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Sums of cubes of polynomials
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Mireille Car (Marseille) and Luis Gallardo (Brest)

1. Introduction. Let q be a power of a prime number p and let Fq be
the finite field with q elements. One may formulate the Waring problem for
the polynomial ring Fq[t] in the simplest way as follows. Let k ≥ 2 be an
integer. Does there exist an integer s such that any polynomial P ∈ Fq[t]
is a sum of s kth powers of polynomials? If the answer to this question is
positive, let w(q, k) denote the smallest such integer s. Another question is
to determine or to give a bound for this number w(q, k). Such a question
may be asked in any ring. Taking the polynomial structure into account, one
may include degree conditions in the Waring problem for the ring Fq[t]. One
wants to avoid a maximum of possible cancellation of the terms of degree
greater than the degree of P , appearing in the sum of kth powers that
represents P . A solution was suggested by G. W. Effinger and D. R. Hayes
(see [EH]) and is as follows. Let P ∈ Fq[t] be a polynomial such that

P = ck1 + . . .+ cks

for some polynomials c1, . . . , cs ∈ Fq[t] with deg(cki ) < deg(P ) + k for all
i = 1, . . . , s. We then say that P is a strict sum of s kth powers. We also
say that a polynomial Q ∈ Fq[t] is a strict sum of kth powers if for some
integer r ≥ 1, Q is a strict sum of r kth powers.

The strict Waring problem for the polynomial ring Fq[t] is that of the
existence of an integer s such that any polynomial P ∈ Fq[t] admits a strict
representation as a sum of s kth powers. If such an integer s exists, denote
by g(q, k) the minimal such s. As above, a natural question is to determine
or to bound g(q, k).

If p divides k, only pth powers are sums of kth powers, and the answer to
the two questions is negative. Therefore, one has to study Waring’s problem
for the ring Fq[t] only for exponents k coprime with the characteristic p. Even
with this restriction, the complete answer to the two questions is unknown.
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However, the answer is completely known for the problem of the strict sums
of squares, i.e. in the case k = 2. See [EH] for Serre’s special proof of
g(q, 2) = 3 for q 6= 3 by using Weil’s theorem on curves over a finite field.

In this paper, we deal with the strict Waring problem for cubes, improv-
ing results of the second named author (see [Ga]). Thus, we assume that
p 6= 3. According to Theorem 4 of [Va], w(q, 3) = 3 for q 6∈ {2, 4, 16}. Since
the sums of cubes in the field F4 are 0 or 1, sums of cubes in the ring F2[t]
are congruent to 0 or 1 modulo the polynomial t2 + t+ 1, and sums of cubes
in F4[t] are congruent to 0 or 1 modulo every polynomial of degree 1. Hence,
in what follows we may assume that q > 4.

Our main result (see Theorem 1) is an upper bound for the numbers
g(q, 3) when q 6∈ {2, 4}. Namely:

(a) Assume that q > 4 and that gcd(q, 3) = 1. Then

g(q, 3) ≤ 7 if q 6∈ {16, 7, 13}.
(b) g(q, 3) ≤ 8 if q ∈ {16, 13}.
(c) g(7, 3) ≤ 9.

Our method led us to consider representations with tamed degree con-
ditions defined as follows. A representation of P ∈ Fq[t] as a sum

P = ck1 + . . .+ cks ,

where the polynomials c1, . . . , cs ∈ Fq[t] are such that deg(ci) ≤ deg(P ) for
all i = 1, . . . , s, is called a tamed representation of P a sum of s kth powers.
Clearly if the polynomial t admits a tamed representation as a sum of s kth
powers, the same is true for any P ∈ Fq[t].

The tamed Waring problem for the polynomial ring Fq[t] is that of the
existence of an integer s such that any polynomial P ∈ Fq[t] admits a tamed
representation as a sum of s kth powers. If such an integer s exists, denote
by t(q, k) the minimal such s. As above, a natural question is to determine
or to bound t(q, k).

We will prove that for all q 6∈ {2, 4} the polynomial t is a tamed sum of
cubes and we will determine all the numbers t(q, 3).

2. Sums of cubes in Fq. If there exist an integer s such that any
x ∈ Fq is a sum x = x3

1 + . . . + x3
s with x1 ∈ Fq, . . . , xs ∈ Fq, let c(q, 3) be

the least such integer s. We begin by computing these numbers.

Proposition 1. Let q be a power of a prime p 6= 3.

(a) Assume that q 6≡ 1 (mod 3). Then c(q, 3) = 1.
(b) The equation 1 = x3 +y3 has a solution (x, y) ∈ F2

q such that xy 6= 0
if and only if q ∈ {5, 8, 11} or q ≥ 17.
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(c) If q ≥ 13, then for any a ∈ Fq which is not a cube in the field Fq,
the equation a = x3 + y3 has a solution (x, y) ∈ F2

q such that xy 6= 0.
(d) Assume that q ≡ 1 (mod 3) and q 6= 7. Then c(q, 3) = 2.
(e) c(7, 3) = 3.

Proof. For a ∈ Fq, let N(q, a) be the number of pairs (x, y) ∈ F2
q such

that a = x3 + y3, and n(q, a) the number of pairs (x, y) ∈ F2
q such that

a = x3 + y3 and xy 6= 0. Assume that q 6≡ 1 (mod 3). Since every element
of Fq is a cube, (a) holds. Moreover for any a ∈ Fq one has N(q, a) = q and
n(q, 1) = q − 2 ≥ 1 for q 6= 2. Assume now that q ≡ 1 (mod 3). It follows
from Weil’s theorem on curves over a finite field (see, e.g., [LN]) applied to
the projective curve az3 = x3 + y3 that

(1) N(q, a) ≥ q − 2q1/2 − 2.

Suppose, furthermore, that q ≥ 13. We claim that c(q, 3) = 2. It is clear
that (1) implies that N(q, a) ≥ 1 for all a ∈ Fq. Therefore c(q, 3) ≤ 2. Since
not all elements in Fq are cubes we also have c(q, 3) ≥ 2, so (d) is proved.
Moreover, observe that

(2) N(q, 1) = n(q, 1) + 6,

and

(3) N(q, a) = n(q, a)

for any a ∈ Fq that is not a cube. Suppose that q ≥ 17. From (1) and (2) it
follows that n(q, a) ≥ 1. This establishes (c). Suppose that q ≥ 13 and that
a is not a cube. From (1) and (3) it follows that n(q, a) ≥ 1. To complete
the proof we shall now investigate the cases q = 7 and q = 16. Since the
cubes in F7 are 0, 1 and −1 it follows that c(7, 3) = 3. Let a ∈ F4 be such
that a2 = a+ 1 and let b ∈ F16 be such that b2 = b+ a. Hence, the cubes in
F16 are 0, 1, ab, ab+ a, ab+ 1 + b, ab+ a+ b. This implies that c(16, 3) = 2,
thereby proving the proposition.

3. A bound for t(q, 3). We assume that q is a power of a prime p 6= 3
in all this section.

Proposition 2. We have

(a) t(q, 3) = 3 for q 6∈ {16, 7, 13}.
(b) t(7, 3) = t(13, 3) = t(16, 3) = 4.

Proof. Let a and b be in Fq. Suppose that q is odd. Since the polynomial
t− (at+ b)3 has no triple roots, it follows that it is not the cube of a linear
polynomial. Assume now that q is even, and take (a, b) 6= (1, 0). Since the
polynomial t + (at + b)3 has no double roots, it follows that it is not the
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cube of a linear polynomial. Finally, observe that the polynomial t + t3 is
not the cube of a linear polynomial. Therefore

t(q, 3) ≥ 3.

We suppose that q 6∈ {16, 7, 13}. In view of Proposition 1, there exist a, b in
Fq such that

(4) 1 = a3 + b3, ab 6= 0.

Thus, for any P ∈ Fq[t], one has the Serre Identity (see also [Va])

P =
(

1
3a

(P + a3 + 1)
)3

+
(

1
3b

(P + a3 − 2)
)3

+
(−1

3ab
(P − 2a3 + 1)

)3

.

Hence,
t(q, 3) ≤ 3.

In order to establish the proposition we investigate the remaining cases.
For q = 7, one has

P = (P + 1)3 + (P − 1)3 − (P + 3)3 − (P − 3)3.

For q = 13, one has

P = (P + 1)3 + (P − 1)3 − (P + 4)3 − (P − 4)3.

Let a ∈ F4 be such that a2 = a+ 1 and let b ∈ F16 be such that b2 = b+ a.
Then for any P ∈ F16[t] one has

P = (bP + a)3 + (bP + a+ 1)3 + (P + ab2)3 + (P + (a+ 1)b2)3.

Hence,
t(q, 3) ≤ 4 for q ∈ {7, 13, 16}.

Assume now that q ∈ {7, 13, 16}. Suppose that t = P 3
1 + P 3

2 + P 3
3 , where

Pi ∈ Fq[t] and deg(Pi) ≤ 1 for i = 1, 2, 3. Since t(q, 3) ≥ 3, deg(Pi) = 1 for
each index i. But the coefficient of t3 in the sum P 3

1 +P 3
2 +P 3

3 is equal to 0.
This contradicts Proposition 1(b). Hence, t(q, 3) ≥ 4, thereby finishing the
proof.

4. The descent. In all this section q denotes a power of a prime p 6= 3;
for any nonzero polynomial P ∈ Fq[t], sgn(P ) denotes the leading coefficient
of P , and [r] denotes the integer part of a real r.

Proposition 3. Let Y 6= 0 in Fq[t] be such that deg(Y ) ≡ 0 (mod 3)
and sgn(Y ) is a cube in Fq. Then there exist polynomials Z,R ∈ Fq[t] such
that

(a) Y = Z3 +R,
(b) deg(Z3) = deg(Y ),
(c) deg(R3) < deg(Y 2).
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Proof. Write
Y = y0 + . . .+ ynt

n,

so that yn = α3 for some α ∈ Fq, α 6= 0. Moreover, n = 3m where m is a
nonnegative integer. We consider the relations:

zm = α,(r0)

3z2
mzm−1 = yn−1,(r1)

3z2
mzm−j +

∑

a,b,c∈]m−j,m], a+b+c=3m−j
zazbzc = yn−j ,(rj)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3z2
mz0 +

∑

a,b,c∈]0,m], a+b+c=2m

zazbzc = yn−m,(rm)

that define zm, zm−1, . . . , z1, z0. Define the polynomials Z,R by

Z = z0 + z1t+ . . .+ zmt
m, R = Y − Z3.

It is clear now that (a) and (b) hold. By construction of Z it follows that
deg(R) < n−m, thereby finishing the proof.

Proposition 4. Let Y 6= 0 in Fq[t] be such that deg(Y ) ≡ 0 (mod 3)
and sgn(Y ) is a cube in Fq. Then there exist polynomials Z,R ∈ Fq[t] such
that

(a) Y = Z3 +R,
(b) deg(Z3) = deg(Y ),
(c) deg(R3) ≤ 6 + deg(Y 2),
(d) R is monic and deg(R) ≡ 0 (mod 3). More precisely , one has

deg(R) = 3(deg(Y )/3− [deg(Y )/9]).

Proof. We keep the notations of the above proof. We set s = [m/3],
the integer part of m/3. Observe that 3s ≤ m. We consider here the equa-
tions (r0), (r1), . . . , (r3s−1), and instead of the equation (r3s), we consider
the equation

(%3s) 3z2
mzm−3s +

∑

a,b,c∈]m−3s,m], a+b+c=3m−3s

zazbzc = yn−3s − 1.

The relations (r0), (r1), . . . , (r3s−1) and (%3s) define zm, zm−1, . . . , zm−3s+1,
zm−3s. Again, define

Z = zm−3st
m−3s + zm−3s+1t

m−3s+1 + . . .+ zmt
m, R = Y − Z3.

It is now clear that (a) and (b) hold. Now we show (d). Firstly, since
zm, zm−1, . . . , zm−3s+1, zm−3s satisfy (r0), (r1), . . . , (r3s−1), it follows that
deg(R) ≤ n− 3s. Secondly, since zm, zm−1, . . . , zm−3s+1, zm−3s satisfy (%3s)
it follows that deg(R) = n − 3s = 3(m − s) and sgn(R) = 1, finishing the
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proof of (d). Finally, observe that 3s > m − 3, so that deg(R) < 2m + 3.
This proves (c) and hence the proposition.

Proposition 5. Let Y 6= 0 in Fq[t] be such that deg(Y ) ≡ 0 (mod 3)
and sgn(Y ) is a cube in Fq. If deg(Y ) 6= 6, then there exist polynomials
Z1, Z2, Z3 ∈ Fq[t] such that

(a) 3 deg(Y − Z3
1 − Z3

2 − Z3
3 ) ≤ deg(Y ),

(b) 3 max(deg(Z1),deg(Z2),deg(Z3)) ≤ deg(Y ).

Proof. First of all, observe that deg(Y ) can be written as

deg(Y ) = 27n+ 9m+ 3k, where 0 ≤ m,k ≤ 2.

The main argument is as follows. We apply Proposition 4 twice. Firstly, we
obtain the existence of polynomials Z1 and Y1 such that

Y = Z3
1 + Y1,

deg(Z1) = 9n+ 3m+ k, deg(Y1) = 18n+ 6m+ 3k, sgn(Y1) = 1.

Secondly, we obtain the existence of polynomials Z2 and Y2 such that

Y1 = Z3
2 + Y2,

deg(Z2) = 6n+ 2m+ k, deg(Y2) = 12n+ 3(m+ a), sgn(Y2) = 1,

where the nonnegative integer a is defined in the following manner:

a =





0 if (m,k) = (0, 0),

1 if (m,k) ∈ {(0, 1), (1, 0), (1, 1), (2, 0)},
2 if (m,k) ∈ {(0, 2), (1, 2), (2, 1), (2, 2)}.

Finally, we apply Proposition 3. Therefore there exist polynomials Z3 and
Y3 such that

Y2 = Z3
3 + Y3,

deg(Z3) = 4n+m+ a, deg(Y3) < 8n+ 2m+ 2a.

It remains to be shown that 3 deg(Y3) ≤ deg(Y ). Suppose that 2a < n+m
+k+ 2. The result follows from the inequality deg(Y3) < 8n+ 2m+ 2a. But
the case where 2a ≥ n + m + k + 2 may occur only if n = 0,m = 0, k = 2,
i.e. when deg(Y ) = 6. This case has been excluded by the hypothesis.

Proposition 6. Let r = r(q) = max(1, c(q, 3)− 1). Let Y ∈ Fq[t] be a
nonzero polynomial. Then for 1 ≤ i ≤ r there exist polynomials Zi ∈ Fq[t]
such that

(a) 3 deg(Zi) < deg(Y ) + 3,
(b) deg(Y − Z3

1 − . . .− Z3
r ) ≡ 0 (mod 3) and sgn(Y − Z3

1 − . . .− Z3
r ) is

a cube in the field Fq,
(c) if deg(Y ) 6∈ {4, 5, 6} then deg(Y − Z3

1 − . . .− Z3
r ) 6= 6.
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Proof. If deg(Y ) ∈ {3n − 1, 3n − 2} for some integer n ≥ 1, we take
Z1 = −tn, Z2 = . . . = Zr = 0. Suppose now that deg(Y ) = 3n. If q 6≡ 1
(mod 3), then sgn(Y ) is a cube in Fq so that we take Z1 = . . . = Zr = 0,
otherwise it follows from Proposition 1 that there exist a1 ∈ Fq, . . . , ar+1

∈ Fq such that sgn(Y ) = a3
1 + . . . + a3

r+1 with ar+1 6= 0. Thus, in this
latter case we let Zi = ait

n for i = 1, . . . , r. In all cases we conclude that
deg(Y − Z3

1 − . . .− Z3
r ) = 3n and sgn(Y − Z3

1 − . . .− Z3
r ) is a cube in Fq.

Remark 1. From Proposition 1 it follows that r(q) = 1 for q 6= 7 and
r(7) = 2.

Proposition 7. Let s = s(q) = 2c(q, 3) and let Y ∈ Fq[t] be a polyno-
mial of degree 6. Then for 1 ≤ i ≤ s there exist polynomials Zi ∈ Fq[t] such
that

(a) deg(Y − Z3
1 − . . .− Z3

s ) ≤ 2,
(b) max(deg(Z1), . . . ,deg(Zs)) ≤ 2.

Proof. With c = c(q, 3) one finds a1 ∈ Fq, . . . , ac ∈ Fq such that sgn(Y )
= a3

1 + . . .+a3
c with ac 6= 0. For i = 1, . . . , c− 1 define the polynomials Zi by

Zi = ait
2. Then deg(Y −Z3

1 − . . .−Z3
c−1) = 6 and sgn(Y −Z3

1 − . . .−Z3
c−1)

is a cube.
It follows now from Proposition 3 that there exists a polynomial Zc such

that
deg(Y − Z3

1 − . . .− Z3
c−1 − Z3

c ) ≤ 3.

In order to finish the proof, we will define the polynomials Zc+1, . . . , Z2c as
follows. If deg(Y − Z3

1 − . . . − Z3
c−1 − Z3

c ) < 3, then we let Zc+1 = . . . =
Z2c = 0. If not, let ac+1 ∈ Fq, . . . , a2c ∈ Fq be such that

sgn(Y − Z3
1 − . . .− Z3

c−1 − Z3
c ) = a3

c+1 + . . .+ a3
2c.

Then we let Zi = ait for i = c+ 1, . . . , 2c, so that

deg(Y − Z3
1 − . . .− Z3

c − Z3
c+1 − . . .− Z3

2c) ≤ 2.

Proposition 8. Let m = m(q) = 2 + c(q, 3) and let Y ∈ Fq[t] be such
that deg(Y ) ∈ {4, 5}. Then for 1 ≤ i ≤ m there exist polynomials Zi ∈ Fq[t]
such that

(a) deg(Y − Z3
1 − . . .− Z3

m) ≤ 2,
(b) max(deg(Z1), . . . ,deg(Zm)) ≤ 2.

Proof. Let Z = t6 + Y . By Proposition 3, there exists a polynomial Z1

such that
deg(Z1) ≤ 2, deg(Z − Z3

1 ) ≤ 3.

We conclude the proof as above.
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5. A bound for g(q, 3). The above notations remain valid. We obtain
the following propositions.

Proposition 9. Let g = g(q) = max(1, c(q, 3)− 1) + t(q, 3) + 3 and let
Y 6= 0 in Fq[t] be such that deg(Y ) 6∈ {4, 5, 6}. Then for 1 ≤ i ≤ g there
exist polynomials Yi ∈ Fq[t] such that

(a) Y = Y 3
1 + . . .+ Y 3

g ,
(b) 3 max(deg(Y1), . . . ,deg(Yg)) < 3 + deg(Y ).

Proof. Let
r = r(q), t3 = t(q, 3).

By Proposition 6, for 1 ≤ i ≤ r there exist polynomials Yi ∈ Fq[t] such that

(i) 3 deg(Yi) < deg(Y ) + 3,
(ii) deg(Y − Y 3

1 − . . .− Y 3
r ) ≡ 0 (mod 3),

(iii) sgn(Y − Y 3
1 − . . .− Y 3

r ) is a cube in the field Fq,
(iv) deg(Y − Y 3

1 − . . .− Y 3
r ) 6= 6.

By Proposition 5, for 1 ≤ i ≤ 3 there exist polynomials Zi ∈ Fq[t] such that

3 deg(Y − Y 3
1 − . . .− Y 3

r − Z3
1 − Z3

2 − Z3
3 ) ≤ deg(Y − Y 3

1 − . . .− Y 3
r ),

and

(v) 3 max(deg(Z1),deg(Z2),deg(Z3)) ≤ deg(Y − Y 3
1 − . . .− Y 3

r ).

By (i), (ii) and (v) we obtain

3 max(deg(Z1),deg(Z2),deg(Z3)) < deg(Y ) + 3.

Next, define the polynomial U by

(vi) U = Y − Y 3
1 − . . .− Y 3

r − Z3
1 − Z3

2 − Z3
3 .

It is clear that
3 deg(U) < deg(Y ) + 3,

so that, by definition of the number t3 = t(q, 3), there exist Ui ∈ Fq[t],
1 ≤ i ≤ t3, such that

U = U3
1 + . . .+ U3

t3 ,

with every Ui satisfying deg(Ui) ≤ deg(U), and we may therefore apply (vi)
to conclude the proof.

Proposition 10. Let γ = γ(q) = max(s(q),m(q)) + t(q, 3) and let
Y ∈ Fq[t] be such that deg(Y ) ∈ {4, 5, 6}. Then for 1 ≤ i ≤ γ there exist
polynomials Yi ∈ Fq[t] such that

(a) Y = Y 3
1 + . . .+ Y 3

γ ,
(b) 3 max(deg(Y1), . . . ,deg(Yγ)) < 3 + deg(Y ).
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Proof. Let n = max(2 + c(q, 3), 2c(q, 3)) and t3 = t(q, 3). Propositions 7
and 8 show that there exist Yi ∈ Fq[t], 1 ≤ i ≤ n, such that

deg(Y − Y 3
1 − . . .− Y 3

n ) ≤ 2, deg(Yi) ≤ 2.

Define the polynomial V by

V = Y − Y 3
1 − . . .− Y 3

n ,

so that, by definition of t3, there exist Vi ∈ Fq[t], 1 ≤ i ≤ t3, such that

V = V 3
1 + . . .+ V 3

t3 , deg(Vi) ≤ deg(V ) ≤ 2,

finishing the proof.

6. Main result. Now we may show our main result.

Theorem 1. Let q be a power of a prime number p 6= 3. Then

(a) g(q, 3) ≤ 7 for q 6∈ {2, 4, 16, 7, 13},
(b) max(g(13, 3), g(16, 3)) ≤ 8,
(c) g(7, 3) ≤ 9.

Proof. Suppose that q 6∈ {2, 4, 16, 7, 13}. Then t(q, 3) = 3 and r(q) = 1.
Proposition 9 shows that any polynomial whose degree is different from
4, 5, 6 admits a strict representation as a sum of 7 cubes. On the other
hand, Proposition 10 shows that a polynomial of degree 4, 5 or 6 admits a
strict representation as a sum of 6 or 7 cubes according to the value of q
modulo 3.

The other relations are obtained similarly from the equalities

t(7, 3) = t(13, 3) = t(16, 3) = 4, c(7, 3) = 3, c(13, 3) = c(16, 3) = 2,

thus completing the proof of the theorem.
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