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1. Background and summary of results

Background. Let F be a number field. If ℘ is a prime of F , let F℘ denote
the completion of F at ℘. By Matsumoto’s theorem, the second K-group
K2(F ) of F is the quotient of F× ⊗ F× by the subgroup generated by the
elements x⊗ (1− x), x 6= 0, 1. The Hilbert symbols induce a map K2(F )→⊕
µ(F℘), where the direct sum is taken over the finite and real infinite

primes of F . Its kernel is the Hilbert kernel or the wild kernel of F . Non-
trivial elements in the wild kernel WK2(F ) correspond to exotic symbols,
that is, symbols which can be detected by global class field theory but not by
local class field theory. Much of the interest in the wild kernel is motivated
by connections with number theory, for example the Leopoldt and Gross
conjectures.

Let Sp denote the set of primes above the rational prime (p) in F , and let
RF be the ring of p-integers of F . It follows from the reciprocity uniqueness
theorem of Moore (see [CW] and [Mo]) that the p-primary part of WK2(F )
for p an odd prime number fits in an exact sequence

(1.1) 0→WK2(F ){p} → K2(RF ){p} →
⊕

Sp

µ(F℘){p} → µ(F ){p} → 0.

There is a similar exact sequence for the two-primary wild kernel: An im-
portant difference is that in addition to the dyadic primes, the sum includes
the real infinite primes of the number field.

The higher wild kernels of F give a generalization of (1.1). Assume p is
an odd prime number. In [Ba2], Banaszak defined the higher wild kernels
WK2n(F ){p}. As for the classical wild kernel, there are close connections
between the higher wild kernels and number theory. We refer to [Ba1], [Ba2],
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[BG1] and [BG2] for detailed discussions. In [B-Z], the Quillen–Lichtenbaum
conjecture for Q at p is shown to be equivalent to the statement that
WK2n(Q){p} is isomorphic to the group of p-divisible elements of K2n(Q).
By [B-Z, Theorem C] and the Quillen–Lichtenbaum conjecture for local
fields [HM], this also holds for arbitrary number fields. A proof of the Bloch–
Kato conjecture would imply the Quillen–Lichtenbaum conjecture for num-
ber fields at odd primes.

In this paper we consider two-primary higher wild kernels. Many of our
results are inspired by the earlier results for K2 and the classical wild ker-
nel. At the prime two, the real embeddings of a number field clutter up
arguments which are valid for totally imaginary number fields, or more re-
strictively for non-exceptional number fields. An extension of our results
for non-exceptional number fields to exceptional number fields would be of
interest.

Summary of results. Let n be an even natural number. In Section 4 we
define the higher wild kernels WKn(F ){2} of F at the prime 2. These groups
are related to the algebraic K-groups of F , and to values of zeta-functions
if F is a totally real Abelian number field. If A is an Abelian group, let nA
denote the subgroup of elements of exponent n. Let eν be the exponent of
(Z/2ν)×. In Proposition 4.8 we show that 2νWK2meν−2(F ) is independent
of m if F is totally imaginary.

In Section 5 we give a class field theoretic description of the higher
wild kernels. This part is elevated from work of Kolster [Ko1] on K2, and
presumes that the number field F is non-exceptional. The argument uses
Iwasawa theory and Galois descent for the étale cohomology groups of the
intermediate fields in the tower . . . ⊂ F (µ2ν ) ⊂ F (µ2ν+1) ⊂ . . . .

In Theorem 6.1 we show an isomorphism between the higher wild ker-
nels and Galois coinvariants of Picard groups. This result generalizes Theo-
rem 6.6 of [Ke].

If F is a totally real Abelian extension of the rationals and n ≡ 2 mod 4,
the main result in [CØ] allows us to compute the Fitting ideals of eigenspaces
of WKn(F ){2}. As conjectured by Coates and Sinnott [CS], each of these
ideals are generated by a Stickelberger element. This result explicates ele-
ments which annihilate eigenspaces of the wild kernel. See Theorem 7.1 for
the precise statement.

Assume F has no real embeddings. We show that if rk 2νWK2eν−2(F )
= 0, then Leopoldt’s conjecture holds for F at the prime 2. In Theorem 8.6
we obtain higher 2-rank formulas for the wild kernels. This part requires F
to be non-exceptional.

In the last section we discuss the group of divisible elements in K2n(F ).
If F is a non-exceptional field, we note that WK2n(F ){2} is isomorphic
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to the group of 2-divisible elements in K2n(F ). This result goes back to the
works of Banaszak [Ba2] and Schneider [Sc]. It is an open problem to identify
the 2-divisible elements for exceptional number fields. In [Hut], Hutchinson
obtained a complete solution of this problem for the Hilbert kernel and any
number field.

Finally, we point out that we do not define a wild kernel WKn(F ){2}
for F a real number field and n ≡ 4 mod 8. This is quite unsatisfactory, but
in general this case requires a lengthy discussion beyond the scope of this
paper.

Acknowledgments. I thank Manfred Kolster for useful discussions. In
particular, Section 5 and the rank formulas in Theorem 8.8 are inspired by
Kolster’s work on the classical wild kernel. We use the work of Keune [Ke] to
prove Theorem 6.1. The results in Section 7 were established in collaboration
with Pietro Cornacchia. I am also very grateful for the valuable comments
of Cornelius Greither, Kevin Hutchinson, John Rognes, and a referee.

2. Tate–Poitou duality. Let F be a number field. Denote by RF
the ring of p-integers in F , and by Sp,∞ the union of the p-adic primes
Sp and the Archimedean primes S∞ in F . Consider the étale cohomology
groups Hn

ét(RF ;M) for M equal to Z/pν(i), Zp(i) (see [Ja]), or Qp/Zp(i). If
p = 2, see [C-S] for the definition of the positive étale cohomology groups
Hn

+(RF ;M). In our indexing, the positive group is trivial for n 6= 1, 2. For
notational convenience we let Z/pν(i)′ denote Z/pν(1− i), and likewise for
Zp(i) and Qp/Zp(i). If A is an Abelian group, let A# denote its Pontryagin
dual. In the following, let Ĥ denote Tate cohomology and let S be a subset
of Sp,∞.

Definition 2.1. Let Xn
S(RF ;M) denote the kernel of the localization

map:
βn(M) : Hn

ét(RF ;M)→
⊕

S

Hn
ét(F℘;M).

Let us recall Tate–Poitou duality (cf. [Mi] and [Ta1]):

Theorem 2.2. There exists a natural 9-term exact sequence:

0 H0
ét(F ;M)

⊕
Sp,∞

Ĥ0
ét(F℘;M) H2

ét(RF ;M ′)#

H1
ét(RF ;M ′)#

⊕
Sp,∞

H1
ét(F℘;M) H1

ét(RF ;M)

H2
ét(RF ;M)

⊕
Sp,∞

H2
ét(F℘;M) H0

ét(F ;M ′)# 0

// β0(M) // γ0(M)//

��

��

γ1(M)oo β1(M)oo

β2(M) // γ2(M) // //
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and perfect pairings:

Hn
ét(F℘;M)× H2−n

ét (F℘;M ′)→ Q/Z,
Xn

S(RF ;M)×X3−n
S (RF ;M ′)→ Q/Z.

Remark 2.3. If p is odd, there is an isomorphism between the p-primary
étale wild kernel WKét

2i−2(F ){p} of F and X2
Sp(RF ;Zp(i)) (cf. [Ko3] and

[Ng2]).

3. Algebraic K-theory of number rings. In [RW], Rognes and
Weibel used Voevodsky’s proof of the Milnor conjecture to compute the
two-primary algebraic K-groups of number rings. More precisely, see Theo-
rems 0.4 and 0.6 in [RW] for the following result.

Theorem 3.1. Let n ≥ 1.

(a) If F is totally imaginary , then K2n(RF ){2} = H2
ét(RF ;Z2(n+ 1)).

(b) If F is a real number field , then

K2n(RF ){2} =
{

H2
ét(RF ;Z2(n+ 1)) if n ≡ 0, 1 mod 4,

H2
+(RF ;Z2(n+ 1)) if n ≡ 3 mod 4.

Let ζF denote the zeta-function of F , and let r1(F ) denote the number
of real embeddings of F . We write a ∼2 b if a and b have the same 2-adic
valuation. See [RW, Theorem 0.2] for the following important result:

Theorem 3.2. Let F be a totally real Abelian number field. Then for all
even n > 0,

ζF (1− n) ∼2 2r1(F ) #K2n−2(RF ){2}
#K2n−1(RF ){2} .

We will employ Theorem 3.1 to define the two-primary higher wild ker-
nels of F . If F is a totally real Abelian number field, then Theorem 3.2
implies a formula for the order of these groups.

4. Higher wild kernels. In this section we introduce the higher wild
kernels at the prime 2. The label (a) refers to totally imaginary number
fields, and (b) refers to real number fields. The positive étale cohomology
groups in Theorem 3.1 fit into the exact sequences

⊕r1 H1
ét(R;Z2(i)) →

H2
+(RF ;Z2(i)) → H2

ét(RF ;Z2(i)) → ⊕r1 H2
ét(R;Z2(i)) → 0. The group

H2
ét(R;Z2(i)) is (1) isomorphic to Z/2 if i is even, and (2) trivial if i is odd. If

i is even, then H1
ét(R;Z2(i)) is the trivial group. In particular, H2

+(RF ;Z2(i))
injects into H2

ét(RF ;Z2(i)). It follows that Theorems 2.2 and 3.1 imply:
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Corollary 4.1. Let n ≥ 1.

(a) There is an exact sequence

K2n(RF ){2} β2
n−→
⊕

S2

H2
ét(F℘;Z2(n+ 1))→ H0

ét(F ;Q2/Z2(n))→ 0.

(b) Assume n 6≡ 2 mod 4. Then there are exact sequences

K2n(RF ){2} β2
n−→
⊕

S

H2
ét(F℘;Z2(n+ 1))→ H0

ét(F ;Q2/Z2(n))→ 0,

where S = S2,∞ if n ≡ 1 mod 4 and S = S2 otherwise.

The kernel of β2
1 is the two-primary part of the classical wild kernel of F .

This fact motivates the next definition.

Definition 4.2. The nth two-primary wild kernel WK2n(F ){2} of F is
the kernel of the map β2

n in Corollary 4.1.

Next we compute the index of the higher wild kernels in the higher tame
kernels. If k is field and i ∈ Z, we let w(2)

i (k) be the maximal power 2n

of 2 such that the exponent of Gal(k(ζ2n)/k) divides i. This number equals
#H0

ét(k;Q2/Z2(i)).
In the next result, the case of K2 is due to Tate (see [CL, Proposi-

tion 5.1]).

Proposition 4.3. We have the following calculations:

(a)
#K2n(RF ){2}
#WK2n(F ){2} =

∏
S2
w

(2)
n (F℘)

w
(2)
n (F )

;

(b)
#K8n(RF ){2}
#WK8n(F ){2} =

∏
S2
w

(2)
4n (F℘)

w
(2)
4n (F )

,

#K8n+2(RF ){2}
#WK8n+2(F ){2} = 2r1(F )−1

∏

S2

w
(2)
4n+1(F℘),

#K8n+6(RF ){2}
#WK8n+6(F ){2} =

1
2

∏

S2

w
(2)
4n+3(F℘).

Proof. Consider the case (b) and WK8n+2(F ). By Corollary 4.1 we have

#K8n+2(RF ){2} ·#H0
ét(F ;Q2/Z2(4n+ 1))

= 2r1 ·#WK8n+2(F ){2} ·#
⊕

S2

H0
ét(F℘;Q2/Z2(4n+ 1)).

If i is odd, then w(2)
i (F ) = 2 since F is a real number field. The other cases

follow similarly.
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For totally real Abelian number fields, the cardinalities of the two-
primary higher wild kernels are determined by the values at odd negative
integers of the associated zeta-functions:

Proposition 4.4. Let F be a totally real Abelian number field. Then

#WK8n+2(F ){2} ∼2
ζF (−4n− 1)w(2)

4n+2(F )

2r1(F )−1
∏
S2
w

(2)
4n+1(F℘)

,

#WK8n+6(F ){2} ∼2
ζF (−4n− 3)w(2)

4n+4(F )

2r1(F )−1
∏
S2
w

(2)
4n+3(F℘)

.

Proof. See [RW, Theorem 6.14(b)], Theorem 3.2 and Proposition 4.3.

A number field F is called two-regular if the 2-Sylow subgroup of its
modified tame kernel is trivial [GJ]. An equivalent condition is that (2) does
not split in OF and the narrow Picard group Pic+(RF ) has odd order.

Lemma 4.5. Let F be a two-regular number field. Then WK2n(F ){2} is
the trivial group.

Proof. Theorems 3.1 and 4.1 in [RØ] show that K2n(RF ){2} = 0 unless
r1(F ) > 0 and n ≡ 1 mod 4. It remains to show that X2

S2,∞(RF ;Z2(4n+2))

= 0 if n ≥ 0. By Theorem 2.2 it suffices to prove that γ0(Q2/Z2(−4n− 1))
is a surjective map. We have H2

ét(RF ;Z2(4n+ 2)) = (Z/2)r1 by [RØ, Propo-
sition 2.2]. Note that the group Ĥ0

ét(C;Q2/Z2(−4n − 1)) is trivial, but
Ĥ0

ét(R;Q2/Z2(−4n−1)) = Z/2. Hence γ0(Q2/Z2(−4n−1)) is a map from an
F2-vector space of dimension r1+1 to an F2-vector space of dimension r1. Its
kernel is cyclic of order 2 by Theorem 2.2 (cf. the proof of Proposition 4.3).
The map in question is therefore surjective.

See [Hu] for a list of all real quadratic number fields whose wild kernel is
trivial. Proposition 4.4 and Lemma 4.5 give the 2-adic valuation of ζF (−n)
for n ≥ 1 an odd integer and F a totally real two-regular Abelian number
field. We write t for the 2-rank of Pic(RF ), and u for the 2-rank of Pic+(RF ).

Lemma 4.6. Let F be a number field. In case (b) and n ≡ 3 mod 4, we
have rk 2WK2n(F ) ≥ u−1. In all other cases we have rk 2WK2n(F ) ≥ t−1.

If F is a totally real number field , then X1
S2,∞(RF ;Q2/Z2(4n + 2))

injects into WK8n+2(F ){2} and X1
S2

(RF ;Q2/Z2(4n + 4)) injects into
WK8n+6(F ){2}.

Proof. The 2-rank of Kn(RF ) is computed in [RW, Theorem 7.11]. By
comparing with Corollary 4.1, the lower bounds for rk 2WK2n(F ) follow.

Let M = Q2/Z2(4n + 2) and N = Z2(4n + 2). If F is a totally real
number field, the Bockstein map β : H1

ét(RF ;M) → H2
ét(RF ;N) in the
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universal coefficient sequence is an isomorphism (cf. [RW, Proposition 6.11]).
We conclude using the following diagram with exact rows:

0 X1
S2,∞(RF ;M) H1

ét(RF ;M)
⊕

S2,∞
H1

ét(F℘;M)

0 WK8n+2(F ){2} H2
ét(RF ;N)

⊕
S2,∞

H2
ét(F℘;N)

// // //

β ∼=
��

⊕
β

��
// // //

The same argument applies to WK8n+6(RF ).

Lemma 4.7. Assume F contains a primitive 2ν th root of unity. If ν = 1
and F is real , assume n ≡ 0, 1 mod 4. Let S be as in Corollary 4.1. If
X2

S(RF ;Z2(n+ 1)) = X2
S(RF ;Z/2ν(n+ 1)), then WK2n(F ){2} is isomor-

phic to (Pic(RF )/2ν)(n).

Proof. Duality and the assumption µ2ν ∈ F imply the isomorphisms

X2
S(RF ;Z/2ν(n+ 1)) = X1

S(RF ;Z/2ν(−n))# = X1
S(RF ;Z/2ν)#(n).

On the other hand, by class field theory we have

X1
S(RF ;Z/2ν) = Hom(Pic(RF ),Z/2ν) = (Pic(RF )/2ν)#.

Proposition 4.8. Assume F is totally imaginary , and let eν denote
the exponent of (Z/2ν)×. Let m be any natural number such that meν > 1.
Then the groups 2νK2meν−2(RF ) are independent of m. Likewise for
2νWK2meν−2(RF ).

Proof. By [RW, Theorem 6.14(a)], the two-torsion in K2n−1(F ) is cyclic
of order w

(2)
n (F ) for n ≥ 2. Hence 2νK2n−1(F ) = H0

ét(F ;Z/2ν(n)). The
absolute Galois group of F acts trivially on the meν-fold tensor product of
the group of 2νth roots of unity, so K2meν−1(F ) contains an element of order
2ν and 2νK2n−1(F ) = 2νK2(n+meν)−1(F ). The proof of [RW, Theorem 7.2]
shows that K2meν−1(RF ;Z/2ν) is isomorphic to H1

ét(RF ;Z/2ν(meν)) for all
ν ≥ 1. By the Bockstein exact sequence in mod 2ν-homotopy, there is the
exact sequence

0→ K2meν−1(F )/2ν → H1
ét(RF ;Z/2ν(meν))→ 2νK2meν−2(RF )→ 0.

This sequence is split since K2meν−1(F )/2ν = (Z/2ν)r2+1 is a pure subgroup
of H1

ét(RF ;Z/2ν(meν)). Two of the groups in the split exact sequence are
therefore independent of m, and so is the third by the cancellation property
of finite groups.

Consider now the wild kernels. In [Ko3, pp. 48–49] a map

α/2ν(RF ,meν) : H1
ét(RF ;Z/2ν(meν))→

⊕

S2

2νH2
ét(F℘;Z2(meν))
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is constructed with kernel independent of m (cf. Section 5). The source of
this map surjects onto 2νK2meν−2(RF ) by the exact sequence above, while
its target receives a map from the same group by Corollary 4.1(a). The
kernel-cokernel exact sequence of the resulting diagram is

0→ K2meν−1(F )/2ν → kerα/2ν(RF ,meν)→ 2νWK2meν−2(RF )→ 0,

and we may proceed as above.

5. An idélic description of the wild kernels. In this section we will
relate the higher wild kernels to idéles in class field theory. Our approach is
inspired by Kolster’s [Ko1] idélic description of the classical wild kernel.

Let Fk = F (ζ2k) and let F∞ =
⋃
k Fk. Each Fk is a Galois extension

of F , and F is called non-exceptional if Γ ′ = Gal(F∞/F ) is isomorphic to
the additive group of the two-adic integers. This occurs precisely if ζ4 ∈ F ,
or ζ2k − ζ 2k ∈ F for some k ≥ 3. Let RFk denote the ring of two-integers
in Fk, and let RF∞ be the union. The roots of unity contained in Fk allow
us to use the constructions of [Ko1]. If F is non-exceptional, we use Galois
descent arguments to conclude for F .

Let β(i) be the Bockstein map, and consider the commutative diagram:

(5.1)

H1
ét(RF ;Q2/Z2(i)) H2

ét(RF ;Z2(i))

⊕
S2

H2
ét(F℘;Z2(i))

α(RF ,i)

�
�

�
�

�
�

�
�

�
�

�
�

�
� ))

β(i) //

β2(Z2(i))uu� �
�

�
�

�
�

�
�

�
�

�
�

The kernel-cokernel sequence of (5.1) is

(5.2) 0→ (Q2/Z2)r(F ) → kerα(RF , i)→X2
S2

(RF ;Z2(i))→ 0,

where r(F ) = r2(F ) if i ≥ 2 is even, and r(F ) = r1(F ) + r2(F ) if i ≥ 3 is
odd. An alternative description of kerα(RF , i) is as follows: Let ν℘ be the
normalized discrete valuation at a prime ℘, and put

(5.3) ∆ν
F = {1⊗ u ∈ Z/2ν ⊗ F× | ν℘(u) ≡ 0 mod 2ν for all ℘ 6∈ S2,∞}.

As ν varies, there are compatible isomorphisms

(5.4) ∆ν
F

∼=−→ H1
ét(RF ;Z/2ν(1)).

If 1 ≤ ν ≤ k, the cup-product map with a generator of H0
ét(RFk ;Z/2ν(i−1))

induces isomorphisms by (5.4):

(5.5) ∆ν
Fk

(i− 1)
∼=−→ H1

ét(RFk ;Z/2ν(i)).

Let α/2ν(RF , i) denote the map α(RF , i) pre-composed with the natural
map from H1

ét(RF ;Z/2ν(i)) to H1
ét(RF ;Q2/Z2(i)).
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Definition 5.6. Define the (i−1)th twisted Kummer radical Dν
Fk

(i−1)
for 1 ≤ ν ≤ k to be the pre-image of kerα/2ν(RFk , i) under the isomor-
phism (5.5).

Consider the classical Kummer radical of F :

Dν
F = {ζ2ν ⊗ u ∈ µ2ν ⊗ F× | u = a℘b

2ν
℘ for all ℘

with a℘ ∈ N℘ and b℘ ∈ F×℘ }.
Here N℘ =

⋂
m≥0N(F℘(ζ2m)×) is the subgroup of F×℘ of norms from the cy-

clotomic Z2-extension of F℘. In fact, Dν
Fk

(1) is the classical Kummer radical
of Fk. To see this, consider the diagram:

0 Dν
Fk

(1) ∆ν
Fk

(1)
⊕

S2 2νH2
ét(Fk℘ ;Z2(2))

0 2νWK2(Fk) 2νK2(RFk)
⊕

S2 2νH2
ét(Fk℘ ;Z2(2))

// //

��

α/2ν(RFk ,2) //

β(2)

��
=

��
// // β2(Z2(2)) //

The right hand square commutes by definition of α/2ν(RFk , 2), so there is a
unique map Dν

Fk
(1)→ 2νWK2(Fk) that makes the left square commutative.

The lower rightmost map is induced by the Hilbert symbol (·, ·)℘ associated
to ℘. Theorem 6.1 of [Ta3] shows that every element in 2νK2(Fk) can be
written in the form {ζ2ν , u}, where u is a unit in Fk. In particular, we have

Dν
Fk

(1) = {ζ2ν ⊗ u ∈ µ2ν ⊗ F×k | (ζ2ν , u)℘ = 1 for all finite ℘}.
Assume ζ2e ∈ F℘, but ζ2e+1 6∈ F℘. Recall that the Hilbert symbol (ζ2ν , u)℘
is trivial if and only if u is a norm of the extension F℘(ζ2ν+e)/F℘. Further-
more, N(F℘(ζ2e+ν )×) = N℘F×2ν

℘ . By local class field theory, it follows that
the left hand side of the equation equals

⋂
m≥ν F

×2ν
℘ N(F℘(ζ2e+m)×) since

F℘(ζ2e+ν ) = F℘( 2ν
√
F×℘ ) ∩ F℘(ζ2e+m) for m ≥ ν. It is clear that N℘F×2ν

℘

is contained in the above intersection. The reverse inclusion holds by the
example of [BP, p. 526]. See also [Gi, Lemma 1].

There are natural maps Dν
Fk

(i− 1) → Dν
Fk+1

(i− 1), and we denote the
colimit by Dν

F∞(i−1). Likewise we obtain D∞F∞(i−1). The cup-product and
the direct limit functor are compatible, so the cup-product map induces an
isomorphism

(5.7) Dν
F∞(i− 1) = kerα/2ν(RF∞ , i).

Next we consider Galois descent for D∞F∞(i− 1).

Lemma 5.8. Assume F is a non-exceptional number field , and i 6= 0, 1.
There is a Galois descent isomorphism kerα(RF , i) = D∞F∞(i− 1)Γ

′
.

Proof. Consider the Lyndon–Hochschild–Serre spectral sequence

Em,n2 = Hm(Γ ′,Hn
ét(RF∞ ;Q2/Z2(i))) ⇒ Hm+n

ét (RF ;Q2/Z2(i)).
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The cohomological dimension of Γ ′ is 1, so the following sequence is exact:

0→ E1,0
2 → H1

ét(RF ;Q2/Z2(i))→ E0,1
2 → 0.

Choose a topological generator γ of Γ ′. Then H1(Γ ′;Q2/Z2(i)) is the coker-
nel of the map 1−γ : Q2/Z2(i)→ Q2/Z2(i), i.e., multiplication by 1−κ(γ)i

on Q2/Z2. Here κ : Γ ′ → Z×2 denotes the cyclotomic character. It follows
that E1,0

2 is trivial if i 6= 0.
There is an isomorphism (

⊕
℘|℘ H2

ét(Fk℘ ;Z2(i)))Γk = H2
ét(F℘;Z2(i)) for

℘ a dyadic prime and i 6= 1. This follows by local duality (cf. [KM, p. 44]).
Consider now, for i 6= 0, 1, the diagram:

kerα/2ν(RF , i) H1
ét(RF ;Z/2ν(i))

⊕
℘∈S2

H2
ét(F℘;Z2(i))

Dν
Fk

(i− 1)Γk H1
ét(RFk ;Z/2ν(i))Γk (

⊕
℘|℘H2

ét(Fk℘ ;Z2(i)))Γk

//

��

//

��
∼=
��

// //

Here the left horizontal maps are injective. In the diagram obtained by
taking the direct limit over k and then over ν, all vertical maps will be
isomorphisms by the above.

The map R×F →
⊕

Sp
Zp · ℘, u 7→ ∑

Sp
logp(NF℘/Qp(u)) · ℘, extends by

linearity to a map gF of Zp-modules. Its kernel is called the Gross kernel
of F . We have the equality rkZp(ker gF ) = r1(F ) + r2(F ) + δF where δF ≥ 0
is the Gross defect. The following extension of the Gross conjecture [Gr] is
due to Jaulent [Jau].

Conjecture 5.9. The Gross defect equals zero.

Conjecture 5.9 holds for Abelian number fields by [Jau] and [Gr]. Let JF
denote the idéle group of F , and write F for the group of principal idéles.
Define N℘ to be F×℘ for ℘ infinite, and let XF =

∏
℘N℘. We use an overline

to denote the closure in the idéle topology. The next result is Corollary 1.11
and Theorem 1.12 of [Ko1].

Theorem 5.10. There is a split short exact sequence

0→ ker gF ⊗Q2/Z2 → D∞F → JF /FXF {2} → 0.

By inserting Fk for F and passing to the colim over k, we obtain

(5.11) 0→ ker gF∞ ⊗Q2/Z2 → D∞F∞ → JF∞/F∞XF∞{2} → 0.

Next we record a version of (5.11) for arbitrary twists.

Lemma 5.12. Assume F is a non-exceptional number field. There is a
short exact sequence
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(5.13) 0→ (ker gF∞ ⊗Q2/Z2(i− 1))Γ
′ → D∞F∞(i− 1)Γ

′

→ JF∞/F∞XF∞(i− 1){2}Γ ′ → 0

for i 6= 1, and for i = 1 if δFn = 0 for all n.

Proof. We must show that (ker gF∞⊗Q2/Z2(i−1))Γ ′ is the trivial group.
If i 6= 1, this follows from Tate’s lemma [Ta2]. The case i = 1 is implicit in
[Ko1]. A proof can be given along the following lines: Let X∞ be the Galois
group of the maximal two-ramified Abelian pro-2-extension of F∞. Recall
from [Iw, §7] the Kummer perfect pairing of Γ ′-modules:

(5.14) X∞(−1)×∆∞F∞ → Q2/Z2.

Let N be the orthogonal complement of the Λ-torsion module torΛ X∞(−1)
of X∞(−1), and let frΛ X∞(−1) be the quotient of X∞(−1) by torΛ X∞(−1).
By [Ko1] we have N = ker gF∞ ⊗ Q2/Z2 under the given hypothesis. The
following sequence is therefore exact by (5.11):

0→ N Γ ′ → (D∞F∞)Γ
′ → (JF∞/F∞XF∞{2})Γ

′

→ NΓ ′ → (D∞F∞)Γ ′ → (JF∞/F∞XF∞{2})Γ ′ → 0.

From the pairing (5.14) it follows that NΓ ′ = HomZ2(frΛ X∞(−1)Γ
′
,Q2/Z2)

= 0. Note that (D∞F∞)Γ ′ is finite.

Next we compare the sequences (5.2) and (5.13) assuming the hypothesis
in Lemma 5.12 and i ≥ 2. Lemma 5.8 gives an isomorphism between the
two middle terms of these exact sequences, and hence (Q2/Z2)r2(F ) is the
maximal divisible subgroup of D∞F∞(i − 1)Γ

′
. This group is contained in

(ker gF∞ ⊗ Q2/Z2(i − 1))Γ
′

by the finiteness of JF∞/F∞XF∞(i − 1){2}Γ ′ .
By the snake lemma, we get the short exact sequence

(5.15) 0→ (ker gF∞⊗Q2/Z2(i− 1))Γ
′
/(Q2/Z2)r2(F ) →X2

S2
(RF ;Z2(i))

→ JF∞/F∞XF∞(i− 1){2}Γ ′ → 0.

Theorem 5.16. Let F be a non-exceptional number field and n ≥ 2.
Then there is an exact sequence

0→ (ker gF∞ ⊗Q2/Z2(n− 1))Γ
′
/(Q2/Z2)r2(F ) →WK2n−2(F ){2}
→ JF∞/F∞XF∞(n− 1){2}Γ ′ → 0.

Proof. Use (5.15) and the definition of the wild kernel.

Remark 5.17. For odd prime numbers, there is an analogous exact se-
quence for any number field. There is also a version at each finite level
(cf. (8.5)).
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6. The Picard group description. The main result in this section is:

Theorem 6.1. Let F be a non-exceptional number field and n ≥ 1.
Choose ν such that w(2)

n (F℘) ≤ 2ν for all dyadic primes ℘ in F , and such that
2ν annihilates the two-primary part of K2n(RF ). If Γ = Gal(F (ζ2ν )/F ),
there is an isomorphism

(Pic(RF (ζ2ν ))/2
ν(n))Γ = WK2n(F ){2}.

In Theorem 6.1, the case n = 1 is due to Keune (see [Ke, Theorem 6.6]).
If n ≥ 2, our proof follows the same line of argument. We will only discuss
the intermediate steps in some details.

The field F is totally imaginary, so the nth two-primary wild kernel of
F fits into the exact sequence

(6.2) 0→WK2n(F ){2} → K2n(RF ){2}
→
⊕

S2

H2
ét(F℘;Z2(n+ 1))→ H0

ét(F ;Q2/Z2(n))→ 0.

Concerning codescent for K2n(RF ) we have the following result:

Proposition 6.3. Let n ≥ 1. Assume E/F is an extension which is
unramified outside the dyadic primes, and let Γ = Gal(E/F ). Then the
transfer map induces the isomorphism

K2n(RE){2}Γ
∼=−→ K2n(RF ){2}.

Proof. The Tate spectral sequence (cf. [Se, Appendix 1]) specializes to
a second quadrant cohomological spectral sequence

E−p,q2 = Hp(Γ,H
q
ét(RE ;Q2/Z2(i))) ⇒ H−p+qét (RF ;Q2/Z2(i)).

The edge maps in this spectral sequence are the corestriction maps. Note
that E−p,q2 is zero for i, q ≥ 2 by [RW, Proposition 4.6]. Hence corestric-
tion induces an isomorphism H1

ét(RE;Q2/Z2(i))Γ → H1
ét(RF ;Q2/Z2(i))

for i≥ 2. Since the Bloch–Lichtenbaum spectral sequence is compati-
ble with corestriction, we get from [RW, Theorem 6.3] the isomorphism
K2n+1(RE ;Q2/Z2)Γ → K2n+1(RF ;Q2/Z2) for n ≥ 1. Next, compare the
Bockstein exact sequences:

(K2n+1(RE)⊗Q2/Z2)Γ K2n+1(RE;Q2/Z2)Γ K2n(RE){2}Γ 0

K2n+1(RF )⊗Q2/Z2 K2n+1(RF ;Q2/Z2) K2n(RF ){2} 0

//

��

//

∼=
�� ��

//

// // //

It follows immediately that K2n(RE){2}Γ → K2n(RF ){2} is surjective.
Moreover, K2n+1(RF ) ⊗ Q2/Z2 injects into K2n+1(RF ;Q2/Z2). The snake
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lemma implies that the kernel of K2n(RE){2}Γ → K2n(RF ){2} is divisible,
hence trivial since K2n(RE) is finite.

Denote by (
⊕
Ai)0 the subgroup of

⊕
Ai consisting of elements a = (ai)

such that
∑
ai = 0, in additive notation.

Proposition 6.4. If ζ2ν ∈ E for some ν ≥ 2, then there is a natural
short exact sequence of Galois modules

(6.5) 0→ Pic(RE)/2ν(n)→ K2n(RE)/2ν →
(⊕

S2

Z/2ν
)

0
(n)→ 0.

Proof. The statement for n = 1 is [Ta3, Theorem 6.2]. If n > 1 we have

K2n(RE)/2ν = H2
ét(RE;Z2(n+ 1))/2ν = H2

ét(RE ;Z/2ν(n+ 1))

= H2
ét(RE;Z/2ν(2))(n− 1) = (H2

ét(RE;Z2(2))/2ν)(n− 1)

= (K2(RE)/2ν)(n− 1).

The group H3
ét(RE;Z2(n + 1)) is trivial, so the second and fourth isomor-

phisms follow from the Bockstein exact sequence. The third isomorphism
uses the fact that ζ2ν ∈ E. Theorem 6.14(a) of [RW] implies the remaining
claims.

Following [Ke], we denote by E′ the maximal Abelian unramified ex-
tension of F (ζ2ν ) for which ∆ = Gal(E′/F (ζ2ν )) has exponent 2ν and the
Archimedean and dyadic primes in F (ζ2ν ) split completely in E′. That is, the
Artin map in class field theory induces an isomorphism Pic+(RF (ζ2ν ))/2ν

→ ∆ of Γ -modules. The field E′ is the class field of F (ζ2ν ) in which the
primes that represent the trivial element of Pic+(RF (ζ2ν ))/2ν split com-
pletely. Let Σ denote the Galois group of E ′/F , and T ′2 the set of dyadic
primes in E′.

Corollary 6.6. With the same assumption as in Proposition 6.4, the
Σ-module map K2n(RE′)/2ν → (

⊕
T ′2
Z/2ν)0(n) induces isomorphisms

K2n(RF (ζ2ν ))/2
ν ∼=−→

((⊕

T ′2

Z/2ν
)

0
(n)
)
∆

of Γ -modules, and

K2n(RF )/2ν
∼=−→
((⊕

T ′2

Z/2ν
)

0
(n)
)
Σ
.

Proof. Proposition 6.4 yields the diagram:

(Pic(RE′)/2ν(n))∆ (K2n(RE′)/2ν)∆ ((
⊕

T ′2
Z/2ν)0(n))∆

(Pic(RF (ζ2ν ))/2ν(n)) K2n(RF (ζ2ν ))/2ν (
⊕

T2
Z/2ν(n))0

//

��

//

∼=
�� ��

// //
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See Proposition 6.3 for the indicated Γ -module isomorphism. The left ver-
tical map is induced by the norm map, hence is zero by the choice of E ′.
It follows that the map (K2n(RE′)/2ν)∆ → ((

⊕
T ′2
Z/2ν)0(n))∆ is an iso-

morphism. This implies the Γ -module isomorphism. The remaining claim
follows from Proposition 6.3.

Proof of Theorem 6.1 (after F. Keune). We will only sketch a proof;
further details can be found in [Ke, (7.4)–(7.6)] and [Hut]. By Corollary 6.6
and our assumptions, the long exact sequence in group homology associ-
ated to the short exact sequence 0 → (

⊕
T ′2
Z/2ν)0(n) → ⊕

T ′2
Z/2ν(n) →

Z/2ν(n)→ 0 of Σ-modules reduces to the exact sequence

(6.7) 0→ H1(Σ,Z/2ν(n))→ K2n(RF ){2}
→
⊕

S2

H2
ét(F℘;Z2(n+ 1))→ H0

ét(F ;Q2/Z2(n))→ 0.

Moreover, H1(Σ,Z/2ν(n)) = H1(∆,Z/2ν(n))Γ = (∆/2ν(n))Γ . Now com-
pare (6.2) and (6.7).

7. Fitting ideals of wild kernels. Let R be a unital commutative
ring. If M is a finitely generated R-module, let FitR(M) denote the first
Fitting ideal of M over R. See [MW] and [No] for an introduction to Fitting
ideals. Let Z2 denote the 2-adic integers.

Assume F is an Abelian number field with conductor f . Let Gal(F/Q) =
P ×∆ where P is the 2-Sylow subgroup. We consider the 2-adic characters
∆→ Q×2 up to Gal(Q2/Q2)-conjugacy. By adjoining the values of a charac-
ter χ to Z2, we obtain a discrete valuation ring Oχ, and also a Z2[∆]-algebra
via δ · x := χ(δ)x for δ ∈ ∆, x ∈ Oχ. If M is a Z2[Gal(F/Q)]-module, the
χ-eigenspace M(χ) = Oχ ⊗Z2[∆] M is an Oχ[P ]-module and there is a de-
composition into eigenspaces

M =
⊕

[χ]

M(χ).

Recall the partial zeta-function ζf (s, a) =
∑

k≡amod f k
−s where a is an

integer relatively prime to f , and Re(s) > 1. Choose a primitive fth root
of unity ζf . For every positive a with (a, f) = 1, denote by σa ∈ Gal(F/Q)
the restriction to F of the automorphism of Q(ζf ) that maps ζf to its ath
power. For n ≥ 0, the nth Stickelberger element relative to F is

θn =
∑

(a,f)=1, 1≤a<f
ζf (−n, a)σ−1

a .

Let D and I denote the common decomposition and inertia groups of
the dyadic primes in F . We can now state the main result of this section:
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Theorem 7.1. Assume F is a totally real Abelian number field of odd
prime power conductor. Write G = Gal(F/Q) = ∆ × P , where P is the
2-Sylow subgroup of G. Let χ : ∆→ Q×2 be a non-trivial 2-adic character.
Assume D ⊂ ∆, and let ξ denote the restriction of χ to D. Put a = 4 if ξ
is trivial and a = 2 if ξ is non-trivial. For n ≡ 2 mod 4 we have

FitZ2[G](χ) WKn(F ){2}(χ) =
(
θn/2(χ)

a

)

where θn/2 is the (n/2)th Stickelberger element relative to F .

The Fitting ideals of the two-primary algebraic K-groups of RF were
computed in [CØ, Corollary 1.3]. To compute the Fitting ideals of the wild
kernels it remains to consider the other terms in the exact sequence in Corol-
lary 4.1.

It seems appropriate to make some comments on the assumptions in The-
orem 7.1. For a dyadic prime ℘ there is an associated Galois extension F℘/Q2

with group D. Let X(F℘, i) and X(F, i) be short for H0
ét(F℘;Q2/Z2(i)) and⊕

S2
X(F℘, i). Note that

⊕
S2

H2
ét(F℘;Z2(i + 1)) is isomorphic to X(F, i)

by Theorem 2.2. It is not true in general that X(F, i) is G-cohomologically
trivial. However, X(F, i) is the induction IndGD(X(F℘, i)) of X(F℘, i) from
D to G and there is the Galois descent isomorphism X(F℘, i)I = X(F ′℘, i)
where F ′℘ is the unramified part of the extension F℘/Q2. So a necessary
condition for X(F, i) to be G-cohomologically trivial is that X(F ′℘, i) is
D/I-cohomologically trivial. Note that X(F ′℘, i) = X(Q2, i), which is a non-
trivial group for all i. Hence X(F ′℘, i) is D/I-cohomologically trivial if and
only if D/I has odd order. From our assumptions we see that I = 0 and D
has odd order. Hence X(F℘, i) is D-cohomologically trivial, and it follows
that X(F, i) is G-cohomologically trivial being the induction of X(F℘, i)
from D to G.

Proof. Let n ≡ 2 mod 8. The real primes of F give a Fitting ideal equal
to (2). Since X(F, n/2) is G-cohomologically trivial, [CG, Lemma 3] implies

FitZ2[G](χ) Kn(F ){2}(χ)

= (2) · FitZ2[G](χ) WKn(F ){2}(χ) · FitZ2[G](χ)X(F, n/2)(χ).

Assume ξ is the trivial character. From the parity of n, one finds the equal-
ities

FitZ2[G](χ) X(F, n/2)(χ) = FitZ2[P ]X(F℘, n/2)(ξ)

= FitZ2[P ]X(Q2, n/2) = (w(2)
n/2(Q2)) = (2).

If ξ is non-trivial, then X(F℘, n/2)(ξ) is the trivial group and hence
X(F, n/2)(χ) = 0. It remains to compute the Fitting ideal of Kn(RF ){2}(χ)
over Z2[G](χ). This is done in [CØ, Corollary 1.3], and the result follows.

A similar computation implies the claim for n ≡ 6 mod 8.
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Theorem 7.1 implies structural results on the wild kernels. See [CØ] for
the higher even K-groups. We mention two consequences:

Corollary 7.2. Assume the hypothesis of Theorem 7.1. For all natural
numbers n ≡ 2 mod 4 one has

#WKn(F ){2}(χ) ∼2

∏

χ′∼χ

∏

ψ′|χ′

1
a
L(−n/2, ψ′−1) ∼2

∏

χ′∼χ

∏

ψ′|χ′

Bn/2+1,ψ′−1

a(n/2 + 1)
.

Here χ′ ∼ χ denotes that χ′ and χ are conjugate, and ψ′ | χ′ denotes that
ψ′ is a character of G which extends χ′.

Proof. The order of Kn(RF ){2}(χ) is computed in [CØ, Corollary 3.14],
and the formula above follows by the same method.

Corollary 7.3. Let n ≡ 2 mod 4 and assume the hypothesis of Theo-
rem 7.1. In addition assume that Pic+(Oχ−1ωn/2+1)(χ−1ωn/2+1) is a cyclic
Oχ−1ωn/2+1-module and that there is only one prime lying above 2 in
Qχ−1ωn/2+1 . Then

WKn(F ){2}(χ) = Oχ[P ]
/(θn/2(χ)

a

)
.

Proof. This follows from [CØ, Corollary 4.4] and Theorem 7.1.

8. Leopoldt’s conjecture and rank formulas. In this section we
obtain an interpretation of the Leopoldt conjecture for totally imaginary
number fields at the prime 2 in terms of wild kernels, and second we give
higher 2-rank formulas for WK2n(F ) in case F is non-exceptional.

Fix a totally imaginary number field F . The group kerα/2ν(RF , 0) clas-
sifies the cyclic degree 2ν extensions of F which are unramified outside the
dyadic primes and locally embeddable in a Z2-extension (cf. [Iw] and [Ng1]).
The proof of Proposition 4.8 implies the following two-primary version of a
result in [Ko3].

Proposition 8.1. Let F be a totally imaginary number field and m a
natural number such that meν > 1. Then the number of independent cyclic
extensions of F of degree 2ν which are unramified outside the dyadic primes
and locally embeddable into a Z2-extension is equal to rk 2νWK2meν−2(F ) +
r2(F ) + 1.

Recall that the Leopoldt conjecture for F at the prime 2 predicts that
the number of independent Z2-extensions of F is precisely r2(F ) + 1.

Corollary 8.2. Assume the hypothesis of Proposition 8.1. If the rank
rk 2νWK2meν−2(F ) is zero, then the Leopoldt conjecture holds for F at 2.

Remark 8.3. If the 8-rank of WK2(F ) is zero, then the Leopoldt con-
jecture holds for F at the prime 2. See also Lemma 4.6.
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Next we indicate how to prove higher 2-rank formulas for WK2n−2(F ),
provided F is non-exceptional. The Lyndon–Hochschild–Serre spectral se-
quence

Em,n2 = Hm(Γ ′,Hn
ét(RF∞ ;Z/2ν(i))) ⇒ Hm+n

ét (RF ;Z/2ν(i))

collapses at its E2-page. In particular, there is the short exact sequence

(8.4) 0→ H1(Γ ′,Z/2ν(i))→ H1
ét(RF ;Z/2ν(i))

→ H1
ét(RF∞ ;Z/2ν(i))Γ

′ → 0.

Let kerα/2ν(RF , i) denote the quotient of kerα/2ν(RF , i) obtained by divid-
ing out by H1(Γ ′,Z/2ν(i)) under the injection in (8.4). The Galois descent
isomorphism

kerα/2ν(RFk , i)
Γk = kerα/2ν(RF , i)

follows as in Lemma 5.8. Let 2e denote the order of the group of two-primary
roots of unity in F , and let ν = e+k. If i is even, there is the exact sequence

(8.5) 0→ (ker gk/µ2ν ⊗ Z/2ν(i− 1))Γk → kerα/2ν(RF , i)

→ 2νJFk/FkXFk(i− 1)Γk → 0,

which is the finite version of the short exact sequence in Theorem 5.16.
Exactness of (8.5) follows since ker gk/µ2ν ⊗Z/2ν(i−1) is a cohomologically
trivial Γk-module (cf. [Me, Lemma 2]). This uses the fact that ker gk/µ2ν is
two-torsion-free by the choice of ν, and that Γk is cyclic by the assumption
on F .

Theorem 8.6. Let F be a non-exceptional number field. Let ν = e+ k
with e as above, and let n ≥ 2 be even. Then

rk 2νWK2n−2(F ) = rk 2ν(ker gk/µ2ν ⊗ Z/2ν(n− 1))Γk

+ rk 2(2νJFk/FkXFk(n− 1)Γk/im γνn)− r2(F ),

where γνn : 2ν−1JFk−1/Fk−1XFk−1(n− 1)Γk−1 → 2νJFk/FkXFk(n− 1)Γk .

Proof. Let K2n−1(RF ) denote K2n−1(RF ) modulo its two-torsion sub-
group. By the exact sequence

(8.7) 0→ K2n−1(RF )/2ν → kerα/2ν(RF , n)→ 2νWK2n−2(F )→ 0,

it suffices to compute the 2-rank of kerα/2ν(RF , n). Note that (8.7) is split
since K2n−1(RF )/2ν = (Z/2ν)r2(F ) is a pure subgroup. We conclude using
(8.5) and the arguments of [Ko2, p. 155]. Details will be left to the reader.

9. Divisible elements in algebraic K-groups. Let A be a (multi-
plicative) Abelian group. Its subgroup of divisible elements divA is

⋂
n≥1A

n.
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Let p-divA denote the subgroup of p-divisible elements. The maximal di-
visible subgroup DivA of A is contained in divA. Let divA/Div denote the
quotient.

Lemma 9.1. There is an isomorphism divA/Div = div(A/DivA).

Proof. Write A = B⊕DivA where B has no non-zero divisible subgroup,
and note that both the groups in question are isomorphic to divB.

For n ≥ 1, Quillen’s Theorem 5 ([Qu2, §5]) specializes to short exact
sequences

0→ K2n(RF )→ K2n(F )→
⊕

℘6∈Sp
K2n−1(F [℘])→ 0.

(See [Sou, Théorème 3] and [We, Theorem 4.6].) It follows that K2n(F ) is
an extension of a sum of finite groups by a finite group (cf. [Bo, Proposi-
tion 12.2], [Qu1, Theorem 8(i)] and [Qu3, Theorem 1]). Hence K2n(F ) is
a torsion group with no non-trivial divisible subgroups, i.e., reduced, and
p-div K2n(F ) is a subgroup of K2n(RF ){p}. See [Ba1] and [Ba2] for examples
where p-div K2n(F ) is non-trivial. By [Ba2, Theorem 3(i)], WKét

2n(F ){p} is
isomorphic to p-div K2n(F ) if p is odd. Below we discuss this isomorphism
for the wild kernel when p = 2 and F is non-exceptional.

Recall from [Ja] the continuous p-adic étale cohomology groups Hn
ét(F ;

Z2(i)). By [Ja, (0.2)] there is the Milnor lim1 exact sequence

0→ lim
ν

1Hn−1
ét (F ;Z/2ν(i))→ Hn

ét(F ;Z2(i))→ lim
ν

Hn
ét(F ;Z/2ν(i))→ 0.

Lemma 9.2. There is an isomorphism
div H2

ét(F ;Zp(n)) = lim
ν

1H1
ét(F ;Z/pν(n)).

Proof. Note that

div H2
ét(F ;Zp(n)) = ker(H2

ét(F ;Zp(n))→ lim
ν

H2
ét(F ;Zp(n))/pν).

Via the Milnor lim1 exact sequence, it suffices to identify the limits
limν H2

ét(F ;Zp(n))/pν and limν H2
ét(F ;Z/pν(n)). This follows immediately

from the Bockstein exact sequence

0→ H2
ét(F ;Zp(n))/pν → H2

ét(F ;Z/pν(n))→ pνH3
ét(F ;Zp(n))→ 0

and [Ta1, Theorem 3.1(c)].

Concerning the maximal p-torsion subgroup of Hn
ét(F ;Zp(i)) we have:

Proposition 9.3. For i ≥ 2 there is a short exact sequence

0→ H2
ét(RF ;Zp(i))→ H2

ét(F ;Zp(i)){p} →
⊕

℘6∈Sp
H1

ét(F [℘];Zp(i− 1))→ 0.

In particular , H2
ét(F ;Zp(i)){p} is a torsion group with no non-zero divisible

subgroup.
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Proof. Since lim1
ν H0

ét(F ;Z/pν(i)) = 0 and likewise for RF and all the
residue fields, [Sou, Proposition 1] implies the exact sequence

(9.4) 0→ H1
ét(RF ;Zp(i))→ H1

ét(F ;Zp(i))→
⊕

℘6∈Sp
H0

ét(F [℘];Zp(i− 1)).

Here H0
ét(F [℘];Zp(i−1)) = 0 for i 6= 1 by [RW, Propositions 1.10 and 2.4(b)].

LetW denoteQp/Zp and consider the diagram of Bockstein exact sequences:

0 H1
ét(RF ;Zp(i))⊗W H1

ét(RF ;W (i)) H2
ét(RF ;Zp(i)){p} 0

0 H1
ét(F ;Zp(i))⊗W H1

ét(F ;W (i)) H2
ét(F ;Zp(i)){p} 0

// //

��

//

�� ��

//

// // // //

The left vertical map is an isomorphism from (9.4). By [RW, Proposi-
tion 4.7], there is for i ≥ 1 the exact sequence

0→ H1
ét(RF ;W (i))→ H1

ét(F ;W (i))→
⊕

℘6∈Sp
H0

ét(F [℘];W (i− 1))→ 0.

This proves the injectivity statement in the proposition. By [RW, Pro-
positions 1.10 and 2.4(b)], we may identify H0

ét(F [℘];W (i − 1)) and
H1

ét(F [℘];Zp(i − 1)). To conclude we use that H2
ét(RF ;Zp(i)) is finite for

i ≥ 2. See [RW, Proposition 6.12] if p = 2, and [DF, Theorem 8.7, Re-
mark 8.8] if p is odd.

Let p = 2. The proof of Theorem 9.5 uses a comparison with étale
cohomology, namely K2n(F ){2} = H2

ét(F ;Z2(n + 1)){2} for n ≥ 1 and F
totally imaginary. Let i = n+ 1 in the Bockstein exact sequences:

0 K2n+1(F )⊗W K2n+1(F ;W ) K2n(F ){2} 0

0 H1
ét(F ;Z2(i))⊗W H1

ét(F ;W (i)) H2
ét(F ;Z2(i)){2} 0

// // //

��

//

// // // //

The vertical map is the edge map in the Bloch–Lichtenbaum spectral se-
quence for F , which is bijective by [RW, Theorem 1.13]. The image of
K2n+1(F ) ⊗W under the zig-zag map is trivial by Proposition 9.3. It fol-
lows easily from the above that the induced right hand vertical map is an
isomorphism (cf. Proposition 6.3).

Theorem 9.5. Let F be a non-exceptional number field and n ≥ 1.
Then

2-div K2n(F ) = WK2n(F ){2}.
Proof. We have the following commutative diagram (cf. [Ta3, Proposi-

tion 2.3]):
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H1
ét(RF ;W (i))/Div H2

ét(RF ;Z2(i))

⊕
S2

H1
ét(F℘;W (i))/Div

⊕
S2

H2
ét(F℘;Z2(i))

∼= //

�� ��∼= //

By the discussion above, it suffices to prove that div H2
ét(F ;Z2(i)){2} is the

kernel of the vertical map for i = n + 1. Our proof follows [Sc, Lemma 4
in §4]. From the coefficient extension 0 → Z/2ν(i) → W (i) → W (i) → 0
we find the commutative diagram where the product runs over all the finite
primes of F :

0 H1
ét(F ;W (i))/2ν H2

ét(F ;Z/2ν(i))

0
∏
℘ H1

ét(F℘;W (i))/2ν
∏
℘ H2

ét(F℘;Z/2ν(i))

//

∏
λ℘

��

//

��
// //

The right vertical map is injective by [Ne, Satz 4.5]. Here we use the as-
sumption that F is non-exceptional. Hence the left vertical map is injective,
and moreover

div H1
ét(F ;W (i))

= {x ∈ H1
ét(F ;W (i)) | λ℘(x) ∈ div H1

ét(F℘;W (i)) for all ℘}
(1)
= {x ∈ H1

ét(F ;W (i)) | λ℘(x) ∈ Div H1
ét(F℘;W (i)) for all ℘}

(2)
= {x ∈ H1

ét(RF ;W (i)) | λ℘(x) ∈ Div H1
ét(F℘;W (i)) for ℘ ∈ S2}.

Part (1) uses the fact that H1
ét(F℘;W (i))/Div is cyclic of finite order.

If ℘ is not a dyadic prime, then Div H1
ét(F℘;W (i)) is the trivial group

since H1
ét(F℘;W (i)) is a finite cyclic group. The local characterization of

H1
ét(RF ;W (i)) in [Sc, Lemma 3ii) §4] implies (2). This finishes the proof

since

div H1
ét(F ;W (i))/Div = div(H1

ét(F ;W (i))/Div) = div H2
ét(F ;Z2(i)){2},

by Lemma 9.1 and [Ta3, Proposition 2.3].

Remark 9.6. Theorem 9.5 is not true in general for exceptional fields
and n = 1. This is discussed in [Hut].
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