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The number of k-sums of abelian groups of order k
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Hong Bing Yu (Suzhou)

1. Introduction. Let G be an abelian group of order k. Given a se-
quence of elements a1, . . . , an in G (possibly with repetitions), a t-sum is a
sum of the form ai1 + . . . + ait (i1 < . . . < it). In [6] Erdős, Ginzburg and
Ziv proved an important result in Combinatorial Number Theory, which
states that if n = 2k − 1 then some k-sum is 0. Since then, numerous other
proofs and generalizations of this result have been given (see for example
[2] and the survey paper [4]). More recently, Bollobás and Leader [3] proved
the following interesting result: for n = k + r (1 ≤ r ≤ k − 1), if 0 is
not a k-sum then there are at least r + 1 k-sums. This clearly implies the
Erdős–Ginzburg–Ziv theorem, by taking r = k − 1.

In this paper we shall prove several results concerning k-sums for abelian
groups of order k. Our first result here is the following theorem, which settles
a conjecture of Bollobás and Leader (see [3, Section 2]).

Theorem 1. Let G be an abelian group of order k, and let r ≥ 1.
Then the minimum number of k-sums for a sequence a1, . . . , ak+r of ele-
ments of G that does not have 0 as a k-sum is attained at the sequence
b1, . . . , br+1, 0, . . . , 0, where b1, . . . , br+1 is chosen to minimize the number
of (non-empty) sums without 0 being a (non-empty) sum.

Our second result gives a characterization of the extremal cases in Bol-
lobás–Leader’s theorem mentioned above.

Theorem 2. Let G be an abelian group of order k, and let d(G) be the
maximal order of an element in G. Let a1, . . . , ak+r ∈ G. Then if 0 is not
a k-sum then the number of k-sums is at least r + 1, and the bound is
attained if and only if 1 ≤ r ≤ d(G) − 2 and the sequence is of the form
a, . . . , a, b, . . . , b with the order of a− b being at least r + 2.
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From Theorems 1 and 2 we see that to estimate the minimum number of
k-sums for a sequence of elements of G with length k+ r that does not have
0 as a k-sum, it suffices to consider the problem in the case of G non-cyclic
and d(G)− 1 ≤ r ≤ D(G)− 2, where D(G) is the Davenport constant of G,
i.e., the minimal n such that, whenever a1, . . . , an ∈ G, some non-empty
sum of the ai is 0. We remark here that Eggleton and Erdős [5] have proved
that D(G) ≤ k/2 + 1 for any abelian non-cyclic group G of order k.

The following result can be easily deduced from Theorem 1 and the
theorem of Olson and White [7], so its proof is omitted.

Theorem 3. Let G be an abelian non-cyclic group of order k, and let
d(G) − 1 ≤ r ≤ D(G) − 2. Let a1, . . . , ak+r ∈ G. Then if 0 is not a k-sum
then the number of k-sums is at least 2r + 1.

We do not know whether the bound of Theorem 3 is sharp in general.
It should be mentioned here that in the case of G = Z2

n Bollobás and
Leader have conjectured that the bound in question is n(r − n+ 3)− 1 for
n− 1 ≤ r ≤ 2n− 3 (= D(Z2

n)− 2) (see [3, Section 2]).

2. Preliminary lemmas. In the proof of Theorems 1 and 2 we need
the following two well known results. The first follows from Corollary 2.3 of
Alon [1], and the second is Lemma 1 of Olson and White [7].

Lemma 1. Let G be an abelian group of order k, and let a1, . . . , an be a
sequence of elements of G in which no value is repeated l+1 times. If n ≥ k
then the sequence has a t-sum equal to 0 for some 1 ≤ t ≤ l.

Lemma 2. Let c1, . . . , cr+1 be a sequence of elements of an abelian group
without 0 being a non-empty sum. Then there are at least r + 1 non-empty
sums, and the bound is attained only when c1 = . . . = cr+1.

3. Proof of Theorems 1 and 2. Let Nk+r(A) be the number of k-
sums for a sequence A = {a1, . . . , ak+r} that does not have 0 as a k-sum. We
observe that Theorem 1 together with Lemma 2 implies immediately that
Nk+r(A) ≥ r+ 1, and equality holds only if 1 ≤ r ≤ d(G)− 2. Therefore, to
prove the theorems it suffices to prove the following assertions:

(i) Let b1, . . . , br+1 be as in Theorem 1, and let Nr+1 be the number of
(non-empty) sums for this sequence. Then Nk+r(A) ≥ Nr+1.

(ii) If Nk+r(A) = r+ 1 then A must be of the form stated in Theorem 2.

Translating (which does not affect k-sums), we may assume that 0 is the
most often repeated value in A. Let L be the subsequence of all 0 in A,
and write l = |L| (here and below |X| denotes the length of a sequence X).
Clearly l ≤ k − 1. We distinguish two cases.
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Case 1: l > r. Then |A\L| < k. Let H be a subsequence of maximal
cardinality of A\L summing to 0 (H may be empty), and let h = |H|.
Clearly 0 ≤ h ≤ k − 1, which implies that

(1) l + h ≤ k − 1,

for otherwise, H with k − h zeros of L added would be a subsequence of
A with length k summing to 0. Hence |A\L ∪ H| ≥ r + 1. Furthermore,
A\L ∪H has no non-empty sum equal to 0 by the maximality of H. Take
a subsequence C ⊆ A\L ∪ H with |C| = r + 1; then C has at least Nr+1

non-empty sums (by the definition of Nr+1). It follows that L ∪ C has at
least Nr+1 l+ 1-sums (recall that l > r). Adding the sum of all elements of
A\L ∪ C to each l + 1-sum of L ∪ C, we obtain at least Nr+1 k-sums of A
(noting that |A\L ∪ C| = k − l − 1). This proves (i) in Case 1.

Suppose now that Nr+1(A) = r + 1. By Lemma 2 and the argument
above, it follows easily that the elements in A\L ∪H must be all equal to
some c ∈ G, and hence r + 1 ≤ d1 − 1, where d1 is the order of c.

If H 6= ∅, we claim that all elements in H are also equal to c. Suppose
that there exists a x ∈ H with x 6= c (note that x 6= 0). Removing x and r−1
zeros from A we obtain a sequence of length k. Since Nk+r(A) = r + 1, the
sum of all elements of this sequence must be equal to some k-sum obtained
in the above. It follows that there exists an integer t (1 < t ≤ r) such that
x = tc. Then, replacing x in H by t elements c of A\L ∪ H, we obtain a
subsequence H ′ of A\L summing to 0; but |H ′| > |H|, contradicting the
maximality of H. Hence the elements of A\L are all equal. This completes
the proof of (ii) in Case 1.

Case 2: l ≤ r. Then |A\L| ≥ k. By repeatedly applying Lemma 1
we can find a system of subsequences S1, . . . , Sq of A\L with the following
properties:

(2) The Sj are disjoint.
(3) Each Sj sums to 0 and 2 ≤ |Sj | ≤ l (j = 1, . . . , q).
(4) |L ∪ S1 ∪ . . . ∪ Sq−1| ≤ r < |L ∪ S1 ∪ . . . ∪ Sq−1 ∪ Sq|
(where Sq−1 is interpreted to be ∅ when q = 1).

Write

(5) S = S1 ∪ . . . ∪ Sq, s = |S|.
Then by (4), |A\L∪S| < k. Let H be a subsequence of maximal cardinality
of A\L ∪ S summing to 0, and let h = |H|. Then 0 ≤ h ≤ k − 1; and, in
analogy to (1), l + h ≤ k − 1. We claim that

(6) |H ∪ S| ≤ k − 1.

To see this, we first note that |H ∪ S1| = h+ |S1| ≤ h+ l ≤ k − 1. Suppose
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(6) is false. Then there exists some u (1 ≤ u ≤ q − 1) such that

|H ∪ S1 ∪ . . . ∪ Su| ≤ k − 1 < |H ∪ S1 ∪ . . . ∪ Su ∪ Su+1|.
Since |Su+1| ≤ l, it follows that 1 ≤ k−|H ∪S1∪ . . .∪Su| ≤ l. Then, by (2),
(3) and the definition of H, H ∪ S1 ∪ . . . ∪ Su with k − |H ∪ S1 ∪ . . . ∪ Su|
zeros of L added would be a subsequence of A with length k summing to 0,
a contradiction. Hence (6) holds. Further, in analogy to (1), from (6) we
deduce that |L ∪ H ∪ S| ≤ k − 1. Hence |A\L ∪ H ∪ S| ≥ r + 1. Take a
subsequence C ⊆ A\L ∪ H ∪ S with |C| = r + 1. Then C has no non-
empty sum equal to 0 (by the maximality of H). Hence C has at least Nr+1

non-empty sums.
We shall prove that L ∪ S ∪ C has at least Nr+1 l + s + 1-sums. To do

this it suffices to show that for each i-sum σi of C (1 ≤ i ≤ r+ 1), L∪S ∪C
has an l + s+ 1-sum equal to σi. We first note that s ≤ r < l + s by using
(4), (5) and |Sq| ≤ l. If 1 ≤ i ≤ l + 1, then 0 ≤ l + 1 − i ≤ l. It is easily
seen that S ∪ C with l + 1− i zeros from L appended has an l + s+ 1-sum
equal to σi. If s+ 1 ≤ i ≤ r+ 1, then 0 ≤ l+ s+ 1− i ≤ l. It follows that C
with l + s+ 1− i zeros from L appended has an l + s+ 1-sum equal to σi.
Thus we are done unless s > l + 1. In the latter case, for l + 1 < i < s+ 1,
we have i + |S1| ≤ i + l < l + s + 1 < i + s. It follows that there exists a
v (1 ≤ v ≤ q − 1) such that

(7) i+ |S1 ∪ . . . ∪ Sv| < l + s+ 1 ≤ i+ |S1 ∪ . . . ∪ Sv ∪ Sv+1|.
Recalling that |Sv+1| ≤ l, by (7) we have 1 ≤ l+s+1− i−|S1∪ . . .∪Sv| ≤ l.
Hence C ∪ S1 ∪ . . . ∪ Sv with l + s + 1 − i − |S1 ∪ . . . ∪ Sv| zeros from L
appended has an l+s+1-sum equal to σi. The desired result is thus proved.

Now, adding the sum of all elements of A\L ∪ S ∪ C to each of the
l + s + 1-sums of L ∪ S ∪ C, we obtain at least Nr+1 k-sums of A (noting
that |A\L∪S∪C| = k− l−s−1). This completes the proof of (i) in Case 2.

Finally, since l ≤ r and |C| = r + 1, the elements in C cannot be all
equal (recalling the definition of l). Hence, by Lemma 2, C has at least r+2
non-empty sums and thus we must have Nk+r(A) > r + 1 in Case 2.

The proof of Theorems 1 and 2 is now complete.
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