On fluctuations in the mean of a sum-of-divisors function

by

Y.-F. S. Pétermann (Genève)

Let P be a prime number. In [2] the authors establish the two-sided Ω-estimate

$$
\begin{equation*}
R_{P}(x)=\Omega_{ \pm}(x \log \log x) \tag{1}
\end{equation*}
$$

for the error term

$$
R_{P}(x):=\sum_{n \leq x} \sigma_{(P)}(n)-\left(1-\frac{1}{P}\right) \frac{\pi^{2}}{12} x^{2}
$$

related to the "sum-of- P-prime-divisors" function

$$
\sigma_{(P)}(d):=\sum_{d \mid n, P \nmid d} d .
$$

The object of this note is to establish the more precise estimate

$$
\begin{equation*}
\limsup _{x \rightarrow \infty} \frac{(-1)^{i} R_{P}(x)}{x \log \log x} \geq \frac{P-1}{2(P+1)} e^{\gamma} \quad(i=0,1) \tag{2}
\end{equation*}
$$

as an application of my general result in [4].
Lemmata 2, 6 and 7 of [2] state respectively that

$$
\begin{equation*}
\sum_{n \leq x} \frac{\alpha_{P}(n)}{n}=\log P+O(1 / x) \tag{3}
\end{equation*}
$$

where

$$
\begin{gather*}
\alpha_{P}(n):= \begin{cases}1 & \text { if } P \nmid n, \\
-(P-1) & \text { otherwise },\end{cases} \\
R_{P}(x) / x-R_{P}^{\prime}(x)=O(1) \tag{4}
\end{gather*}
$$

where

$$
R_{P}^{\prime}(x):=\sum_{n \leq x} \frac{\sigma_{(P)}(n)}{n}-\left(1-\frac{1}{P}\right) \frac{\pi^{2}}{6} x
$$

and
(5) $\quad R_{P}^{\prime}(x)=-\sum_{d \leq y} \frac{\alpha_{P}(d)}{d}\left\{\frac{x}{d}\right\}+O(1), \quad$ uniformly for $x \geq 2, y \geq \sqrt{x}$.

The inequalities (2) will follow from (4) and

$$
\begin{equation*}
\limsup _{x \rightarrow \infty} \frac{(-1)^{i} R_{P}^{\prime}(x)}{\log \log x} \geq \frac{P-1}{2(P+1)} e^{\gamma} \quad(i=0,1) \tag{6}
\end{equation*}
$$

If we put $y=y(x)=x^{3 / 4}$ in (5), we see by (3) that Theorem 1 of [4] applies. This yields, also using Lemma 6 of [4] (and with the notation of [2]),

$$
\begin{equation*}
\frac{1}{N} \sum_{n=1}^{N} R_{P}^{\prime}(n q+\beta)=\sum_{k \leq y(q N+\beta)=: u} \frac{-\alpha_{P}(k)(q, k)}{k^{2}} \psi\left(\frac{\beta}{(q, k)}\right)+O(1) \tag{7}
\end{equation*}
$$

provided $u=o(N)$, where $\psi(t):=\{t\}-1 / 2$. Now we put

$$
q:=\frac{m!}{P^{r}}=N^{1 / 4}, \quad \text { where } \quad P^{r} \| m!
$$

With the choice $\beta=0$ we have $u=N^{15 / 16}$. Noting that $\psi(0)=-1 / 2$, we write $k=n m$ with $n \mid q$ and $(m, q / n)=1$ and equation (7) becomes
(8) $\frac{1}{N} \sum_{n=1}^{N} R_{P}^{\prime}(n q)$

$$
=\frac{1}{2} \sum_{n \mid q} \frac{1}{n}\left(\sum_{\substack{m \leq u / n \text { and } P \nmid m \\ p \mid m \Rightarrow p \nmid q / n}} \frac{1}{m^{2}}-\sum_{\substack{m \leq u / n \text { and } P|m \\ p| m \Rightarrow p \nmid q / n}} \frac{P-1}{m^{2}}\right)+O(1) .
$$

If we let $N \rightarrow \infty$, the expression in the large parentheses is

$$
\begin{align*}
& \sum_{\substack{m \leq u / n \\
p \mid m \Rightarrow p \nmid q / n}} \frac{1}{m^{2}}-\frac{1+(P-1)}{P^{2}} \sum_{\substack{m^{\prime} \leq u /(P n) \\
p \mid m^{\prime} \Rightarrow p \nmid q / n}} \frac{1}{m^{\prime 2}} \tag{9}\\
&=\left(1-\frac{1}{P}\right) \sum_{\substack{m \geq 1 \\
p \mid m \Rightarrow p \nmid q / n}} \frac{1}{m^{2}}+o(1) \\
& \geq\left(1-\frac{1}{P}\right) \sum_{i \geq 0} \frac{1}{P^{2 i}}+o(1)=\frac{P}{P+1}+o(1)
\end{align*}
$$

and since $\log m \sim \log \log N$ and $P \nmid q$, we have

$$
\begin{align*}
\sum_{n \mid q} \frac{1}{n} & =\prod_{\substack{p \leq m \\
p^{\beta_{p}} \| q}}\left(1+\frac{1}{p}+\ldots+\frac{1}{p^{\beta_{p}}}\right) \tag{10}\\
& \sim \prod_{p \leq m, p \neq P}\left(1-\frac{1}{p}\right)^{-1} \sim\left(1-\frac{1}{P}\right) e^{\gamma} \log \log N .
\end{align*}
$$

By using (9) and (10) in (8) we obtain (6) for $i=0$. The choice $\beta=q-1$ similarly yields (6) for $i=1$.

REmark. In [1] the first two authors of [2] prove (1) for $P=2$, by closely following the long argument in my older paper [3] (which establishes the equivalent of (1) for the error term related to $\sigma(n))$. They state an implied constant of $e^{\gamma} / 4$ for both the Ω_{+-}and Ω_{-}-estimates. But this claim is not substantiated as it depends on an erroneous estimate, in the first displayed formula on page 13 of [1]. Their equality $\sigma(A) / A=e^{\gamma} \log y(1+o(1))$ is not correct, since A (which is our q, y being our m) is not divisible by 2 . In fact $\sigma(A) / A=\frac{1}{2} e^{\gamma} \log y(1+o(1))$, and the implied constant obtained once this is amended is only $e^{\gamma} / 8$. From (2) with $P=2$ we have the implied constant $e^{\gamma} / 6$, which can also be derived from [1] by noticing that the number $C(A)$ there (which roughly corresponds here to the last sum in (9)) is not only ≥ 1, but $\geq 4 / 3$, when A is not divisible by 2 .

References

[1] S. D. Adhikari and G. Coppola, On the average of the sum-of-odd-divisors function, in: Current Trends in Number Theory (Allahabad, 2000), Hindustan Book Agency, New Delhi, 2002, 1-15.
[2] S. D. Adhikari, G. Coppola and A. Mukhopadhyay, On the average of the sum-of-p-prime-divisors function, Acta Arith. 101 (2002), 333-338.
[3] Y.-F. S. Pétermann, An Ω-theorem for an error term related to the sum-of-divisors functions, Monatsh. Math. 103 (1987), 145-157; Addendum, ibid. 104 (1988), 193194.
[4] -, About a theorem of Paolo Codecà's and Ω-estimates for arithmetical convolutions, J. Number Theory 30 (1988), 71-85; Addendum, ibid. 36 (1990), 322-327.

Section de Mathématiques
Université de Genève
Case Postale 240
1211 Genève 24, Suisse
E-mail: Petermann@math.unige.ch

