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1. Introduction, main results, applications. Let Qp be the p-adic
completion of Q for a prime p. Denote by Zp the ring of p-adic integers, i.e.
of those elements x ∈ Qp with |x|p ≤ 1. The unit group of Qp, i.e. the set
of x ∈ Qp with |x|p = 1, will be denoted by Up. Let Qp be the algebraic
closure of Qp and Cp its p-adic completion, which is an algebraically closed
complete field with a valuation uniquely extended from Qp.

Whereas the questions of transcendence or algebraic independence of
elements from Qp or even from Cp over Q are rather well investigated, the
corresponding question for Cp over Qp has been studied in the past only
occasionally. For a brief survey on what was published on this topic so
far, we refer the reader to our recent paper [3]. The main result there gives
sufficient conditions for the algebraic independence over Qp of numbers from
Cp defined by infinite series of the form

∑
akp

rk , where (rk) is a sequence
of positive rational numbers and the coefficients ak are p-adic integers.

In our present paper, we propose two new such criteria, where the hy-
potheses on the ak, rk are now slightly stronger. But, on the other hand, we
no longer need, as in [3], conditions on determinants involving certain of the
coefficients a occurring in the different series under consideration. Both of
these criteria have the same appearance, typical in algebraic independence
theory: Under appropriate assumptions on functions f1, . . . , fl and points
α1, . . . , αm, the l ·m numbers fλ(αµ) from Cp are algebraically independent
over Qp.
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Using the notation N := {1, 2, . . .} and N0 := N ∪ {0}, we now are going
on to formulate our first main result, which concerns the particular case
l = 1.

Theorem 1. Let

f(z) :=
∞∑

j=0

cjz
j ∈ Zp[[z]]

satisfy cj 6= 0 for at least one j ∈ N. Suppose

αµ :=
∞∑

k=1

ak,µ p
rk,µ (µ = 1, . . . ,m)

with ak,µ ∈ Up for any possible pair (k, µ), and where the sequences (rk,µ)k
∈ QN+ satisfy the following technical conditions for µ = 1, . . . ,m:

(i) (rk,µ)k increases eventually strictly and is unbounded.
(ii) There exist infinitely many n ∈ N such that rn+1,µ cannot be ex-

pressed as a finite linear combination with rational integer coefficients of
the numbers 1, r1,µ, . . . , rn,µ and the rk,µ′ with µ′ 6= µ.

Then the elements f(α1), . . . , f(αm) ∈ Cp are algebraically independent
over Qp. In particular , α1, . . . , αm are algebraically independent over Qp.

Remark. Since |αµ|p<1, the series f converges at all points α1, . . . , αm.

After the proof of Theorem 1, at the end of Section 3, we briefly discuss
how far the conditions on the r’s are necessary.

Before giving an application of Theorem 1, we point out that we shall
denote by ordp x the highest power of p dividing x ∈ Z\{0}, and this notion
can be extended to x ∈ Q× := Q \ {0} as well. Then the p-adic value of x is
given by

|x|p = p− ordp x

for x ∈ Q×, which we may use to define ordp x more generally for any
x ∈ Q×p (or even x ∈ C×p ). The above equation allows us to jump back and
forth as we please between the two notions | |p and ordp.

Corollary 1. For µ = 1, . . . ,m, let (qn,µ)n∈N be an arbitrary sequence
of integers with qn,µ 6= 0 for infinitely many n, and suppose rµ ∈ Q, rµ > 1
such that there exists a prime pµ with − ordpµ rµ ∈ N and ordpµ rµ′ ∈ N0

for any µ′ 6= µ (if m > 1). Then the elements

αµ :=
∞∏

n=1

(1 + pr
n
µ )qn,µ (µ = 1, . . . ,m)

from Cp are algebraically independent over Qp.
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Whereas in Theorem 1 our function f had only to be non-constant, our
second main result needs, even in the case l = 1, a stronger hypothesis.

Theorem 2. Let the functions

fλ(z) :=
∞∑

j=0

cj,λz
j ∈ Zp[[z]] (λ = 1, . . . , l)

be algebraically independent over Qp. Suppose that the elements

αµ :=
∞∑

k=1

ak,µp
rk,µ (µ = 1, . . . ,m)

satisfy the conditions of Theorem 1. Then the l ·m elements fλ(αµ) (λ =
1, . . . , l, µ = 1, . . . ,m) from Cp are algebraically independent over Qp.

Remark 1. Clearly, for any λ there exists a jλ ∈ N with cjλ,λ 6= 0 such
that every fλ satisfies the conditions on f in Theorem 1.

Remark 2. The proof of Theorem 2 in Section 5 will use induction on
m. The particular case m = 1 is stated in Section 2 as Proposition.

Remark 3. In what follows, we shall need on several occasions the fol-
lowing fact. If L|K is any field extension, then the power series f1, . . . , fl ∈
K[[z]] are algebraically independent over L if and only if they are so over K.
Whereas one of these implications is trivial, the proof of the converse can
be modeled exactly upon the procedure shown in Shidlovskii’s monograph
[7, p. 83] in the particular case where L = C and K is an algebraic number
field.

Our first application of Theorem 2 concerns the case l = 3, more precisely
the identity on Cp, the p-adic exponential function expp and the p-adic
logarithm logp. The last two are defined in Cp by the following power series:

expp z :=
∞∑

k=0

zk

k!
iff |z|p < p−1/(p−1),

logp(1 + z) := −
∞∑

k=1

(−z)k

k
iff |z|p < 1

respectively; compare e.g. [4]. These power series on the right-hand sides
having rational coefficients are exactly as in the complex case. Therefore we
can say: Since the complex functions z, exp z, log(1 + z) are algebraically
independent over C, they are so over Q as well, and thus the p-adic functions
z, expp z, logp(1+z) living in |z|p < p−1/(p−1) are algebraically independent
over Cp, or equivalently, over Qp. By the way, the algebraic independence
of these three functions can be easily proved, even by a purely algebraic
reasoning. We leave the corresponding details to the reader.
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After these intermediate considerations, we are going to give a first ap-
plication of Theorem 2. Two others, more involved in their formulation, will
be discussed in Section 6.

Corollary 2. If α1, . . . , αm satisfy the conditions of Theorem 1, then
the 3m elements αµ, expp(pαµ), logp(1 + αµ) (µ = 1, . . . ,m) from Cp are
algebraically independent over Qp.

We may combine Corollaries 1 and 2 as follows. Write the infinite prod-
ucts αµ from Corollary 1 as 1 + α∗µ, where the α∗µ satisfy the conditions
of Theorem 1 (compare the beginning of Section 4). As a consequence of
Corollary 2, the α∗µ, logp(1 + α∗µ) (µ = 1, . . . ,m) are algebraically indepen-
dent over Qp, which is equivalent to the algebraic independence over Qp of
the αµ, logp αµ (µ = 1, . . . ,m).

2. Some lemmas and a proposition. For the proof of Theorem 1
we shall need Lemma 2 below, which will be an easy consequence of the
following

Lemma 1. Let the power series

ϕ(z) :=
∞∑

j=0

djz
j ∈ Zp[[z]]

satisfy dj 6= 0 for at least one j ∈ N. Suppose

α :=
∞∑

k=1

ak p
rk

with ak ∈ Up for any k ∈ N, and where (rk) ∈ QN+ satisfies the following
technical conditions:

(i) The sequence (rk) increases eventually strictly and is unbounded.
(ii) There exist infinitely many n ∈ N such that rn+1 cannot be expressed

as a linear combination with rational integer coefficients of the numbers
1, r1, . . . , rn.

Then ϕ′(α) 6= 0 implies ϕ(α) 6= 0.

Proof. The ith formal derivative of ϕ is defined, of course, by

ϕ(i)(z) =
∞∑

j=i

j . . . (j − i+ 1)djzj−i.

Since
∣∣( j
i

)
djα

j−i∣∣
p
≤ |α|j−ip and |α|p < 1, all ϕ(i)(α)/i! exist.

Suppose that, under the conditions of Lemma 1, we have ϕ′(α) 6= 0 but
ϕ(α) = 0. Defining α(n) to be the nth partial sum

∑n
k=1 akp

rk of α, we have
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ordp(α(n) − α) = rn+1 for all large n. Since ϕ(α) = 0 we get

ϕ(α(n)) = ϕ(α+ (α(n) − α)) = ϕ′(α)(α(n) − α) +
ϕ′′(α)

2!
(α(n) − α)2 + . . .

From ϕ′(α) 6= 0 it is evident that, for n large enough, the p-order of the
right-hand side is exactly ordp(ϕ′(α)(α(n) − α)), and therefore we find

(1) ordp ϕ(α(n)) = ordp ϕ′(α) + rn+1

for all large n. This equation is our basic information leading finally to the
desired contradiction. From

ϕ′(α) =
∞∑

j=1

jdj

( ∞∑

k=1

akp
rk
)j−1

we see that each summand occurring on the right-hand side has a p-order
being a finite linear combination of 1, r1, r2, . . . with non-negative integer
coefficients. Since ϕ′(α) 6= 0 we know that ordp ϕ′(α) is such a finite linear
combination. Let us call it u + u1r1 + . . . + uhrh with u, u1, . . . , uh ∈ N0

but uh 6= 0 without loss of generality. We fix this linear combination for
ordp ϕ′(α).

Now we investigate

ϕ(α(n)) =
∞∑

j=0

dj

( n∑

k=1

akp
rk
)j
.

Here every summand occurring on the right-hand side has a p-order being
a linear combination of 1, r1, . . . , rn again with non-negative coefficients.

These considerations, combined with (1), lead to the following fact. rn+1

is a linear combination of 1, r1, . . . , rn with integer coefficients if n ≥ h is
large enough. But this contradicts condition (ii) of Lemma 1.

Remark. Of course, admitting here and in what follows the usual con-
vention ordp 0 =∞, equation (1) implies ϕ(α(n)) 6= 0 for any large n.

A rather immediate consequence of Lemma 1 is

Lemma 2. If f satisfies the conditions of Theorem 1, and α those of
Lemma 1, then f ′(α) 6= 0.

Proof. Let q be the smallest positive integer with f (q)(α) 6= 0. Such a q
must exist, by the condition on f in Theorem 1. Assuming q > 1, we put

ϕ(z) := f (q−1)(z) ∈ Zp[[z]],

leading us to ϕ(α) = 0 and ϕ′(α) 6= 0. This contradicts Lemma 1.

Another application of Lemma 1 is the following
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Proposition. Let f1, . . . , fl, of the form

fλ(z) :=
∞∑

j=0

cj,λz
j ∈ Zp[[z]],

be algebraically independent over Qp. Suppose

α :=
∞∑

k=1

akp
rk

is as in Lemma 1. Then f1(α), . . . , fl(α) are algebraically independent
over Qp.

Remark. If the functions f1, . . . , fl are algebraically dependent over Qp,
then, of course, so are the values f1(α), . . . , fl(α).

Proof. Let P ∈ Zp[X1, . . . ,Xl] be non-constant, and define ϕ(z) :=
P (f1(z), . . . , fl(z)). Clearly,

ϕ(z) =
∞∑

j=0

djz
j ∈ Zp[[z]].

Clearly there exists a q ∈ N with ϕ(q)(α) 6= 0, since ϕ′(α) = ϕ′′(α) = . . . = 0
would imply that ϕ is constant, ϕ(z) = d0, and thus

P (f1(z), . . . , fl(z)) = d0,

contradicting the algebraic independence of f1, . . . , fl over Qp.
Consider now the function ϕ(q−1)(z), which cannot be constant. Thus,

we get ϕ(q−1)(α) 6= 0, by Lemma 1. If q = 1, then we have ϕ(α) 6= 0, or
equivalently P (f1(α), . . . , fl(α)) 6= 0. If q > 1, we consider the non-constant
function ϕ(q−2)(z) and conclude ϕ(q−2)(α) 6= 0, and so on.

The following two lemmas prepare the proof of Theorem 2. Since their
proofs generalize those of the above two lemmas, we will be somewhat
briefer.

Lemma 3. Let α1, . . . , αm satisfy the conditions of Theorem 1. For any
µ = 1, . . . ,m, let

ϕµ(z) :=
∞∑

j=0

dj,µz
j ,

where all dj,µ ∈ Zp[[α1, . . . , α̂µ, . . . , αm]] (∗) and dj,µ 6= 0 for at least one
j = j(µ) ∈ N. Then ϕ′µ(αµ) 6= 0 implies ϕµ(αµ) 6= 0.

Proof. Suppose that our assertion is false, i.e. ϕ′µ(αµ) 6= 0 but ϕµ(αµ)

= 0 for some µ ∈ {1, . . . ,m}. Defining α
(n)
µ as the nth partial sum of the

(∗) This is an abbreviation for Zp[[α1, . . . , αµ−1, αµ+1, . . . , αm]].
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series for αµ in Theorem 1, we have

ϕµ(α(n)
µ ) = ϕ′µ(αµ)(α(n)

µ − αµ) +
ϕ′′µ(αµ)

2!
(α(n)
µ − αµ)2 + . . .

Since ϕ′µ(αµ) 6= 0, it follows that the p-order of the right-hand side is

ordp(ϕ′µ(αµ)(α(n)
µ −αµ)) for any n ≥ nµ. This implies, for any large n (≥ nµ),

(2) ordp ϕµ(α(n)
µ ) = ordp ϕ′µ(αµ) + rn+1,µ.

To examine ordp ϕ′µ(αµ), we note that

ϕ′µ(αµ) =
∞∑

j=1

jdj,µα
j−1
µ and dj,µ ∈ Zp[[α1, . . . , α̂µ, . . . , αm]].

The definition of α1, . . . , αm in Theorem 1 shows us that ϕ′µ(αµ) is a sum
of products of an element from Up times a rational power of p, where the
exponent of p is a finite linear combination (over N0) of 1 and the rk,µ with
k ∈ N, µ ∈ {1, . . . ,m}. Thus ordp ϕ′µ(αµ) is again such a linear combination,
which we fix from now on. We denote by kµ the maximal first subscript k
such that rk,ν appears for some ν ∈ {1, . . . ,m} with a positive integer
coefficient in this fixed combination.

Just the same consideration provides us with the fact that ordp ϕµ(α(n)
µ )

is a finite linear combination (over N0) of 1, r1,µ, . . . , rn,µ and the rk,µ′ with
µ′ ∈ {1, . . . , µ̂, . . . ,m}. Combined with (2), this leads us to the insight that,
for each large n ≥ max{nµ, kµ}, the number rn+1,µ is a finite linear combi-
nation (over Z) of 1, r1,µ, . . . , rn,µ and some of the rk,µ′ with µ′ 6= µ. Again
this contradicts our hypotheses on the α’s.

From Lemma 3 we conclude

Lemma 4. For α1, . . . , αm and ϕ1, . . . , ϕm as in Lemma 3,

ϕ′µ(αµ) 6= 0

for µ = 1, . . . ,m.

Proof. The hypotheses imply the existence of a smallest qµ ∈ N with

ϕ
(qµ)
µ (αµ) 6= 0. If qµ > 1, we consider

ψµ(z) := ϕ(qµ−1)
µ (z) ∈ Zp[[α1, . . . , α̂µ, . . . , αm]][[z]],

which satisfies all conditions of Lemma 3. Since ψ′µ(αµ) 6= 0, we get ψµ(αµ)

6= 0 or equivalently ϕ(qµ−1)
µ (αµ) 6= 0, contradicting our choice of qµ.

3. Proof of Theorem 1. We will argue by induction on m. To start
with m = 1, we simply write α := α1 =

∑∞
k=1 akp

rk as in Lemma 1. We
put γ := f(α), and we let P ∈ Zp[X] be of minimal degree such that
P (γ) = 0, assuming, of course, that γ is algebraic over Qp. As in the proof
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of Lemma 1, let α(n) denote the nth partial sum of the series for α, and put
γ(n) := f(α(n)).

Next we must investigate the differences γ(n) − γ. Clearly

γ(n) − γ = f(α(n))− f(α) = f ′(α)(α(n) − α) +
f ′′(α)

2!
(α(n) − α)2 + . . . ,

where we know f ′(α) 6= 0 from Lemma 2. Thus we get

(3) ordp(γ(n) − γ) = ordp f ′(α) + ordp(α(n) − α)

for any large n.
From the above choice of P we deduce

P (γ(n)) = P ′(γ)(γ(n) − γ) +
P ′′(γ)

2!
(γ(n) − γ)2 + . . .(4)

=: P ′(γ)(γ(n) − γ) + P ∗(γ(n) − γ),

where the power series P ∗(X) :=
∑∞
i=2(P (i)(γ)/i!)Xi ∈ Cp[[X]] has

ordp(P (i)(γ)/i!) ≥ 0. For n large enough, the p-order of the right-hand side
of (4) is ordp(P ′(γ)(γ(n) − γ)); compare (3) and P ′(γ) 6= 0. Thus it follows
from (3) and (4) that

(5) ordp P (γ(n)) = ordp P ′(γ) + ordp f ′(α) + ordp(α(n) − α)

for any large n.
Now we try to get the desired contradiction from (5). As in the proof of

Lemma 1, we find the existence of an h ∈ N0 such that

ordp f ′(α) = u+ u1r1 + . . .+ uhrh, ordp P ′(γ) = v + v1r1 + . . .+ vhrh

with u, u1, . . . , uh, v, v1, . . . , vh ∈ N0. Clearly, ordp(α(n) − α) = rn+1 for
every large n, under the hypotheses of Theorem 1. What about ordp P (γ(n))?
If e0, . . . , eJ ∈ Zp are the coefficients of P , we see

P (γ(n)) =
J∑

i=0

eif(α(n))i =
J∑

i=0

ei

( ∞∑

j=0

cj

( n∑

k=1

akp
rk
)j)i

.

Hence ordp P (γ(n)) is a linear combination of 1, r1, . . . , rn with non-negative
integer coefficients. Then we deduce from (5) that, for any large n ≥ h, rn+1

is a linear combination (over Z) of 1, r1, . . . , rn, contradicting condition (ii)
of Theorem 1.

To perform the inductive step, we define

γµ := f(αµ) (µ = 1, . . . ,m).

We suppose m > 1, and assume that γ1, . . . , γm are algebraically depen-
dent over Qp, whereas any subset of m − 1 elements is not. Let P ∈
Zp[X1, . . . ,Xm] be a non-constant polynomial of minimal total degree such
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that

(6) P (γ1, . . . , γm) = 0.

By our hypothesis, P must depend on all variables Xµ and

(7)
∂P

∂Xµ
(γ1, . . . , γm) 6= 0 (µ = 1, . . . ,m),

by our minimality condition on P . From (6) we get

(8) P (X1, . . . ,Xm)

=
m∑

µ=1

∂P

∂Xµ
(γ1, . . . , γm)(Xµ − γµ) + P ∗(X1 − γ1, . . . ,Xm − γm),

where all monomials in X1 − γ1, . . . ,Xm − γm in the polynomial P ∗ have
total degree at least 2 and coefficients from Cp of non-negative p-order.

Now defining

(9) α(n)
µ :=

n∑

k=1

ak,µp
rk,µ , A(n)

µ := α(n)
µ − αµ = −

∑

k>n

ak,µ p
rk,µ ,

and

(10) γ(n)
µ := f(α(n)

µ ),

we find from the definition of γµ that

(11) γ(n)
µ − γµ =

∞∑

i=1

f (i)(αµ)
i!

(A(n)
µ )i.

With n1, . . . , nm ∈ N0, to be specified later, we deduce from (8) and (11)
that

P (γ(n1)
1 , . . . , γ(nm)

m ) =
m∑

µ=1

f ′(αµ)
∂P

∂Xµ
(γ1, . . . , γm)A(nµ)

µ(12)

+
m∑

µ=1

∂P

∂Xµ
(γ1, . . . , γm)

∞∑

i=2

f (i)(αµ)
i!

(A(nµ)
µ )i

+ P ∗(γ(n1)
1 − γ1, . . . , γ

(nm)
m − γm).

From (7) and Lemma 2, we get

Bµ := f ′(αµ)
∂P

∂Xµ
(γ1, . . . , γm) 6= 0 (µ = 1, . . . ,m),

and, defining bµ := ordpBµ for µ = 1, . . . ,m, we may suppose without loss
of generality that

(13) b1 ≥ . . . ≥ bm.
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The different terms on the right-hand side of the non-vanishing

f ′(αµ) =
∞∑

j=1

jcjα
j−1
µ =

∞∑

j=1

jcj

( ∞∑

k=1

ak,µp
rk,µ
)j−1

have p-adic orders being finite linear combinations (over N0) of 1, r1,µ,
r2,µ, . . . Similarly, the terms on the right-hand side of

∂P

∂Xµ
(γ1, . . . , γm) =

∑
eµ(i1, . . . , im)f(α1)i1 . . . f(αm)im , eµ(. . .) ∈ Zp,

where the sum is extended over finitely many (i1, . . . , im) ∈ Nm0 , have
p-orders which are finite linear combinations (over N0) of 1 and all rk,ν
(k ∈ N, ν = 1, . . . ,m). Therefore, we can assert that each bµ is a finite lin-
ear combination (over N0) of 1 and all rk,ν . For any µ = 1, . . . ,m, we may
fix such a linear combination for bµ, and we define n0 to be the maximal
k ∈ N such that at least one rk,ν occurs in at least one of these m fixed
linear combinations.

Now we select n1 > n0 according to the following conditions:

rn1+1,1 > b1,(14) {
rn1+1,1 is not a finite linear combination over Z of

1, r1,1, . . . , rn1,1 and the rk,µ′ with µ′ ∈ {2, . . . ,m}.(15)

Finally we fix n2, . . . , nm ∈ N0 such that

(16) b1 + rn1+1,1 < . . . < bm + rnm+1,m

implying, by (13),

(17) rn1+1,1 < . . . < rnm+1,m.

Since ordpA
(nµ)
µ = rnµ+1,µ for nµ large enough, by (9) and our hypotheses

on the r-sequences, we find from (16) that

(18) ordp

( m∑

µ=1

f ′(αµ)
∂P

∂Xµ
(γ1, . . . , γm)A(nµ)

µ

)
= b1 + rn1+1,1.

It remains to investigate the p-order of the second and third term on the
right-hand side of (12). Clearly, for any i ≥ 2, µ = 1, . . . ,m we have

ordp

(
∂P

∂Xµ
(γ1, . . . , γm) · f

(i)(αµ)
i!

(A(nµ)
µ )i

)
≥ 2rni+1,1 > b1 + rn1+1,1,

by (14) and (17). The different terms of P ∗(γ(n1)
1 −γ1, . . . , γ

(nm)
m −γm) have

p-orders not less than 2rn1+1,1 > b1 + rn1+1,1. With these considerations
and (18), we conclude from (12) that P (γ(n1)

1 , . . . , γ
(nm)
m ) does not vanish

and moreover has

(19) ω := ordp P (γ(n1)
1 , . . . , γ(nm)

m ) = b1 + rn1+1,1.



Algebraic independence 319

On the other hand, we see from (9) and (10) that

γ(n)
µ = f(α(n)

µ ) =
∞∑

j=0

cj

( n∑

k=1

ak,µp
rk,µ
)j

such that ω is a linear combination (over N0) of 1, r1,1, . . . , rn1,1, . . . ,
r1,m, . . . , rnm,m. This and (19) gives us the desired contradiction, taking
n1 > n0 and hypothesis (15) into account. Herewith Theorem 1 is proved.

Remark. We briefly discuss the necessity of the conditions on the se-
quences (rk) ∈ QN+ appearing in our series

∞∑

k=1

akp
rk (= α).

Since ak ∈ Up, the assumption (rk)→∞ is necessary and sufficient for the
convergence of these series. If, in contrast to condition (ii) of Theorem 1,
the sequence of denominators of rk is bounded above, then α and f(α) are
both algebraic over Qp for arbitrary series f ∈ Zp[[z]]. Namely, under this
new hypothesis, one can write both of them as finite sums of the shape

t−1∑

τ=0

Aτp
τ/t

with all Aτ belonging to Zp and t ∈ N the common denominator of all rk.

4. The infinite product. For the proof of Corollary 1, we shall finally
use Theorem 1 with f(z) = z. But let us first consider a typical product

∞∏

n=1

(1 + pr
n

)qn

with r ∈ Q \ N, r > 1 and all qn ∈ Z with qn 6= 0 infinitely often. Clearly,
this infinite product converges. We expand it as a series of the form

1 +
∞∑

k=1

akp
rk

with all ak ∈ Up, and all rk ∈ Q+ are finite linear combinations of 1, r, . . . ,
rn, . . . with coefficients from N0. We may suppose the sequence (rk) to be
strictly increasing.

Since

(20) (1 + pr
n

)qn = 1 + qnp
rn +

∞∑

i=2

(
qn
i

)
pir

n
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(where the sum vanishes for qn = 1, and is finite for qn ∈ N), we first note
that in the case qn 6= 0,

(21) ωp(n) := ordp qn + rn < ordp

(
qn
i

)
+ irn for i ≥ 2.

This inequality is a consequence of ordp i < (i − 1)rn, and this last es-
timate follows at once from ordp i ≤ (log i)/(log 2) ≤ i − 1. Clearly, the
ωp(n) are distinct for distinct n with qn 6= 0, by our conditions on r.
Since ωp(n) tends to infinity with n (qn 6= 0), we may define N1 to be
such that ωp(N1) = minn∈N ωp(n), and inductively, for any s > 1, let
ωp(Ns) = minn>Ns−1 ωp(n). Clearly, N1 < N2 < . . .

For N ∈ N with qN 6= 0, let kN ∈ N be defined by

rkN = ωp(N).

Such a number kN exists for each N as above, since we can obtain the
corresponding term ordp qN + rN by multiplying qNpr

N

on the right-hand
side of (20) by the 1 from all other factors (1 + pr

n

)qn , n 6= N .
Next we note that if an rk contains some rN with qN 6= 0 as a summand,

then rk contains it in the form

(22) ordp

(
qN
i

)
+ irN

with appropriate i ≥ 2. Further, we point out that none of the linear com-
binations r1, . . . , rkNs−1 contains some rn (n ≥ Ns) with a positive integer
coefficient. Namely, by definition of Ns, for n ≥ Ns with qn 6= 0 one has

ωp(n) ≥ ωp(Ns) = rkNs .

The number kNs is the smallest k such that rk contains rNs as a summand
with a positive coefficient, since

r1 < . . . < rkNs−1 < rkNs

and all other rk containing rNs have subscript k > kNs ; this follows from
(21) and (22).

We assert that rkNs cannot be expressed as a linear combination of
1, r1, . . . , rkNs−1 with integral coefficients. Otherwise we could rewrite this
linear form as

rNs = B0 +B1r + . . .+BNs−1r
Ns−1

with all B’s in Z, contradicting the hypotheses on r.
Now we are in a position to apply Theorem 1 to the series

(23)
∞∑

k=1

ak,µp
rk,µ :=

∞∏

n=1

(1 + pr
n
µ )qn,µ − 1 (µ = 1, . . . ,m),
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which are just the αµ−1 in terms of our corollary. Our above investigations
on the ak,µ, rk,µ occurring in (23) show that these have all properties as-
sumed in Theorem 1. Plainly, the role of the rn+1,µ from Theorem 1 is now
played by the different rkNs arising when carrying out the above consider-
ations with r = rµ, (qn)n = (qn,µ)n for µ = 1, . . . ,m. Thus, we conclude
from Theorem 1 that the α1 − 1, . . . , αm − 1 are algebraically independent
over Qp, and therefore so are the α1, . . . , αm as well, proving Corollary 1.

Remark 1. For special sequences (qn), the considerations in the pre-
ceding proof become much simpler. For instance, let us briefly discuss the
case qn = 1 for each n ∈ N. For this, we consider all sums

∑∞
n=0 δnr

n with
δn ∈ {0, 1}, but δn = 0 from some n on. By our hypotheses on r, all these
finite sums are distinct. Therefore, we may order them following their size
as

0 = r0 < r1 < . . . < rk < . . .→∞,
and we finally get

∞∏

n=1

(1 + pr
n

)− 1 =
∞∑

k=1

prk .

Clearly, for each N ∈ N, there exists exactly one kn ∈ N for which rkN = rN

holds. Furthermore, no rk with k < kN can contain an rn with n ≥ N with
a coefficient δn = 1.

Remark 2. The special infinite products considered in the preceding
remark arise, at least formally, from Mahler type functional equations as
discussed thoroughly in the classical complex case in Nishioka’s monograph
[5]. Namely, if F (z) denotes the infinite product

∏∞
n=0(1 + zr

n

), then we
have F (z) = (1 + z)F (zr).

5. Proof of Theorem 2. Again we proceed by induction on m. In the
Proposition from Section 2, we have already proved (a little more than) the
case m = 1 of Theorem 2. Suppose m > 1, and assume that Theorem 2 is
proved for any subset {α1, . . . , α̂µ, . . . , αm} of {α1, . . . , αm}. Suppose that
our assertion is false for the m points α1, . . . , αm, i.e. that the l ·m numbers
fλ(αµ) (λ = 1, . . . , l, µ = 1, . . . ,m) are algebraically dependent over Qp. Let
the non-constant polynomial

(24) P ∈ Zp[X1,1, . . . ,X1,m; . . . ;Xl,1, . . . ,Xl,m] (=: Zp[X], for short)

be such that

(25) P (γ) := P (γ1,1, . . . , γ1,m; . . . ; γl,1, . . . , γl,m) = 0,

where γλ,µ := fλ(αµ). Clearly, no l-tuple (X1,µ, . . . ,Xl,µ) of variables can
be missing in (24), by our induction hypothesis.
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From (24) and (25), we find

(26) P (X) =
m∑

µ=1

l∑

λ=1

∂P

∂Xλ,µ
(γ)(Xλ,µ − γλ,µ) + P ∗(X − γ),

where all monomials in the l ·m differences Xλ,µ−γλ,µ entering into P ∗ have
total degree at least 2 and coefficients from Cp with non-negative p-order.

Now, let α(n)
µ and A

(n)
µ be defined as in (9), and

γ
(n)
λ,µ := fλ(α(n)

µ ).

We want to substitute γ(n)
λ,µ for Xλ,µ in (26). To get on after that, we first

calculate

(27) γ
(n)
λ,µ − γλ,µ =

∞∑

i=1

f
(i)
λ (αµ)
i!

(A(n)
µ )i = f ′λ(αµ)A(n)

µ +
∑

i≥2

. . .

Allowing here that n depends on µ (we therefore write nµ instead of n), we
find from (26) and (27) that

(28) P (γ(n1)
1,1 , . . . , γ

(nm)
1,m ; . . . ; γ(n1)

l,1 , . . . , γ
(nm)
l,m )

=
m∑

µ=1

l∑

λ=1

f ′λ(αµ)
∂P

∂Xλ,µ
(γ)A(nµ)

µ

+
∑

µ

∑

λ

∂P

∂Xλ,µ
(γ)
∑

i≥2

f
(i)
λ (αµ)
i!

(A(nµ)
µ )i

+ P ∗(γ(n1)
1,1 − γ1,1, . . . , γ

(nm)
1,m − γ1,m; . . . ; γ(n1)

l,1 − γl,1, . . . , γ(nm)
l,m − γl,m).

At this moment, we need the following intermediate but crucial

Lemma 5. For µ = 1, . . . ,m, the sum

B∗µ :=
l∑

λ=1

f ′λ(αµ)
∂P

∂Xλ,µ
(γ)

does not vanish.

To start with its proof, we consider the polynomial

(29) Qµ(X1,µ, . . . ,Xl,µ)

:= P (γ1,1, . . . ,X1,µ, . . . , γ1,m; . . . ; γl,1, . . . ,Xl,µ, . . . , γl,m),

where Xλ,µ replaces γλ,µ for λ = 1, . . . , l on the left-hand side of (25).
Of course, by what we have noted after (25), Qµ(X1,µ, . . . ,Xl,µ) is a non-
constant polynomial with coefficients from

Zp[γ1,1, . . . , γ̂1,µ, . . . , γ1,m; . . . ; γl,1, . . . , γ̂l,µ, . . . , γl,m].
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Since the functions f1, . . . , fl are algebraically independent over Qp by hypo-
thesis, and thus over Cp also (compare Remark 3 after Theorem 2), each
function

(30) ϕµ(z) := Qµ(f1(z), . . . , fl(z)) (µ = 1, . . . ,m)

is non-constant. From this and (29), we get

(31) ϕ′µ(αµ) =
l∑

λ=1

f ′λ(αµ)
∂Qµ
∂Xλ,µ

(γ1,µ, . . . , γl,µ) = B∗µ.

On the other hand, one can easily rearrange ϕµ(z) from (30) as a power
series as they appear in Lemma 3; then Lemma 4 gives us ϕ′µ(αµ) 6= 0 for
µ = 1, . . . ,m, and therefore, by (31), the assertion of Lemma 5.

We are now in a position to continue our proof of Theorem 2. Since
B∗µ 6= 0 for µ = 1, . . . ,m, by Lemma 5, we may define b∗µ := ordpB∗µ and
order them in such a way that

b∗1 ≥ . . . ≥ b∗m.
Again each b∗µ is a finite linear combination (over N0) of 1 and all rk,ν . For
any µ = 1, . . . ,m, we fix such a linear combination for b∗µ, and proceed from
here on exactly as in the corresponding passage of the proof of Theorem 1,
except that we have to replace the b’s in (14) and (16) by the b∗’s. If our
new n1, . . . , nm are large enough, we deduce

(32) ordp
( m∑

µ=1

B∗µA
(nµ)
µ

)
= b∗1 + rn1+1,1

replacing formula (18). The sum in (32) is nothing else than the first double
sum on the right-hand side of (28). From here on, we get a contradiction
along the same lines as before.

6. Two more applications of Theorem 2. Here we discuss first hy-
pergeometric series and then a q-analogue of Corollary 2. But before enter-
ing a little more into the details, let us describe in short a general principle
for the search of such applications, which we used already in the proof of
Corollary 2.

Suppose we are given power series

fλ(z) :=
∞∑

j=0

cj,λz
j (λ = 1, . . . , l)

from Q[[z]], say, having positive radii of convergence Rλ and Rp,λ in C and
Cp, respectively. If we have any method to prove the algebraic independence
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of the functions

(33) z, f1(z), . . . , fl(z)

over C (or equivalently the algebraic independence of f1(z), . . . , fl(z) over
the rational function field C(z)), then the functions (33) are also alge-
braically independent over Q; see again Remark 3 after Theorem 2. But
this implies their algebraic independence over Qp (or over Cp) as well, and
we can conclude from Theorem 2 that the (l + 1) ·m elements

αµ, f1(αµ), . . . , fl(αµ) (µ = 1, . . . ,m)

from Cp are algebraically independent over Qp if the α’s satisfy the condi-
tions of Theorem 1.

Hypergeometric series. We consider generalized hypergeometric series

(34)
∞∑

j=0

(κ1)j . . . (κu)j
(λ1)j . . . (λv)j

zj ,

where (X)j := X(X+1) . . . (X+j−1), j ∈ N, denotes the usual Pochhammer
symbol, (X)0 := 1. If v > u, and all κ’s and λ’s are rational, these series
can be made Siegel E-functions by a change of variable. Such functions are
considered in the Siegel–Shidlovskii theory (compare, e.g., [7]), and their
algebraic independence over C(z) is intensively studied within the scope of
this theory. Very precise conditions on the parameters κ and λ such that
functions of type (34) are algebraically independent over C(z) can be found
in the literature. Concerning this topic, we refer the reader to Salikhov [6]
but we also mention the paper [1] of Beukers, Brownawell and Heckman.

A q-analogue of Corollary 1. It is explained in [2] in which sense we may
consider the entire transcendental function

(35) Eq(z) :=
∞∏

n=1

(
1− z

qn

)
=
∞∑

j=0

zj

(1− q) . . . (1− qj)

as a q-analogue of the classical exponential function, supposing q ∈ C,
|q| > 1. Further, we may consider the meromorphic function

(36) Lq(z) :=
∞∑

n=1

z

qn − z

as a q-analogue of the complex logarithm. Namely, we easily see from (36),
expanding (qn − z)−1 into a power series about z = 0, that

(37) Lq(z) =
∞∑

j=1

zj

qj − 1
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in |z| < |q|, and therefore (q−1)Lq(z) =
∑
zj/(qj−1 + . . .+1), which tends,

at least formally, to
∑
zj/j = − log(1−z) as q → 1. As is obvious from (35)

and (36), the connection between the functions Eq and Lq is

(38)
E′q(z)

Eq(z)
= −Lq(z)

z
.

Now we assert that, for fixed q as above, the three functions

(39) z,Eq(z), Lq(z)

are algebraically independent over C, or even over Q(q), since the series
in (35) and (37) have their coefficients in that field. Suppose, to the con-
trary, that the functions (39) are algebraically dependent over C. Then
z,Eq(z), E′q(z) would be algebraically dependent as well, by (38). In other
words, Eq(z) would satisfy an algebraic differential equation of the first or-
der. But then, following a result attributed by Valiron [8], [9] to Wiman,
the function Eq would have growth order %(Eq) ∈ Q+. On the other hand,
it is well known (compare, e.g., [2] or [8]) that Eq has %(Eq) = 0. For his
convenience we remind the reader that the growth order %(f) of an entire
function f is defined by lim supr→∞ (log log |f |r)/(log r), where |f |r denotes
the maximum of |f(z)| on |z| = r.

Choosing now q ∈ Q\Z, |q| > 1, we may select a prime p with ordp q < 0.
Then the product and the series in (35) define the same entire function in
Cp, which we denote by Eq,p(z). The series in (37), converging for z ∈ Cp,
|z|p < |q|p, may be called Lq,p(z). Then our above considerations on the
functions (39) give the algebraic independence of their p-adic analogues

z,Eq,p(z), Lq,p(z),

and we can deduce from Theorem 2 a q-analogue of Corollary 2.
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of the manuscript.
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