

ω =
logM
log V

=
logK1

log(T/U ′1)
(9.41)

=
(187/292− ε)x+ 30/73 + E′(log log T )/log T

1− (51/146 + ε)x− 23/73− E′(log log T )/log T
= (1 +O(ε))γ(x),

where x = (log r)/ log T and

γ(x) =
187x+ 120
200− 102x

(see (9.39), (9.27) and (9.23)). As γ(x) is increasing it follows by (9.41) and
(9.26) that, in respect of Case 1, the validation of condition (9.39) only
requires evaluation of the function Z(M,V ) in cases where

(9.42)
3
5

+O(ε) ≤ ω =
logM
log V

≤ 19097
30508

+O(ε).

This means that only the fourth, fifth and sixth rows of (9.15) are relevant
for (9.39) and (9.40) in Case 1. Given (9.23) and (9.27), trial of each of
the three relevant forms for Z(M,V ) in (9.39) shows each to result in an
expression for Ω1(r) (on a subinterval of its domain) that is an increasing
function of r. As Z(M,V ) is continuous in both M and V , we must conclude
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that Ω1(r) is, like ω, an increasing function of r throughout the range (9.26).
It follows that the “worst” subcases of Case 1 are those where ω is at the
upper end of the range given in (9.42). In such subcases it is the sixth row
of (9.15) which applies, by way of (9.39), (9.27) and (9.23), to yield

Ω1(r)� r45017/187172−ε

T 932/187172(log T )E′/2
.

We conclude from this that if j = 1 then (9.40) holds with

(9.43) η =
932

45017
ε > 0

for all r satisfying (9.26).
In Cases 2, 3 and 4 our argument initially parallels that used for Case 1.

Taking all three of those cases together one has, in place of (9.42),

19097
30508

+O(ε) ≤ ω =
logM
log V

=
logKj

log(T/U ′j)
≤ 4947

7396
+O(ε) (j = 2, 3, 4)

(see (9.28)–(9.33) and (9.23)). Given that ε is sufficiently small, this means
that only the sixth row of (9.15) is relevant for (9.39) in Cases 2, 3 and 4.
Therefore, and by (9.39), (9.29), (9.31), (9.33), (9.23) and row six of (9.15)
(as well as the lemma’s conditions upon r, T , ε and ε0), we find that

(9.44) Ωj(r)� rεT−ε(log T )2E′ ≤ T ε/14−ε+ε/2 = T−(3/7)ε

for j = 2, 3, 4 and all r satisfying whichever of (9.28), (9.30), or (9.32) is
appropriate for Case j. The reason that r and T only appear raised to the
powers plus or minus ε in (9.44) is that U ′2, U ′3 and U ′4 are essentially the
minimal choices for U such that every one of the cases in which we need
to prove S = O(M) will be covered by one or other of Lemmas 9.2, 9.3.
In contrast to this U ′1 and U ′5 were chosen with reference only to the lower
bound (9.6) required in Lemma 9.2.

In Case 5, as in Case 1, the relevant ω = (logK5)/log(T/U ′5) is again
clearly increasing with respect to r (see (9.35) and (9.23)). Using (9.35),
(9.23) and (9.34) one finds that

(9.45)
4947
7396

+O(ε) ≤ ω ≤ 13
18

+O(ε),

so only the last three rows of (9.15) are relevant for (9.39) in Case 5. Using
any one of the relevant three forms for Z(M,V ) in (9.39), together with
(9.23) and (9.35), produces an expression for Ω5(r) (on some interval) that
is decreasing in r. Therefore, we may argue as in Case 1 that the continuity
of Z(M,V ) implicit in (9.15) must lead us to the conclusion that Ω5(r) is
decreasing in r over the whole range (9.34). It follows that the “worst” sub-
cases are where r and (therefore) ω are at the lower ends of their respective
ranges (9.34), (9.45). Therefore we need only consider what happens when
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ω = 4947/7396+O(ε). As ε is assumed to be sufficiently small it will be the
sixth row of (9.15) which applies in such cases, leading us by way of (9.39),
(9.35) and (9.23) to the bound

Ω5(r)� T 524/36537−ε(logT )2E′

r11155/36537−ε .

We conclude from this that if j = 5, then (9.40) holds with

(9.46) η =
(

1
2
− 524

11155

)
ε > 0

for all r satisfying (9.34).
As (9.43), (9.44) and (9.46) together complete the verification of (9.40),

for r in whichever of the ranges (9.26), (9.28), (9.30), (9.32) or (9.34) cor-
responds to Case j, and for j = 1, . . . , 5, so it follows that, if λ ≤ 1, then
S/M � (UH/M)λ throughout each of Cases 1, . . . , 5. In view of our re-
marks just before and after (9.25), this last conclusion makes the proof of
the lemma complete.

10. Application to I(t, U, χ): the proof of Theorem 1. We begin
with three lemmas to show that I(t, U, χ) may be bounded in terms of a
sum of sums similar to the sum S of Lemmas 9.3 and 9.4, which is the case
F (X) = − logX of the sum S(H,M) in (1.6)–(1.9). The proof of Theorem 1
follows after the lemmas.

Lemma 10.1. Suppose `(r, t) = r[
√
t/2πr ] > 0. Then

L(1/2 + it, χ) =
`(r,t)∑

n=1

χ(n)n−1/2−it + θ(t, χ)
`(r,t)∑

n=1

χ(n)n−1/2+it

+O(t−1/4r3/4 log(2r)),

where, with a = (1− χ(−1))/2,

θ(t, χ) = i−a
τ(χ)√
r

(
π

r

)it
Γ ((a+ 1/2− it)/2)
Γ ((a+ 1/2 + it)/2)

.

Proof. This is a corollary of the more precise approximate functional
equation worked out in [22] and [23] (some errors in the former paper are
corrected in the latter paper).

Lemma 10.2. Let t ≥ 4πr and 0 < U ≤ t/2. Put L(r, t) =
√
rt/2π.

Then

I(t, U, χ)� J(t, U, χ) + t−1/2r3/2 log2(2r) + U2t−3/2r1/2,

where

J(t, U, χ) =
1

2U

t+U�

t−U

∣∣∣
∑

n≤L(r,t)

χ(n)n−1/2−iτ
∣∣∣
2
dτ.
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Proof. This follows from (1.1) and Lemma 10.1, after sums with n run-
ning between L(r, t) and `(r, τ) are estimated trivially.

Lemma 10.3. Let t, r, U , L(r, t) and J(t, U, χ) be as in Lemma 10.2.
Then there exists τ ∈ [t/2, 3t/2] such that

J(t, U, χ)�
∑

m≤L(r,t)
(m,r)=1

1
m

+
∞∑

i=0

|Si(τ)|+ L(r, t)
U2 +

L(r, t)
t

,

where

Si(τ) =
∑

Ki+1<k≤Ki

1
k

∑

1≤d≤Di
χ

(
k + d

k − d

)(
k + d

k − d

)−iτ
,

Ki = 2−iL(r, t) and Di = 2−1(e1/U − 1)Ki.

Proof. Note first that

J(t, U, χ)� 1
U

∞�

−∞

1∑

a=0

∣∣∣
∑

n≤L(r,t)
2|(n−a)

χ(n)n−1/2−i(η+t)
∣∣∣
2

sinc2
(

η

2πU

)
dη.

Multiplying out the squared absolute values and integrating term-by-term,
we conclude that J(t, U, χ) is

�
∑

m≤L(r,t)
(m,r)=1

1
m

+ 2<e
( ∑∑

1≤n<m≤L(r,t)
n≡m(mod 2)

χ(m)χ(n)√
mn

(
m

n

)−it
Λ

(
U log

m

n

))
.

By substituting m = k + d, n = k − d, we rewrite the double sum here as

∑

d≥1

∑

d<k≤L(r,t)−d

χ(k + d)χ(k − d)√
k2 − d2

(
k + d

k − d

)−it
Λ

(
U log

k + d

k − d

)
.

For U � 1, it is implicit here that

d < 2−1(e1/U − 1)(k − d)� k/U � L(r, t)/U.

As U ≥ 1/log 2 may be assumed,

(k2 − d2)−1/2 = k−1(1 +O(U−2)),

and the last sum above is
∑

k≤L(r,t)

1
k

∑

1≤d<k
χ

(
k + d

k − d

)(
k + d

k − d

)−it
Λ

(
U log

k + d

k − d

)
+O(E)

=
∞∑

i=0

∑

Ki+1<k≤Ki

1
k

[Di]∑

d=1

χ

(
k + d

k − d

)(
k + d

k − d

)−it
Λ

(
U log

k + d

k − d

)
+O(E),
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where E = L(r, t)/U2. The proof is completed by first writing here

Λ

(
U log

k + d

k − d

)
=

1
2πU

∞�

−∞

(
k + d

k − d

)−iη
sinc2

(
η

2πU

)
dη,

then bringing the summations over i, k and d inside the integration over η,
estimating the parts of the integral where |η| ≥ t/2 trivially and (finally)
using

t/2�

−t/2

∣∣∣
∞∑

i=0

Si(η + t)
∣∣∣ sinc2

(
η

2πU

)
dη ≤ 2πU max

t/2≤τ≤3t/2

∣∣∣
∞∑

i=0

Si(τ)
∣∣∣.

The sum Si(τ) from Lemma 10.3 can be further simplified. Indeed, par-
tial summation shows that

Si(τ)� 1
Ki

∣∣∣∣
∑

K′i<k≤Ki

∑

1≤d≤Di
χ

(
k + d

k − d

)(
k + d

k − d

)−iτ ∣∣∣∣

for some K ′i ∈ [Ki+1,Ki]. Hence,

(10.1) Si(τ)� 1
Ki

∞∑

j=0

|Si,j(τ)|,

where

(10.2) Si,j(τ) =
∑

K′i<k≤Ki

∑

Di+j+1<d≤Di+j
χ

(
k + d

k − d

)(
k + d

k − d

)−iτ
.

Proof of Theorem 1. It suffices to establish the theorem for all ε > 0
that are sufficiently small (in absolute terms). With Lemma 9.4 in mind, we
define ε0 to be equal to ε/8E′. If t < 4πr exp(ε−2

0 ), then the hypothesis that
r � t1/14 implies r � 1, and it follows, by (1.3) and (1.4), that 2 ≤ t� 1 and
U � 1. Under such conditions (1.5) is equivalent to the bound I(t, U, χ)� 1,
which is then a trivial consequence of the continuity of the Dirichlet L-
functions on the critical line. It therefore only remains to discuss the cases
where

(10.3) t ≥ 4πr exp(ε−2
0 ).

As it follows from the formula (1.1) that I(t, U, χ) is the arithmetic mean
of I(t+U/2, U/2, χ) and I(t−U/2, U/2, χ), and as each Uj(r, t′) varies only
by a bounded factor when t′ runs over [t/2, 3t/2], one can show by induction
that what is left to prove of the theorem will follow if only it be established
in all the cases where

U � max
j=1,...,5

Uj(r, t).
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It therefore follows by (1.3), (1.4) and (10.3) that we may assume henceforth

(10.4) 4 ≤ (rt)1/4 ≤ U � rt1/3.

By (10.3) again, we may suppose that Lemmas 10.2 and 10.3 apply,
showing that, for some i ∈ N ∪ {0}, one has

I(t, U, χ)� (1 + |Si(τ)|+E(U ; r, t)) log(rt),

where τ and Si(τ) are as in Lemma 10.3 and, after (10.4),

E(U ; r, t) � (rt)1/2U−2 + r3/2t−1/2 log(t) + r1/2t−3/2U2

� 1 + r3/2t−1/2 log(t) + r5/2t−5/6 � 1

for r � t1/3/log(t). Therefore, by using (10.1) in the last bound for I(t, U, χ),
we may conclude that the theorem will follow if it can be shown that

(10.5)
∞∑

j=0

|Si,j(τ)| � Ki (i = 0, 1, . . .),

where Si,j(τ) is as in (10.2).
Referring back to Lemmas 10.2 and 10.3, to the paragraph of (10.1)–

(10.2), and to (10.4), we find that the sum Si,j(τ) either has no terms (and
so equals zero), or Si,j(τ) = S where S is as in (9.11) with

T = τ/2π ∈ [t/4π, 3t/4π],(10.6)

M = Ki = 2−i
√
rt/2π ≤ 2−i

√
2rT ,(10.7)

H = Di+j = 2−1(e1/U − 1)Ki+j ≤ 2−jM/U,(10.8)

M1 = K ′1 ∈ [Ki+1,Ki] = [M/2,M ], H1 = Di+j+1 = H/2.(10.9)

As i, j ≥ 0 in (10.5), it follows by (10.8) and (10.4) that the conclusion
(9.12) of Lemma 9.3 applies to S = Si,j(τ), and shows

Si,j(τ)/Ki � ((rT )1/2H/M + r1/2T−1/2M)(H/M)1/2(10.10)

� (rT )1/6(H/Ki)1/2,

provided that H = Di+j � M/(rT )1/3, M = Ki � (rT )1/2 and r � T 1/5.
As Theorem 1 assumes r � t1/14, while (10.7) shows that M = Ki ≤

√
2rT

for i ≥ 0, so it follows from (10.6) and (10.10) that

∑

j≥0
Di+j<Ki/(rT )1/3

|Si,j(τ)| � Ki

∞∑

k=0

2−k/2 � Ki (i = 0, 1, . . .).
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Therefore (10.5) (and the theorem) will follow once we show

(10.11)
∑

j≥0
Di+j≥Ki/(rT )1/3

|Si,j(τ)| � Ki (i = 0, 1, . . .).

Reverting to the notation introduced with (10.6)–(10.9), observe that
the conditions of summation and constraints upon the index i in (10.11)
together imply the condition (9.24) of Lemma 9.4. As that condition cannot
possibly hold unless U ≤ (rT )1/3, it follows by (1.3) and case j = 5 of (1.4)
that the bound (10.11) is trivial (by virtue of the sum there being empty)
unless

r47/57t17/57+ε ≤ r1/3T 1/3.

From this and (10.6) we may conclude that (10.11) only requires further
consideration in those cases where

(10.12) r ≤ t1/14−2ε.

As (10.3) holds, with ε0 = ε/8E′ and r ≥ 1, we have here

t ≥ 4π exp(ε−2
0 )

and

t2ε ≥ exp(2εε−2
0 ) ≥ exp(16E′ε−1

0 ) > 2ε−3
0 ,

so it follows, by (10.6), that (10.3) and (10.12) imply the two conditions,
T ≥ exp(ε−2

0 ) and r ≤ ε3
0T

1/14, appearing in Lemma 9.4. Similarly (10.6),
(9.23) and (1.4) show that (9.22) is implied by (1.3). As (9.24) was earlier
remarked to hold, we have now shown that either (10.11) is trivial, or the
sums S = Si,j(τ) there involved are such that all conditions of Lemma 9.4
hold. That lemma therefore implies, for λ = λ0,

∑

j≥0
Di+j≥Ki/(rT )1/3

|Si,j(τ)| � Ki

∞∑

j=0

2−jλ (i = 0, 1, . . .)

(see (10.8), (10.7)). As λ0 is positive and absolute this establishes (10.11),
completing our proof.
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