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Sums of cubes of polynomials
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MiREILLE CAR (Marseille) and Luis GALLARDO (Brest)

1. Introduction. Let ¢ be a power of a prime number p and let F, be
the finite field with ¢ elements. One may formulate the Waring problem for
the polynomial ring F,[t] in the simplest way as follows. Let k > 2 be an
integer. Does there exist an integer s such that any polynomial P € F,t]
is a sum of s kth powers of polynomials? If the answer to this question is
positive, let w(q, k) denote the smallest such integer s. Another question is
to determine or to give a bound for this number w(q, k). Such a question
may be asked in any ring. Taking the polynomial structure into account, one
may include degree conditions in the Waring problem for the ring F,[t]. One
wants to avoid a maximum of possible cancellation of the terms of degree
greater than the degree of P, appearing in the sum of kth powers that
represents P. A solution was suggested by G. W. Effinger and D. R. Hayes
(see [EH]) and is as follows. Let P € F,[t] be a polynomial such that

P=ci4. . +cf

for some polynomials c1,...,cs € Fy[t] with deg(cF) < deg(P) + k for all
1 =1,...,5. We then say that P is a strict sum of s kth powers. We also
say that a polynomial @ € F,[t] is a strict sum of kth powers if for some
integer 7 > 1, @) is a strict sum of r kth powers.

The strict Waring problem for the polynomial ring F,[t] is that of the
existence of an integer s such that any polynomial P € F[t] admits a strict
representation as a sum of s kth powers. If such an integer s exists, denote
by ¢g(q, k) the minimal such s. As above, a natural question is to determine
or to bound g(q, k).

If p divides k, only pth powers are sums of kth powers, and the answer to
the two questions is negative. Therefore, one has to study Waring’s problem
for the ring F,[t] only for exponents k coprime with the characteristic p. Even
with this restriction, the complete answer to the two questions is unknown.
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However, the answer is completely known for the problem of the strict sums
of squares, i.e. in the case k = 2. See [EH] for Serre’s special proof of
9(q,2) = 3 for ¢ # 3 by using Weil’s theorem on curves over a finite field.

In this paper, we deal with the strict Waring problem for cubes, improv-
ing results of the second named author (see [Gal]). Thus, we assume that
p # 3. According to Theorem 4 of [Va|, w(q,3) = 3 for ¢ & {2,4,16}. Since
the sums of cubes in the field F4 are 0 or 1, sums of cubes in the ring Fs|t]
are congruent to 0 or 1 modulo the polynomial 2 +¢+ 1, and sums of cubes
in Fy[t] are congruent to 0 or 1 modulo every polynomial of degree 1. Hence,
in what follows we may assume that g > 4.

Our main result (see Theorem 1) is an upper bound for the numbers
9(q,3) when ¢ ¢ {2,4}. Namely:

(a) Assume that ¢ > 4 and that ged(g,3) = 1. Then
9(q,3) <7 if ¢ & {16,7,13}.

(b) g(gq,3) < 8if g € {16, 13}.
(c) 9(7,3) <9.

Our method led us to consider representations with tamed degree con-
ditions defined as follows. A representation of P € F,[t] as a sum

P=cl+...+ck,

where the polynomials ¢, ..., ¢, € Fy[t] are such that deg(c;) < deg(P) for
alli=1,...,s,is called a tamed representation of P a sum of s kth powers.
Clearly if the polynomial ¢ admits a tamed representation as a sum of s kth
powers, the same is true for any P € F[t].

The tamed Waring problem for the polynomial ring F,[t] is that of the
existence of an integer s such that any polynomial P € F,[t] admits a tamed
representation as a sum of s kth powers. If such an integer s exists, denote
by t(q, k) the minimal such s. As above, a natural question is to determine
or to bound (g, k).

We will prove that for all ¢ € {2,4} the polynomial ¢ is a tamed sum of
cubes and we will determine all the numbers #(g, 3).

2. Sums of cubes in F,. If there exist an integer s such that any
re€F,isasumz =23 +...+2% with z; € F,...,zs € Fy, let ¢(g,3) be
the least such integer s. We begin by computing these numbers.

PROPOSITION 1. Let g be a power of a prime p # 3.

(a) Assume that ¢ #1 (mod3). Then c(q,3) = 1.
(b) The equation 1 = x*+y® has a solution (z,y) € F, such that xy # 0
if and only if q € {5,8,11} or ¢ > 17.
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(c) If ¢ > 13, then for any a € Fy which is not a cube in the field F,,
the equation a = x> + 3> has a solution (z,y) € Fg such that xy # 0.

(d) Assume that ¢ =1 (mod3) and q # 7. Then ¢(q,3) = 2.

(e) ¢(7,3) =3.

Proof. For a € Fy, let N(g,a) be the number of pairs (x,y) € F2 such
that a = 2® + 3?, and n(q,a) the number of pairs (z,y) € Fg such that
a =22+ y3 and xy # 0. Assume that ¢ Z 1 (mod 3). Since every element
of IF, is a cube, (a) holds. Moreover for any a € F, one has N(q,a) = ¢ and
n(q,1) = ¢ —2 > 1 for ¢ # 2. Assume now that ¢ = 1 (mod3). It follows
from Weil’s theorem on curves over a finite field (see, e.g., [LN]) applied to
the projective curve az® = 3 + y3 that

(1) N(g,a) >q—2¢"* 2.

Suppose, furthermore, that ¢ > 13. We claim that ¢(q,3) = 2. It is clear
that (1) implies that N(q,a) > 1 for all a € F,. Therefore c(g,3) < 2. Since
not all elements in F, are cubes we also have ¢(q,3) > 2, so (d) is proved.
Moreover, observe that

(2) N(q,1) =n(q,1) +6,
and
(3) N(q,a) =n(q,a)

for any a € I, that is not a cube. Suppose that ¢ > 17. From (1) and (2) it
follows that n(q,a) > 1. This establishes (c). Suppose that ¢ > 13 and that
a is not a cube. From (1) and (3) it follows that n(g,a) > 1. To complete
the proof we shall now investigate the cases ¢ = 7 and ¢ = 16. Since the
cubes in Fr7 are 0,1 and —1 it follows that ¢(7,3) = 3. Let a € F4 be such
that a® = a4 1 and let b € F¢ be such that b = b+ a. Hence, the cubes in
Fi6 are 0,1,ab,ab + a,ab+ 1+ b,ab + a + b. This implies that ¢(16,3) = 2,
thereby proving the proposition.

3. A bound for t(g,3). We assume that ¢ is a power of a prime p # 3
in all this section.

PROPOSITION 2. We have

(a) t(q,3) =3 for q & {16,7,13}.
(b) t(7,3) = t(13,3) = (16, 3) = 4.

Proof. Let a and b be in F,. Suppose that ¢ is odd. Since the polynomial
t — (at + b)?3 has no triple roots, it follows that it is not the cube of a linear
polynomial. Assume now that ¢ is even, and take (a,b) # (1,0). Since the
polynomial ¢ + (at + b)® has no double roots, it follows that it is not the
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cube of a linear polynomial. Finally, observe that the polynomial ¢ + ¢3 is
not the cube of a linear polynomial. Therefore

t(g,3) > 3.
We suppose that ¢ ¢ {16,7,13}. In view of Proposition 1, there exist a, b in
F, such that
(4) 1=a®+0b ab#0.

Thus, for any P € F,[t], one has the Serre Identity (see also [Va])
3

3 3
1 1 -1
P=(—(P+d’+1 —(P+a* -2 —(P—-2a*+1)) .
<3a( +a° + )> +<3b( +a )> +<3ab( a’+1)
Hence,
t(q,3) < 3.
In order to establish the proposition we investigate the remaining cases.
For ¢ = 7, one has

P=(P+13+P-1>—(P+3)>—(P-3)3%
For ¢ = 13, one has

P=P+13+(P-173—(P+4)>—(P-4)3>
Let a € F4 be such that a® = a+ 1 and let b € 14 be such that b%> = b+ a.
Then for any P € Fi4[t] one has

P=(bP+a)®+ 0P +a+1)>+ (P+ab®)?+ (P+(a+1)b?)>.
Hence,
t(¢,3) <4 for q € {7,13,16}.

Assume now that ¢ € {7,13,16}. Suppose that t = P} + PJ + P§, where
P; € F,[t] and deg(P;) < 1 for i = 1,2,3. Since t(q,3) > 3, deg(P;) =1 for
each index 4. But the coefficient of ¢ in the sum P + P§ + P3 is equal to 0.

This contradicts Proposition 1(b). Hence, t(g,3) > 4, thereby finishing the
proof.

4. The descent. In all this section ¢ denotes a power of a prime p # 3;
for any nonzero polynomial P € F[t], sgn(P) denotes the leading coefficient
of P, and [r] denotes the integer part of a real r.

PROPOSITION 3. Let Y # 0 in F[t] be such that deg(Y) = 0 (mod 3)
and sgn(Y') is a cube in F,. Then there exist polynomials Z, R € F[t] such
that

(a) Y = Z3 + R,
(b) deg(Z?) = deg(Y),
(c) deg(R?) < deg(Y?).
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Proof. Write
Y =yo+ ...+ ynt",

so that y, = a? for some a € Fy, a # 0. Moreover, n = 3m where m is a
nonnegative integer. We consider the relations:

(1“0) Zm = Q.
(rl) 327277,sz1 = Yn—1,
(r;) 322 Zm—j + Z ZaZbZe = Yn—js

a,b,c€lm—j,m], a+b+c=3m—j

2
(tm) 3z, 720 + E ZaZbZe = Yn—ms
a,b,c€]0,m], a+b+c=2m

that define z,,, Zm_1, ..., 21, 2zo. Define the polynomials Z, R by
Z=zp+z21t+...+2,t™, R=Y — Z5.

It is clear now that (a) and (b) hold. By construction of Z it follows that

deg(R) < n — m, thereby finishing the proof.

PROPOSITION 4. Let Y # 0 in Fy[t] be such that deg(Y) = 0 (mod 3)
and sgn(Y') is a cube in F,. Then there exist polynomials Z, R € Fy[t] such
that

(a) Y = Z3 + R,

(b) deg(2?) = deg(Y),

(c) deg(R?) < 6+ deg(Y?),

(d) R is monic and deg(R) =0 (mod3). More precisely, one has

deg(R) = 3(deg(Y)/3 — [deg(Y)/9]).

Proof. We keep the notations of the above proof. We set s = [m/3],
the integer part of m/3. Observe that 3s < m. We consider here the equa-

tions (rp), (r1),...,(r3s—1), and instead of the equation (rss), we consider
the equation
(935) 3272ﬂzm—35 + Z Za’bic = Yn—3s — 1.

a,b,c€lm—3s,m|, a+b+c=3m—3s
The relations (rg), (r1),..., (r3s—1) and (g3s) define zp,, Zm—1,- .., Zm—3s+1,
Zm—3s- Again, define
Z = Zm_gstmigs + Zm_35+1tm73s+1 4+ zpt™, R=Y - 273
It is now clear that (a) and (b) hold. Now we show (d). Firstly, since
Zims Zm—1y -« -y Zm—3s+1s 2m—3s Satisfy (rg),(r1),...,(r3s—1), it follows that

deg(R) < n— 3s. Secondly, since 2z, Zm—1, - - -y Zm—3s+1, 2m—3s Satisfy (o3s)
it follows that deg(R) = n — 3s = 3(m — s) and sgn(R) = 1, finishing the
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proof of (d). Finally, observe that 3s > m — 3, so that deg(R) < 2m + 3.
This proves (c) and hence the proposition.

PROPOSITION 5. Let Y # 0 in Fy[t] be such that deg(Y) = 0 (mod 3)
and sgn(Y') is a cube in F,. If deg(Y) # 6, then there exist polynomials
Z1,Zy, Z3 € Fy[t] such that

(a) 3deg(Y — Z} — Z3 — Z3) < deg(Y),

(b) 3max(deg(Z1),deg(Z2),deg(Z3)) < deg(Y).

Proof. First of all, observe that deg(Y’) can be written as
deg(Y) =2"n+9m + 3k, where 0 < m, k < 2.

The main argument is as follows. We apply Proposition 4 twice. Firstly, we
obtain the existence of polynomials Z; and Y7 such that

Y =723+ 1,
deg(Z1) =9n+3m+k, deg(Yy)=18n+6m + 3k, sgn(Y;) = 1.
Secondly, we obtain the existence of polynomials Zs and Y5 such that
Vi = Z5 + Yo,
deg(Z3) =6n+2m+k, deg(Ys) =12n+3(m+a), sgn(Ye) =1,
where the nonnegative integer a is defined in the following manner:
0 if (m,k) =(0,0),
a=<¢1 if (m,k)€{(0,1),(1,0),(1,1),(2,0)},
2 if (m,k) € {(0,2),(1,2),(2,1),(2,2)}.

Finally, we apply Proposition 3. Therefore there exist polynomials Z3 and
Y3 such that

Yy = Z3 + Y,
deg(Zs) =4n+m+a, deg(Ys) < 8n+2m + 2a.

It remains to be shown that 3deg(Y3) < deg(Y). Suppose that 2a < n +m
+ k4 2. The result follows from the inequality deg(Y3) < 8n+ 2m + 2a. But
the case where 2a > n 4+ m + k 4+ 2 may occur only if n =0,m = 0,k = 2,
i.e. when deg(Y') = 6. This case has been excluded by the hypothesis.

PROPOSITION 6. Let r = r(q) = max(1,¢(q,3) —1). Let Y € F[t] be a
nonzero polynomial. Then for 1 < i < r there exist polynomials Z; € F[t]
such that

(a) 3deg(Z;) < deg(Y) + 3,

(b) deg(Y — Z3 — ... — Z2) =0 (mod 3) and sgn(Y — Z3 — ... — Z3) is
a cube in the field I,

(c) if deg(Y) & {4,5,6} then deg(Y — Z3 — ... — Z3) # 6.
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Proof. If deg(Y) € {3n — 1,3n — 2} for some integer n > 1, we take
Zy = —t",Zy = ... = Z, = 0. Suppose now that deg(Y) = 3n. If ¢ £ 1
(mod 3), then sgn(Y') is a cube in F, so that we take Z; = ... = Z, = 0,
otherwise it follows from Proposition 1 that there exist a1 € Fy,...,ar41
€ F, such that sgn(Y) = a} + ... 4+ a’,; with a,11 # 0. Thus, in this
latter case we let Z; = a;t™ for i = 1,...,r. In all cases we conclude that
deg(Y —Z} —...—Z2)=3n and sgn(Y — Z3 — ... — Z3) is a cube in F,.

REMARK 1. From Proposition 1 it follows that r(q) = 1 for ¢ # 7 and
r(7) = 2.

PROPOSITION 7. Let s = s(q) = 2¢(q,3) and let Y € F[t] be a polyno-
mial of degree 6. Then for 1 < i < s there exist polynomials Z; € Fy[t] such
that

(a) deg(Y — Z3 — ... — Z3) < 2,
(b) max(deg(Z7),...,deg(Z)) < 2.

Proof. With ¢ = ¢(q,3) one finds a; € Fy,...,a. € Fy such that sgn(Y")
=a}+...+ad with a. # 0. Fori = 1,...,c — 1 define the polynomials Z; by
Z;=a;t?. Thendeg(Y —Z3 —...—Z3 ) =6and sgn(Y —Z} —...— Z3_))
is a cube.

It follows now from Proposition 3 that there exists a polynomial Z. such
that

deg(Y —Z} — ... =73 | —7Z3) < 3.
In order to finish the proof, we will define the polynomials Z.41,..., Zs. as
follows. If deg(Y — Z3 — ... — Z3_| — Z3) < 3, then we let Z.41 = ... =

Zy. = 0. If not, let acy1 € Fy,..., a2 € Fy be such that
sen(Y —Z3 — ... —Z2 - Z) =add  +...+ai.
Then we let Z; = a;t fori =c+1,...,2¢, so that
deg(Y —Z} —...— 23273, —...—Z3)<2.

PROPOSITION 8. Let m = m(q) = 2+ ¢(q,3) and let Y € Fy[t] be such
that deg(Y) € {4,5}. Then for 1 < i <m there exist polynomials Z; € F|t]
such that

(a) deg(Y — Z3 —...— Z3) <2,

(b) max(deg(Z1),...,deg(Z,,)) < 2.

Proof. Let Z = 1% 4+ Y. By Proposition 3, there exists a polynomial Z;
such that
deg(Zy) <2, deg(Z —2Z})<3.

We conclude the proof as above.
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5. A bound for ¢(¢,3). The above notations remain valid. We obtain
the following propositions.

PROPOSITION 9. Let g = g(¢q) = max(1,¢(q,3) — 1) +t(q,3) + 3 and let
Y # 0 in Fy[t] be such that deg(Y') & {4,5,6}. Then for 1 < i < g there
exist polynomials Y; € Fy[t] such that

(a) Y =YP+...+Y2

(b) 3max(deg(Y1),...,deg(Yy)) < 3 + deg(Y).

Proof. Let

r=r(q), ts==1t(g,3).
By Proposition 6, for 1 <1 < r there exist polynomials Y; € F,[t] such that
(i) 3deg(Y;) < deg(Y) + 3,

(ii) deg(Y — Y — ... = Y;3) = 0 (mod 3),
(iii) sgn(Y — Y — ... = Y;?) is a cube in the field F,
(iv) deg(Y — Y — ... = Y23) £6.
By Proposition 5, for 1 < ¢ < 3 there exist polynomials Z; € IF[t] such that
3deg(Y — Y2 — ... = Y37} - 73 - 73) < deg(Y =Y — ... = Y?),
and
(v) 3max(deg(Z1),deg(Zz),deg(Z3)) < deg(Y — Y3 —... = Y2).

By (i), (ii) and (v) we obtain
3max(deg(Zy), deg(Z2), deg(Z3)) < deg(Y) + 3.
Next, define the polynomial U by
V) U=Y -Y3—...—-Y3— 2} 27373
It is clear that
3deg(U) < deg(Y) + 3,

so that, by definition of the number t3 = t(g,3), there exist U; € F[t],
1 < i < t3, such that

U=U;+...+ U,
with every U; satisfying deg(U;) < deg(U), and we may therefore apply (vi)

to conclude the proof.

PROPOSITION 10. Let v = ~(q) = max(s(q),m(q)) + t(q,3) and let
Y € F,t] be such that deg(Y') € {4,5,6}. Then for 1 < i <~ there exist
polynomials Y; € Fy[t] such that

(a) Y =YP+...+Y3,

(b) 3max(deg(Y1),...,deg(Y,)) < 3+ deg(Y).



Sums of cubes of polynomials 49

Proof. Let n = max(2+ ¢(q,3),2¢(g,3)) and t3 = t(q, 3). Propositions 7
and 8 show that there exist Y; € F,[t], 1 < i <n, such that

deg(V — Y2 —...—Y?) <2, deg(Vi) <2.
Define the polynomial V' by
V=Y-Y ... =Y}

no

so that, by definition of t3, there exist V; € F,[t], 1 <i <3, such that
V=VP+ .. +V2  deg(V;) <deg(V) <2,
finishing the proof.

6. Main result. Now we may show our main result.

THEOREM 1. Let q be a power of a prime number p # 3. Then

(a) 9(q,3) <7 for q ¢ {2,4,16,7,13},
(b) max(g(13,3),g(16,3)) <8,
(c) 9(7,3) <9.

Proof. Suppose that ¢ ¢ {2,4,16,7,13}. Then t(q,3) = 3 and r(q) = 1.
Proposition 9 shows that any polynomial whose degree is different from
4,5,6 admits a strict representation as a sum of 7 cubes. On the other
hand, Proposition 10 shows that a polynomial of degree 4,5 or 6 admits a
strict representation as a sum of 6 or 7 cubes according to the value of ¢
modulo 3.

The other relations are obtained similarly from the equalities

t(7,3) =t(13,3) =t(16,3) =4, ¢(7,3) =3, ¢(13,3) =¢(16,3) =2,
thus completing the proof of the theorem.
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