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1. Introduction. Let G be an abelian group of order k. Given a se-
quence of elements ay,...,a, in G (possibly with repetitions), a t-sum is a
sum of the form a;, + ...+ a;, (i1 < ... <4). In [6] Erdés, Ginzburg and
Ziv proved an important result in Combinatorial Number Theory, which
states that if n = 2k — 1 then some k-sum is 0. Since then, numerous other
proofs and generalizations of this result have been given (see for example
[2] and the survey paper [4]). More recently, Bollobds and Leader [3] proved
the following interesting result: for n = k+r (1 < r < k—1),if 0 is
not a k-sum then there are at least r + 1 k-sums. This clearly implies the
Erd6s—Ginzburg—Ziv theorem, by taking r = k — 1.

In this paper we shall prove several results concerning k-sums for abelian
groups of order k. Our first result here is the following theorem, which settles
a conjecture of Bollobds and Leader (see [3, Section 2]).

THEOREM 1. Let G be an abelian group of order k, and let r > 1.
Then the minimum number of k-sums for a sequence ai,...,ax1, of ele-
ments of G that does not have 0 as a k-sum is attained at the sequence
biy...,br41,0,...,0, where by,...,b.11 is chosen to minimize the number
of (non-empty) sums without 0 being a (non-empty) sum.

Our second result gives a characterization of the extremal cases in Bol-
lobas—Leader’s theorem mentioned above.

THEOREM 2. Let G be an abelian group of order k, and let d(G) be the
mazimal order of an element in G. Let ay,...,ax+r € G. Then if 0 is not
a k-sum then the number of k-sums is at least v + 1, and the bound is
attained if and only if 1 < r < d(G) — 2 and the sequence is of the form
a,...,a,b,....b with the order of a — b being at least r + 2.
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From Theorems 1 and 2 we see that to estimate the minimum number of
k-sums for a sequence of elements of G with length k + r that does not have
0 as a k-sum, it suffices to consider the problem in the case of G non-cyclic
and d(G) — 1 < r < D(G) — 2, where D(G) is the Davenport constant of G,
i.e., the minimal n such that, whenever ai,...,a, € G, some non-empty
sum of the a; is 0. We remark here that Eggleton and Erdds [5] have proved
that D(G) < k/2 4 1 for any abelian non-cyclic group G of order k.

The following result can be easily deduced from Theorem 1 and the
theorem of Olson and White [7], so its proof is omitted.

THEOREM 3. Let G be an abelian non-cyclic group of order k, and let
d(G)—1<r <D(G)—2. Let ay,...,aktr € G. Then if 0 is not a k-sum
then the number of k-sums is at least 2r + 1.

We do not know whether the bound of Theorem 3 is sharp in general.
It should be mentioned here that in the case of G = Z2 Bollobés and
Leader have conjectured that the bound in question is n(r —n + 3) — 1 for
n—1<r<2n-3 (= D(Z2)—2) (see [3, Section 2]).

2. Preliminary lemmas. In the proof of Theorems 1 and 2 we need
the following two well known results. The first follows from Corollary 2.3 of
Alon [1], and the second is Lemma 1 of Olson and White [7].

LEMMA 1. Let G be an abelian group of order k, and let ay,...,a, be a
sequence of elements of G in which no value is repeated [ +1 times. If n > k
then the sequence has a t-sum equal to O for some 1 <t <.

LEMMA 2. Letcy,...,cr41 be a sequence of elements of an abelian group
without 0 being a non-empty sum. Then there are at least r + 1 non-empty
sums, and the bound is attained only when c1 = ... =cp11.

3. Proof of Theorems 1 and 2. Let Nyy,(A) be the number of k-
sums for a sequence A = {ay, ..., aky,} that does not have 0 as a k-sum. We
observe that Theorem 1 together with Lemma 2 implies immediately that
Niyr(A) > r+1, and equality holds only if 1 < r < d(G) — 2. Therefore, to
prove the theorems it suffices to prove the following assertions:

(i) Let b1,...,b,41 be as in Theorem 1, and let N,;1 be the number of
(non-empty) sums for this sequence. Then Ny ,(A4) > N,41.
(ii) If Ngyr(A) = r+1 then A must be of the form stated in Theorem 2.

Translating (which does not affect k-sums), we may assume that 0 is the
most often repeated value in A. Let L be the subsequence of all 0 in A,
and write [ = |L| (here and below | X| denotes the length of a sequence X).
Clearly I < k — 1. We distinguish two cases.
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Casg 1: | > r. Then |A\L| < k. Let H be a subsequence of maximal
cardinality of A\L summing to 0 (H may be empty), and let h = |H]|.
Clearly 0 < h < k — 1, which implies that

(1) [+h<k-—1,

for otherwise, H with k& — h zeros of L added would be a subsequence of
A with length k& summing to 0. Hence |A\L U H| > r + 1. Furthermore,
A\L U H has no non-empty sum equal to 0 by the maximality of H. Take
a subsequence C' C A\L U H with |C| = r 4+ 1; then C has at least N, 41
non-empty sums (by the definition of N,;1). It follows that L U C has at
least N,y1 [+ 1-sums (recall that [ > 7). Adding the sum of all elements of
A\L U C to each [ + 1-sum of L U C, we obtain at least N, ; k-sums of A
(noting that |[A\L UC| =k — [ —1). This proves (i) in Case 1.

Suppose now that N,yi(A) = r + 1. By Lemma 2 and the argument
above, it follows easily that the elements in A\L U H must be all equal to
some ¢ € G, and hence r + 1 < dy; — 1, where d; is the order of c.

If H # (), we claim that all elements in H are also equal to ¢. Suppose
that there exists a © € H with x # ¢ (note that  # 0). Removing x and r—1
zeros from A we obtain a sequence of length k. Since Njyy,(A) =r + 1, the
sum of all elements of this sequence must be equal to some k-sum obtained
in the above. It follows that there exists an integer ¢t (1 < ¢ < r) such that
x = te. Then, replacing = in H by t elements ¢ of A\L U H, we obtain a
subsequence H' of A\L summing to 0; but |H'| > |H|, contradicting the
maximality of H. Hence the elements of A\L are all equal. This completes
the proof of (ii) in Case 1.

CASE 2: [ < r. Then |A\L| > k. By repeatedly applying Lemma 1
we can find a system of subsequences S1, ..., S, of A\L with the following
properties:
(2) The S; are disjoint.
(3) Each S; sumsto0and 2<|S;|<Il(j=1,...,q).
(4) |LUSIU...US8, 1|<r<|LUS U...US, 1US,|
(where S,_1 is interpreted to be () when ¢ = 1).

Write

(5) S=85U...US, s=I8

Then by (4), |A\LUS| < k. Let H be a subsequence of maximal cardinality
of A\L U S summing to 0, and let h = |H|. Then 0 < h < k — 1; and, in
analogy to (1), I +h < k — 1. We claim that

(6) |[HUS| <k-—1.
To see this, we first note that |H US;| =h+|S1| < h+1 <k — 1. Suppose
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(6) is false. Then there exists some u (1 <u < ¢ — 1) such that
|HUS1U...USU| <k-1< ’HUS1U...USUUSU+1’.

Since |Sy41| <, it follows that 1 < k—|HUS1U...US,| <. Then, by (2),
(3) and the definition of H, HU S U ... U S, with k —|HU S U...US,|
zeros of I added would be a subsequence of A with length k£ summing to 0,
a contradiction. Hence (6) holds. Further, in analogy to (1), from (6) we
deduce that |[LU H US| < k — 1. Hence |[A\LU HU S| > r + 1. Take a
subsequence C C A\L U H U S with |C| = r + 1. Then C has no non-
empty sum equal to 0 (by the maximality of H). Hence C has at least N1
non-empty sums.

We shall prove that L US U C has at least N1 | + s + 1-sums. To do
this it suffices to show that for each i-sum o; of C (1 <i<r+1), LUSUC
has an [ 4+ s + 1-sum equal to ;. We first note that s < r <[+ s by using
(4), (5) and |Sq| < 1. If1 <i<Il+4+1,then 0 <1+4+1—4 <[ It is easily
seen that S U C with [ + 1 — ¢ zeros from L appended has an [ + s + 1-sum
equaltoo;. If s+1<i<r—+1,then0<Il+s+1—1i <[ It follows that C'
with [ 4+ s 4+ 1 — ¢ zeros from L appended has an [ + s + 1-sum equal to o;.
Thus we are done unless s > [ + 1. In the latter case, for [ +1 <7 < s+ 1,
we have i + |S1| < i+l <l+s+1 < i+ s. It follows that there exists a
v (1 <v < g—1) such that

(7) P+]S1U.. US| <l4+s+1<i+]|S1U...US, US|

Recalling that |S, 41| < I, by (7) we have 1 < [+s+1—i—|S1U...US,| <.
Hence CUS; U...US, withl+s+1—1i—[S1U...US,| zeros from L
appended has an [+ s+ 1-sum equal to ;. The desired result is thus proved.

Now, adding the sum of all elements of A\L U S U C to each of the
I+ s+ l-sums of LU S UC, we obtain at least N, 1 k-sums of A (noting
that [A\LUSUC| = k—1—s—1). This completes the proof of (i) in Case 2.

Finally, since [ < r and |C| = r + 1, the elements in C' cannot be all
equal (recalling the definition of /). Hence, by Lemma 2, C has at least r + 2
non-empty sums and thus we must have Ny ,.(A) > r + 1 in Case 2.

The proof of Theorems 1 and 2 is now complete.
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