ACTA ARITHMETICA
113.2 (2004)

Upper bounds for the number of factors for a class
of polynomials with rational coefficients

by

NICOLAE CIPRIAN BONCIOCAT (Bucuresti)

1. Introduction. Some results related to Hilbert’s irreducibility theo-
rem have been provided in [1]-[4]. In [1] it is shown that for any relatively
prime polynomials f(X), g(X) € Q[X] with deg f < degg, the polynomial
f(X)4+pg(X) is irreducible over Q for all but finitely many prime numbers p.
In [2] this result has been improved by providing an explicit lower bound
b depending on f and g, such that for all primes p > b, the polynomial
f(X) + pg(X) is irreducible over Q.

Let now f, g € Q[X] be relatively prime polynomials with deg f < deg g.

In the present paper we adapt the method in [2] in order to provide
explicit upper bounds for the number of factors over Q of the polynomials
n1f(X)+mn29(X), where n; and ny are nonzero integers with absolute value
of ny/n; greater than an explicit lower bound b. Here and henceforth, by
the number of factors of a polynomial f we shall understand the number of
irreducible factors of f counted with multiplicities.

We treat separately the cases deg f < degg and deg f = degg.

In the first case we prove that for any nonzero integers nq and ng with
absolute value of ny/ny greater than an explicit lower bound b depending on
f and g, the number of factors over Q of the polynomial nj f(X) 4+ nog(X)
cannot exceed the total number of prime factors of ny counting multiplicities.
We actually prove a slightly more general version of this result, in which the
lower bound b and the upper bound for the number of factors depend on
a suitable divisor of ns. As a corollary we find an improved form of the
irreducibility criterion given in [2, Th. 1]. Sharper bounds are then obtained
for polynomials with integral coefficients. We finally consider the case when
the polynomial n f(X) + n2g(X) has no rational roots.
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Similar results are provided in the case deg f = degg.
For any polynomial f € Q[X] of degree k, we write f(X) uniquely in the
reduced form .
ao—l—alX—}—...—l—akX
f(X) = . :
where g, aq,...,ar € Z, a # 0, ¢ > 1, q as small as possible. Then for this

reduced form we set

H(f) = max{|ao|, |a1],...,|akl,q}, M(f)=max{|aol,|ail,...,|ak|}.

For any integer n with |n| > 1, we denote by 2(n) the total number of
prime factors of n counting multiplicities.
In the case deg f < deg g we prove the following results:

THEOREM 1. Let f(X), g(X) € Q[X] be relatively prime polynomials
with k = deg f < deg g = m. Then for any nonzero integers ny, ne and any
positive divisor d of ne such that

n2

k+1
m m m—+1

the polynomial ny f(X) + nag(X) has at most 2(ny/d) factors over Q.

COROLLARY 1. For any relatively prime polynomials f(X), g(X) € Q[X]
with k = deg f < deg g = m, and any prime p satisfying

k+1
p> (2450 )  HOTHG™
the polynomial f(X) + pg(X) is irreducible over Q.

COROLLARY 2 (of the proof of Theorem 1). Let f(X),g(X) € Z[X] be
relatively prime polynomials with k = deg f < degg = m. Then for any
nonzero integers ni, ns and any positive divisor d of ne such that

1 k+1
> (24 g CHOHG™

the polynomial ny f(X) + n2g(X) has at most £2(n2/d) nonconstant factors
over 7.

na

ny

We also prove a result similar to Theorem 1 in the case when the poly-
nomial nj f(X) 4 neg(X) has no rational roots:

THEOREM 2. Let f(X),g(X) € Q[X] be relatively prime polynomials
with k = deg f < degg = m. Then for any nonzero integers ni, ny and any
positive divisor d of no such that
no

g <2 * 72k+1dm/2> a7 H(f)"2H(g) s/ 28,

ni
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if the polynomial ny f(X)+mn29(X) has no rational roots, then it has at most
2(ny/d) factors over Q.

COROLLARY 3 (of the proof of Theorem 2). Let f(X), g(X) € Z[X] be
relatively prime polynomials with k = deg f < degg = m. Then for any
nonzero integers ni, ns and any positive divisor d of ne such that

1 k+1
> (2 + 2k+1dm/2H(g>1+max(m/2,k))

if the polynomial ny f(X)+mn2g(X) has no rational roots, then it has at most
2(na/d) nonconstant factors over Z.

n
2 dm/QH(f)H(g)max(m/Q,k)’

ni

In the case deg f = deg g we prove the following results:

THEOREM 3. Let
f(X):a0+a1X+...+ame’ g(X):b0+b1X+...—|—mem
q1 q2
be relatively prime polynomials in Q[ X] of degree m, written in reduced form.
Let also n1, ny be nonzero integers, h = (niamqe + n2bmqi)/ged(q1, q2) and
d a positive divisor of h. If

n . 1 m+1
%> (D) (14 HOHO) + g )
ni 2md

then the polynomial ny f(X) + nag(X) has at most 2(h/d) factors over Q.

COROLLARY 4. Let f(X) and g(X) be as in Theorem 3. If ny and no
are nonzero integers such that |(n1amqa + nobmai)/ged(q1,q2)| is a prime
and

n2

ny 2m

then the polynomial ny f(X) + nag(X) is irreducible over Q.
COROLLARY 5 (of the proof of Theorem 3). Let f(X), g(X) € Z[X] be
relatively prime polynomials of degree m, with leading coefficients a., and

b, respectively. Let n1 and ny be nonzero integers, h = niay, + n2by, and d
a positive divisor of h. If

m+1
>Mﬁme+HmH@+i) ,

12 m 1 m
n_l >d H(f)<1+H(g)+ dm[1+H(g)]m> ’

then ny f(X) + nag(X) has at most 2(h/d) nonconstant factors over Z.

In particular, we have

COROLLARY 6. Let f(X),g(X) € Z[X] be relatively prime polynomials
of degree m, with leading coefficients a,, and by, respectively. If ny and ns
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are nonzero integers such that |njam, + naby| is a prime number and

n2

ni

m+1
>H(f)<1+H(9)+m> ,

then the polynomial ny f(X) + nag(X) is irreducible over Z.

The proofs of these results are presented in Sections 2 and 3 below.

2. The case deg f < degyg
2.1. Proof of Theorem 1. Let

ap+ a1 X + ... +ap X" bo+ b1 X + ...+ by X™
and g¢g(X)=
Q1 72

be two relatively prime polynomials in Q[X] written in reduced form, with
k = degf < degg = m, and let also ny, ne and d be as in the statement
of the theorem. Our assumption on ni, ng and d shows that |ns| > d, so
2(n2/d) makes sense. We may obviously assume 2(n2/d) < m.

We write g(X) in the following form:

b+ X+ b X bg(X)
q2 g
where b € Z and g(X) € Z[X], g(X) primitive. Then we write

f(X) =

9(X)

n f(X) +nag(X) = §F<X>,

with ged(a,q) = 1 and F(X) € Z[X], F(X) primitive. Assume now that
n1 f(X)+n2g9(X) has more than £2(ng/d) factors. Then by Gauss’s Lemma,
F(X) decomposes as F(X) = Fi1(X)...Fs(X) with 2(ny/d) < s < m and
Fi(X),...,Fs(X) € Z[X], Fi,..., Fs primitive with deg F7,...,deg Fy > 1.
Let t1,...,ts € Z be the leading coefficients of F1, ..., F, respectively. Then
one finds
n2¢bm

aqz '
If /g2 = B/~ with ged(5,7) = 1, then 3 divides g1, since ¢ divides g1go.
Therefore we have avt; ...ts = n2fby,, and since 2(ny/d) < s, at least one
of the t;’s, say t1, divides dBb,,. So we have

(1) [t1] < dg1[bm|.

t .oty =

Now we are going to estimate the resultant R(g, F}). Since g and F) are
relatively prime, R(g, F1) must be a nonzero integer, so in particular

(2) |R(g, F1)| > 1.
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If we decompose Fy, say F1(X) =t1(X —61)...(X —0,), then
(3) |R(g, FO)l = [a™ ] 19(6)

1<j<r

Since each root 0; of Fy is also a root of F'(X), we have
1 f(6;)
(4) 9(65) = — ’

n2
and moreover, since f and g are relatively prime, f(6;) # 0 and g(8;) # 0
for any j € {1,...,7}. The definition of g shows that

(5) 19(0;)] < a219(6;)]-
Using now (3)—(5) we obtain
) 1R R < o 2T 0
el” 255
<jsr

We now proceed to find an upper bound for | f(6;)|. The equality n f(6;)
+ nog(#;) = 0 implies

b b b b
<num_%gzg>+_ _F<num_%n2k>9k ﬂzﬁi&&””4n.;+ﬂzlﬁaT::O
q1 q2 q1 q2 q2 q2
from which we deduce that

n9b nia n9b nia n9b
|2m"0’m <| 10|+\ 20|>+_“+<| 1k|+\ 2k|>‘6j‘k
q2 q1 q2 q1 q2

nob 190, —
_1_’ 2 k+1‘ ’0j|k+1+'--+’ 2Um 1‘ ’9j|m—1

q1 a2

Therefore, either |6;] < 1, or if not, then
\nzbm! m o (ImIM(f) | [na|M(g) _16,]™
1651 + ,
Qn a2 0] —1

so in both cases we have

[n1lge
@) o < 1+ oy (et MU+ M(g) )

[n2|q1

Now, since obviously

f0p1 < XL @ o+ 0,

inequality (7) yields
M) [+ p(REMD) + M)
“ o (e M () + M(9))

In2lq1

k+1

-1
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Instead of (8) it will be more convenient to consider

O 1po) < M) 1 T (e ag(f) + M (g))) "
J “ e N (f) + M(g)

Using now (6) and (9), we obtain

bm |11 L MM M k+1_
|R(g, F1)| < [t1]™ MM(f)| I+ o (glar M)+ M@)] 77
el i M) + M(g)

Since r > 1, all we need to prove is that our assumption on n1, no and d
forces

[n2lq1

|n2|q1 M (g)
1+ [n1lg2M(f)

In view of (1), it is sufficient to prove that

L [|ni]g P In2|q1 M (g)
dmmbmm+1[1+—<—M M <14 Irelad()
" b o] gl M)+ M09) FRPSYIT)

which is equivalent to

oy e 0wy (s M) + M)

<1.

k1
M
In1]g2 M )> 14 In2lq1 M (g)

10 dmmbmm_k<bm+M + '
(10) g1 |bm| |bm| + M (g) NP n1lg2M(f)

Now since |by,| < M(g), it suffices to prove that

rnnsz(f))’““ _ In2layM(9)

qumMg m+1<2+ ’
M) In2lq1M(g) In1|g2 M (f)
or equivalently,

na
ny

eM(f) "
(11) 7)> .

2|1 M (g

We search for a suitable § such that if [ng/ni| > & - d™q" g M (f)M(g)™,
then |ng/nq| also satisfies (11). So it is sufficient to find a ¢ satisfying

k+1
0> (24 ! .
0 - dmgy"M(g)m+t

Denote d™q"M(g)™+" by w. A suitable candidate for & is (2 + g

since
1 k+1 1 k+1
O (T

2k+1qy

> M ()M (24

)k-i-l

)
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This proves that for

n2

ni

2) |25 (24 g ) MM

we have |R(g, F1)| < 1, which contradicts (2). The desired conclusion follows
now by noting that ¢/ "M (f) < H(f)™ and g2 M (g)™ < H(g)™*!. This
completes the proof of the theorem. m

REMARKS. 1. The inequality (12) leads to an improved version of The-
orem 1. If |by,| < M(g) it might be useful to directly test inequality (10).
Further improvements can be done, for instance, by considering the upper
bound for |f(6;)| given by (8), instead of (9), but they lead to more compli-
cated assumptions on ni, no and d.

2. In [2, Th. 1], the following result has been provided:

THEOREM. For any relatively prime polynomials f(X),g(X) € Q[X]
with deg f < degg = m, and any prime p > 2m™H(f)™" L H(g)3™, the
polynomial f(X) + pg(X) is irreducible over Q.

For m > 1, Corollary 1 provides a sharper bound, since

1 " m m m m m
(24 3 ) HOPH@™ <20mH (" H
3. Corollary 2 follows immediately by (12).

A result similar to Corollary 2 is the following;:

PROPOSITION 1. Let f(X)=ao+ a1 X + ...+ apX* and g(X) = by +
b1 X + ... 4+ bpX™ € Z[X] be two relatively prime polynomials with k =
deg f < degg = m. If n1,no are nonzero integers and d is a positive divisor
of nob,, such that

n2

1 k+1 N
s <2+2k+1 de(g)k+1) IH(f)H(9)",

then ny1 f(X) +n29(X) has at most £2(naby,/d) nonconstant factors over Z.

Sketch of the proof. The proof goes as that of Theorem 1, except that
g1 = ¢2 = 1 and instead of (1) we find |¢t;| < d. Indeed, since we have
aty ...ts = naby, with 2(n2b,,/d) < s < m, at least one of the t;’s divides d.
Thus, instead of (10) we have to prove that

ar | )’““ [n2| H (9)
— | |bm| + H(g) + — H <1+ —=.
e (el 160+ [ mlT ()
Since |by,| < H(g) it is sufficient to prove that
k+1
13 —|>d"H(f)H 24—t .
13 | > e (2 s
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Computations as in Theorem 1 show that inequality (13) is satisfied if
Ing/ni| > 6 - d™H(f)H(g9)* with § = (2 + 2 %" 1d=™mH(g)"F~1)k+1 a

2.2. Proof of Theorem 2. In this case we may obviously assume m > 2,
and since the degree r of the polynomial F} is at least 2, it is sufficient
instead of (10) to prove that

2(k+1) 2
m._.m m— nilq n219 M 9
d" g by Qk(lbmHM(g)* :ni;qf M<f)> - <”W) |

or even more, that

\nﬂ%M )Hl < |n2|q1 M (g)
In2|q1 |n1|geM(f)

Now, since |b,,| < M(g) it suffices to prove that

g b, /2 (wmr T M(g) +

n2

@M(f) )kH
Z—f‘chM(g) ’

> d™2g 2 g M(f)M ()™ (2 +

ni
if m/2 > k, and

na

ni

qM(f) >k+1
Z—H%M(Q) 7

if m/2 < k. So in both cases it is sufficient to prove that
k
a2M(f) ) o
Z—f}chM(g)

Let w = 2k+1dm/2qT/2M(g)1+max(m/2’k). It is straightforward to verify that
the last inequality holds for

> d"2M g M(F) M (g)* <2 +

n2

1| a2 g ) b (2 n

n2

(14)
n

1 k+1 a1
> <2+E> dm/2q'£n - QQM(f)M(g)maX(m/2’k),

which completes the proof. =

Corollary 3 follows immediately from (14).

3. The case deg f = degg

3.1. Proof of Theorem 3. We use slightly different arguments than those
used in the proof of Theorem 1. First of all, in order to see that £2(h/d) makes
sense, we have to prove that

(15) h| > d.
The definition of h shows that
(16) |h| > |na| — |n1]gaM(f) > 0.
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Indeed, if nia,, and ngb,, have the same sign, we find |h| > |ng| + 1. Our
assumption that

n2

an |2

1 m+1
> () (14 HOH() + o)

implies |[ng| > |n1|g2M (f), so we obviously have |n2bp,|q1 > |n1am|ge. Thus,
if nia,;, and neb,, have opposite signs, we find

[n2bm|q1 — [n1amlge

ged(q1, g2)
Dividing now by d in (16) and using again (17), we find

| m-1 L™

7>\”1"d H(f)H(g) 1+H(f)H(9)+W -1 >1
which proves (15).

Now we may obviously assume 2(h/d) < m. We write again g(X) in the
form

Ih| = > |na| — |ni|g2M(f) > 0.

(X) = bo+ 01 X +...+bp X _ bg(X)’
q2 q2

where b € Z and g(X) € Z[X], g(X) primitive. Then we write
a
n1f(X) +nag(X) = 5F(X)

with ged(a,q) =1 and F(X) € Z[X], F(X) primitive.

Assume now that ny f(X)+n2g(X) has more than 2(h/d) factors. Then
by the Gauss Lemma, F(X) will decompose as F(X) = Fi(X)...Fs(X)
with 2(h/d) < s < m and Fy(X),...,Fs(X) € Z[X], Fi,..., Fs primitive
with deg Fy,...,deg Fs > 1. Let t1,...,ts € Z be the leading coefficients of
Fy, ..., Fs, respectively. Let also §; = q1/gcd(q1,92), Go = q2/gcd(q1, ¢2) and
denote nya;g, + n2big; by h; for all i € {0,...,m — 1}. Since

ho+mX +...4hp X L4+ hX™  a
0T ! = S F(X)...Fy(X),
lem(qi, g2) q

we see that a divides h and ¢ divides lem(q1, ¢2). On the other hand, by
comparing the leading coeflicients we find

1

(18) h:tl,,,tsa.M,
q

Now, since (lem(q1,g2))/q is an integer and £2(h/d) < s, (18) shows that at

least one of the t;’s, say t1, divides d. So we have
(19) |t1] < d.

Again we proceed to estimate the resultant R(g, F1). As in Theorem 1, since
g and F) are relatively prime, we must have |R(g, F1)| > 1. If F; decomposes
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as F1(X)=t1(X —61)...(X —6,), we have
|R(g, F)| =™ T] 9
1<5<r
Using (19) together with |g(6;)| < ¢2|g(8;)| and ¢(0;) = —n1f(8;)/n2, we
find

20) rg. A <an B85 T 15
1<5<r

We now proceed to find the upper bound for |f(6;)|. The equality
n1f(05) + n2g(6;) = 0 implies
(nlao + n250> 4o+ <n1am—1 n n2bm—1>0m—1 n h o = 0.
¢ Q2 ¢ Q2 J lem(q1, g2)
Since (16) allows us to divide by |h|, we further have
lem(q1, ni|M na| M
10, < (1 Q2)(’ 1 (f)—i—‘ 2| (9)>(
Al a1 qz
Therefore, either |6;] < 1, or if not, then
M M a;m
|0]|m < q1492 (’n1| (f) + |n2’ (g)> | ]‘ )
A a1 g2 0] — 1
So in both cases we have

L4105+ ... +16;)™1).

IHJ’ <1+

Q192 <|n1]M(f) \”2|M(9)>
+ )
A q1 qz

and since obviously

M
09 < XL @ o+ o

we obtain the following upper bound for |f(6;)|:

M(f) [1+Q1Q2(|"1\M(f) + In2|M(g ))]m+1_1
|f(6;)] < o
[ma|[M(f) | |n2|M(g)
a \q\ ( 1Q1 + 2Q2 )
It is more convenient to use
ny|M(f na| M m+1
[1 + q‘lél‘z(\ 1|q1( ) + | 2|q2 (9))]

[£(05)] < |h[M(f)

@llnila2M(f) + In2lai M(g)]
which further gives

n n mtl
‘f(gj” < M(f) [1+ q’1hq2<| l|f]\l4(f) +| 2|é\j(9)>:| :

since |h| < |n1|ga2M (f) + |n2]lqaM (g) and ¢; > 1. Therefore by (16) we find

o n m+1
1£(65)] <M<f><1+| 1|yqij|4£f|)nj|$2§|4q<1;\)4 (g)> ’
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that is,
(21) 70| < |n2!m“M(f)(
Together with (20), (21) yields

14+ q1M(g) >m+l
[n2| — [n1lg2M(f) '

14+ qaMi(g) )mﬂ] "
Ina| — |n1|lg2M(f) '

(22) |R(g.F))| < d" [q2|m| - InzlmM(f)<

Let us denote d™qa|n1|M(f)[1 4+ ¢1 M (g)]™*! by a. We shall prove that
(23) [In2] = In1la2M ()™ > alna|™,

which by (22) will contradict the fact that |R(g, F1)| > 1.
We search for a suitable 6 > 1 such that |na| — |n1|g2M(f) > |n2|/9,
which is equivalent to

1)
(24) nal > |t aa M (f) =

For such a § we then require

n m+1
(%) > afng|™,
or equivalently

(25) Ing| > ad™ .

So if we find a § > 1 such that 6™ > |ny|qgeM(f)6/(5 — 1), then any ngy
satisfying (25) will also satisfy (23). Such a § should verify

1
d—1)6" > .
O I it
Denote d™[1 + ¢1M(g)]™*! by w. One candidate for § is 1 + 1/w, since

obviously
1 1\" 1
L) >
w w w

1 m+1
(26)  Ina| > ImlquzM<f><1 T M)+ Gy q1M<g)}m>

we have |R(g, F1)| < 1, a contradiction. The proof finishes by noting that
@M(f) < H(f)H(g) and 1M (g) < H(f)H(g). =

REMARKS. 1. Since the sharper bound given by (26) still implies (15)
and (16), one can use (26) to rephrase Theorem 2 in terms of ¢1, g2, M(f)
and M(g) instead of H(f) and H(g).

2. Corollary 5 follows immediately from (26).

3. As in the preceding section, we may also consider the case when the
polynomial n; f(X)+n2g(X) has no rational roots. In that case, we see from

So we have proved that for
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(22) that the same conclusion as in Theorem 3 holds, provided that (26) is
replaced by

n2

m/2 ! o
> d™2g M(f) <1 +qM(g) + dm2[1 + qlM(g)]m> '

ni

3.2. Proof of Corollary 6. In this case all that remains is to show that
our assumptions force ni f(X) + n2g(X) to be primitive.

Let A= H(f)(1+ H(g) + [1 + H(g)]"™)™*L. Since |niam + nabm| = p,
we have either no = (p — n1ay,)/bm, or no = —(p + n1am)/bpm.

In the first case we must have p > nia,,, otherwise our assumption that
|na| > Alni| would imply p < niam — A|niby| < 0, a contradiction. Thus
|n2| > A|n1| becomes (p — niam,)/|bm| > Alni|, which further gives

(27) p>[nal - [A = H(f)].

Assume now that p divides nia; + B51%= b; for all i € {0,...,m — 1},
that is, p divides ni(a;by, — amb;) for all ¢ € {0,...,m — 1}. Since

(n1(aibm — ambi)| < 2[ni|[H(f)H(g) < [na|-[A = H(f)],

the inequality (27) forces a;b,, = anb; for all ¢ € {0,...,m — 1}, that is,
b f(X) = amg(X), a contradiction.

Similarly, in the second case we must have p > —nja,, which also implies
(27). Assuming now that p divides nya; — E52%2 b, for all i € {0,...,m—1},
we will get the same contradiction, which co"r}lpletes the proof. =

One may improve Corollary 6 as follows. Let f(X) =ao+ ...+ apX™
and g(X) =bp+...+ b, X™ € Z[X] be two relatively prime polynomials of
degree m. Assume ny and ng are nonzero integers such that nia,, + nsb,,
is a prime number p and let h(X) = ni f(X) + nog(X). For any integer j
such that nja,, + jby, # 0, the polynomials ny f(X) + jg(X) and g(X) are
relatively prime of degree m, with leading coefficients nia,, + jb, and b,
respectively. We obviously have nja,, + jby, + (n2 — j)b,, = p and

h(X) = n1 f(X) + jg(X) + (n2 — j)g(X).
Let K(g) = (1+ H(g) + [1 + H(g)]~™)™*!. Then by Corollary 6, h(X) is
irreducible over Z if |na — j| > H(n1f + jg)K(g), or equivalently
P = n1am = jbm| > H(nif +jg) - bl - K(g)-

If p < nyam + jbm, we find p < niam + jbm — H(n1 f + 7g) - |bm| - K(g) < 0,
a contradiction. Therefore we conclude that h(X) is irreducible over Z for
primes p satisfying

p> min {nlam +]bm+H(n1f+]g)‘bm|K(g)}

JE—n1am/bm
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Similarly, if nya,, + nob,, = —p, then h(X) is irreducible over Z for

P> » min P {—nmam — jbm + H(nif + jg) - |bm| - K(g)}-
J7F—N10m [Om
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