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1. Introduction. Let n and k ≥ 2 be positive integers. For a pair
(n, k) and a positive integer h, we write [n, k, h] for the set of all pairs
(n, k), . . . , (n + h − 1, k) and we set [n, k] = [n, k, 1] = {(n, k)}. Further we
put

∆ := ∆(n, k) = n(n+ 1) · · · (n+ k − 1).

We use the above notation for any positive integer x in place of n and we
write

∆′ := ∆(x− k + 1, k) = x(x− 1) · · · (x− k + 1).

For an integer ν > 1, we denote by ω(ν) and P (ν) the number of distinct
prime divisors of ν and the greatest prime factor of ν, respectively, and let
ω(1) = 0, P (1) = 1. Also we denote by W (∆′) the number of terms in ∆′

divisible by a prime greater than k. Let pi denote the ith prime number.
Thus p1 = 2, p2 = 3, . . . . We shall always write p for a prime number.

Since ∆ is divisible by k!, we observe that

ω(∆) ≥ π(k)

where π(k) denotes the number of primes not exceeding k. A well known
theorem of Sylvester [12] states that

ω(∆) > π(k) if n > k.(1)

This means that a product of k consecutive integers each exceeding k is di-
visible by a prime greater than k. It is clear that the assumption n > k in (1)
is necessary since ω(∆(1, k)) = π(k). Another proof of Sylvester’s theorem
was given by Erdős [5]. Saradha and Shorey [10, Corollary 3] extended the
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proof of Erdős to sharpen (1) as

ω(∆) ≥ π(k) +

[
1

3
π(k)

]
+ 2 if n > k > 2(2)

unless (n, k) ∈ S1, where S1 is the union of the sets

(3)





[4, 3], [6, 3, 3], [16, 3], [6, 4], [6, 5, 4], [12, 5], [14, 5, 3], [23, 5, 2],

[7, 6, 2], [15, 6], [8, 7, 3], [12, 7], [14, 7, 2], [24, 7], [9, 8], [14, 8],

[14, 13, 3], [18, 13], [20, 13, 2], [24, 13], [15, 14], [20, 14], [20, 17].

We define

δ := δ(k) =





3 if k = 2,

2 if 3 ≤ k ≤ 6,

1 if 7 ≤ k ≤ 16,

0 otherwise,

so that [
3

4
π(k)

]
− 1 + δ(k) ≥

[
1

3
π(k)

]
+ 2.

We observe that

ω(∆) = π(2k) if n = k + 1.(4)

Therefore, the constant 1/3 in (2) cannot be replaced by a number larger
than 1. In the present paper, we replace 1/3 by 3/4. But in that case, it is
necessary to enlarge the set S1 of exceptions. We derive from Lemma 1(i),
(ii) that the inequality

π(k) +

[
3

4
π(k)

]
− 1 + δ(k) > π(2k)(5)

implies k ≤ 2697. Further we check that the values of k ≤ 2697 satisfying
(5) are given by k in
{

2, 3, 5, 6, 7, 8, 13, 14, 19, 20, 47, 48, 73, 74, 83, 89, 107, 108, 109, 110, 111, 112,

113, 114, 115, 116, 173, 199, 200, 277, 278, 281, 282, 283, 284, 285, 293.

Therefore we see from (4) that it is necessary to include at least the excep-
tions given by n = k + 1 for the above values of k. We prove

Theorem 1. Let n > k ≥ 3. Then

ω(∆) ≥ π(k) +

[
3

4
π(k)

]
− 1 + δ(k)(6)

unless

(n, k) ∈ S1 ∪ S2
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where S1 is given by (3) and S2 is the union of the sets



[20, 19, 3], [24, 19], [21, 20], [48, 47, 3], [54, 47], [49, 48], [74, 71, 2],

[74, 72], [74, 73, 3], [84, 73], [75, 74], [84, 79], [84, 83], [90, 83],

[108, 83], [110, 83], [90, 89], [102, 89], [104, 89], [108, 103],

[110, 103, 2], [114, 103, 2], [110, 104], [114, 104], [108, 107, 12],

[109, 108, 10], [110, 109, 9], [111, 110, 7], [112, 111, 5], [113, 112, 3],

[114, 113, 7], [138, 113], [140, 113, 2], [115, 114, 5], [140, 114],

[116, 115, 3], [117, 116], [174, 173], [198, 181], [200, 181, 2],

[200, 182], [200, 193, 2], [200, 194], [200, 197], [200, 199, 3],

[201, 200], [282, 271, 5], [282, 272], [284, 272, 2], [284, 273],

[278, 277, 3], [282, 277, 5], [279, 278], [282, 278, 4], [282, 279, 3],

[282, 280], [282, 281, 7], [283, 282, 5], [284, 283, 5], [294, 283],

[285, 284, 3], [286, 285], [294, 293].

(7)

Catalan [1] conjectured in 1844 that 8 and 9 are the only perfect powers
that differ by 1. Tijdeman [13] proved in 1976 that there are only finitely
many perfect powers that differ by 1. A complete proof of Catalan’s con-
jecture has been established recently by Mihăilescu [6]. This implies that
exceptions to (6) when k = 2 and n 6= 8 are given by Mersenne and Fermat
primes.

It follows from Theorem 1 that (6) holds for k > 293. Further we observe
that the largest value of k in S1 ∪ S2 coincides with the largest value of k
satisfying (5). Next we check that the exceptions given in Theorem 1 are
necessary. It is clear that Theorem 1 includes the result of Saradha and
Shorey stated above. In fact both the results are identical in 3 ≤ k ≤ 18.
Thus it suffices to prove Theorem 1 for k ≥ 19. We derive two results from
Theorem 1, the first one with no exception and the second one with only
two exceptions.

If k + 1 is prime and 2k + 1 is composite, then we observe by writing

∆(k + 2, k) = ∆(k + 1, k)
2k + 1

k + 1

that

ω(∆(k + 2, k)) = π(2k)− 1.(8)

We notice that there are infinitely many k for which k + 1 is prime and
2k + 1 is composite. Therefore (8) is valid for infinitely many k. Thus an
inequality sharper than ω(∆) ≥ π(2k)− 1 for n > k is not valid. Further we
observe that

ω(∆(n, k)) ≥ π(2k)− 1 if n = k + 3, k + 4, k + 5.(9)
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It is difficult to show the above inequality when n = k + 6 since we cannot
exclude the possibility that N,N + 2 are primes and 2N − 5, 2N − 3 are
composites for N = k+ 3. For N ≤ 109, there are 2487118 values of N with
N,N + 2 primes and 2N −5, 2N −3 composites. If there are infinitely many
such N , then ω(∆(N + 3, N − 3)) = π(2N − 6) − 2 for infinitely many N .
We conjecture that there are infinitely many twin primes N,N+2 such that
2N − 5, 2N − 3 are composites.

We observe from (4), (8) and (9) that (10) is valid for all exceptions (n, k)
with k+1 ≤ n ≤ k+5 in Theorem 1. Further we check that other exceptions
in Theorem 1 satisfy ω(∆) ≥ π(2k) − 1 implying (10) again. Therefore we
deduce from Theorem 1 the following result.

Corollary 1. Let n > k. Then

ω(∆) ≥ min

(
π(k) +

[
3

4
π(k)

]
− 1 + δ(k), π(2k)− 1

)
.(10)

Corollary 2. Let n > k. Then

ω(∆) ≥ π(k) +

[
2

3
π(k)

]
− 1(11)

unless

(n, k) ∈ {(114, 109), (114, 113)}.(12)

For the proof of Corollary 2, we may assume that (n, k) ∈ S1 ∪ S2 by
Theorem 1. By Corollary 1, we may suppose that

π(2k)− 1 < π(k) +

[
2

3
π(k)

]
− 1,

which implies that k = 5, 13, 14, 19, 20, 23, 47, 48, 73, 74, 109, 110, 111, 113,
114. Now we check (11) for all pairs (n, k) given above other than (12).
The estimate (2) has been applied in [7] and [11]. Further Theorem 1 and
Corollary 1 have also been applied in [7].

The constant 3/4 in Theorem 1 can be replaced by a number close to 1
if n > 17

12k.

Theorem 2. Let (n, k) 6= (6, 4). Then

ω(∆) ≥ π(2k) if n >
17

12
k.(13)

We observe that 17
12k in Theorem 2 is optimal since ω(∆(34, 24)) =

π(48)−1. Also the assumption (n, k) 6= (6, 4) is necessary since ω(∆(6, 4)) =
π(8) − 1. Some of the pairs (n, k) for which ω(∆) ≥ π(2k) is not valid are
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as follows:

ω(∆) =





π(2k)− 1 if (n, k) = (6, 4), (34, 24), (33, 25), (80, 57),

π(2k)− 2 if (n, k) = (74, 57), (284, 252), (3943, 3880),

π(2k)− 3 if (n, k) = (3936, 3879), (3924, 3880), (3939, 3880),

π(2k)− 4 if (n, k) = (1304, 1239), (1308, 1241), (3932, 3879),

π(2k)− 5 if (n, k) = (3932, 3880), (3932, 3881), (3932, 3882).

Now we give a formula from which the above calculation have been de-
rived. Let n = k + r with 0 < r ≤ k. Observing that the prime factors of ∆
are the p’s satisfying either p ≤ k + (r − 1)/2 or k + r ≤ p ≤ 2k + r − 1, we
obtain

ω(∆(n, k)) = π(2k) + F (k, r),

where

F (k, r) = π(2k + r − 1)− π(2k)−
(
π(k + r − 1)− π

(
k +

r − 1

2

))
.

It is also possible to replace 3/4 in Theorem 1 by a number close to 1 if
n > k and k is sufficiently large. Let ε > 0 and n > k. Then there exists k0

depending only on ε such that for k ≥ k0, we have

ω(∆(n, k)) ≥ (2− ε)π(k).(14)

For a proof, we may suppose that n ≤ 17
12k by Theorem 2. Further

ω(∆) ≥ π(n+ k − 1)− π(n− 1) + π(k).

Now the assertion (14) follows from the Prime Number Theorem.
Saradha and Shorey derived (2) from a more general result [10, Theo-

rem 3′]:

Theorem A. Let x ≥ 2k and f1 < f2 < · · · < fµ be integers in [0, k).
Assume that

P ((x− f1) · · · (x− fµ)) ≤ k.(15)

Then

µ ≤ k −
[

1

3
π(k)

]
− 2

unless (x, k) ∈ S3, where S3 is the union of all sets [x, k, h] such that
[x− k + 1, k, h] belongs to S1 given by (3).

We derive Theorem 1 from the following sharpening of Theorem A.

Theorem 3. Under the assumptions of Theorem A, we have

µ ≤ k −
[

3

4
π(k)

]
+ 1− δ(k)(16)
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unless (x, k) ∈ S3 ∪S4 where S3 is given by Theorem A and S4 is the union
of all sets [x, k, h] such that [x− k + 1, k, h] belongs to S2 given by (7).

We observe that Theorem 1 follows from Theorem 3 by putting n =
x− k + 1 and by choosing x− f1, x− f2, . . . , x− fµ as all the factors of ∆
not divisible by a prime greater than k, which implies ω(∆) ≥ π(k) + k−µ.

Further we notice that Theorems A and 3 are identical when k ≤ 18.
Therefore we shall assume k ≥ 19 in the proof of Theorem 3.

The improvement in Theorem 3 depends on sharp estimates of Dusart
on π(ν) (see Lemma 1). These have been applied to count the number of
terms in ∆′ which are primes and the number of terms of the form ap
with 2 ≤ a ≤ 6 and p > k. The latter contribution is crucial for keeping the
estimates well under computational range. This is a new feature in the proof
of Theorem 3 and it replaces the computational ideas of the proof of (2). It
has been applied in the interval 2k ≤ x < 7k. In fact this interval has been
partitioned into several subintervals and the method has been applied to
each of those subintervals. This leads to sharper estimates (see Lemmas 5,
6, 8). For covering the range x ≥ 7k, the ideas of Erdős [5] have been applied
(see Lemmas 3, 4, 7). However the estimates of Dusart are not necessary
for the improvement given by Corollary 2. In fact the earlier estimates of
Rosser and Schoenfeld [9, Theorems 1(3.2), 2(3.3)] of π(ν) suffice.

Theorem 2 follows from the following analogue of Theorem 3 for x >
29
12k − 1.

Theorem 4. Let x > 29
12k − 1 be such that (x, k) 6= (9, 4) and f1 < · · ·

< fµ be integers in [0, k) satisfying (15). Then

µ ≤ k − π(2k) + π(k).(17)

As in Theorem 2, we observe that the assumptions x > 29
12k − 1 and

(x, k) 6= (9, 4) in Theorem 4 are necessary. Further we notice that Theorem
4 follows from Theorem A when k ≤ 9 and therefore we shall assume k ≥ 10
in the proof of Theorem 4.

We shall follow the notation of this section throughout the paper. We
use MATHEMATICA for the computations in the proofs of the theorems.
We thank the referee for his comments on an earlier version of this paper.

2. Proofs of Theorems 3 and 4. We shall assume k ≥ 10 as stated
in Section 1, x ≥ 2k and (15) throughout this section and we shall use it
without reference. Let

M(k) =

{
π(2k)− π(k) for 10 ≤ k ≤ 18,

max
(
π(2k)− π(k),

[
3
4π(k)

]
− 1
)

for k ≥ 19.
(18)
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We observe from (5) that

M(k) = π(2k)− π(k) for k ≥ 294.(19)

We begin with the estimates from prime number theory.

Lemma 1. For ν > 1, we have

(i) π(ν) ≤ ν

log ν

(
1 +

1.2762

log ν

)
=: a(ν),

(ii) π(ν) ≥ ν

log ν − 1
=: b(ν) for ν ≥ 5393.

The estimates (i) and (ii) are due to Dusart [2, p. 14]. See also [3, p. 55],
[4, p. 414].

The next lemma is Stirling’s formula (see [8]).

Lemma 2. For a positive integer ν, we have
√

2πν e−ννν < ν! <
√

2πν e−νννe1/12ν .

Lemma 3. Let x < k3/2. Assume that (15) holds. Then
(
x

k

)
≤ (2.83)k+

√
xxk−µ.

Lemma 3 with µ = k follows from Erdős [5] and from formula (3.35)
of [9] which is

∏
pm≤x p

m ≤ (2.83)x. The proof is similar to that of [10,

Lemma 3].

Lemma 4. Assume

µ ≥ k −M(k) + 1,(20)

where M(k) is given by (18). Then

(i) x < k3/2 for k ≥ 71,
(ii) x < k7/4 for k ≥ 25,
(iii) x < k2 for k ≥ 13,

(iv) x < k9/4 for k ≥ 10.

Proof. Let pa ‖
(
x
k

)
. We observe that

a =
∞∑

ν=1

([
x

pν

]
−
[
x− k
pν

]
−
[
k

pν

])
.

Each summand is at most 1 if pν ≤ x and 0 otherwise. Therefore a ≤ s
where ps ≤ x < ps+1. Thus

pordp(xk) = pa ≤ x.(21)
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Since (x− f1) · · · (x− fµ) divides
(
x
k

)
k!, we observe from (15) that

(x− f1) · · · (x− fµ) ≤
(∏

p≤k
pordp(xk)

)
k! ≤

(∏

p≤k
x
)
k! = xπ(k)k!.(22)

Also

(x− f1) · · · (x− fµ) ≥ (x− fµ)µ ≥ (x− k + 1)µ > xµ
(

1− k

x

)µ
.

Comparing this with (22), we get

k! > xµ−π(k)

(
1− k

x

)µ
.(23)

Let k ≥ 71. We assume that x ≥ k3/2 and we shall arrive at a contradic-
tion. From (23), we have

k! > k
3
2

(µ−π(k))

(
1− 1√

k

)µ
,(24)

and since µ ≤ k,

k! > k
3
2

(µ−π(k))

(
1− 1√

k

)k
.(25)

We use (25), (20), (19) and Lemmas 1(i) and 2 to derive for k ≥ 294 that

1 > 2.718k
1
2
− 3

log 2k
(1+ 1.2762

log 2k
)
(

1− 1√
k

)

since exp
( log 0.3989k

k − 1
12k2

)
≥ 1. The right hand side of above inequality is

an increasing function of k and the inequality is not valid at k = 294. Thus
k ≤ 293. Further we check that (25) is not valid for 71 ≤ k ≤ 293 except
at k = 71, 73 by using (20) with µ = k −M(k) + 1 and the exact values
of M(k) and k!. Let k = 71, 73. We check that (24) is not satisfied if (20)
holds with equality sign. Thus we may suppose that (20) holds with strict
inequality. Then we find that (25) does not hold. This proves (i). For the

proofs of (ii), (iii) and (iv), we may assume that x ≥ k7/4 for 25 ≤ k ≤ 70,

x ≥ k2 for 13 ≤ k ≤ 24 and x ≥ k9/4 for k = 10, 11, 12 respectively and
arrive at a contradiction using similar arguments.

Lemma 5. (a) Let k ≥ 19 and 2k ≤ x < 3k. Then (16) holds unless
(x, k) ∈ S4.

(b) If 29
12k − 1 < x < 3k, then (17) holds.

Proof. (a) Let 2k ≤ x < 3k with (x, k) /∈ S4. Then we show that

W (∆′) ≥
[

3

4
π(k)

]
− 1,(26)
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which implies (16). We recall that W (∆′) is the number of terms in ∆′

divisible by a prime exceeding k. Let 2k + t1k ≤ x < 2k + t2k with 0 ≤
t1 < t2 ≤ 1 and t2 − t1 ≤ 1/4. Then ∆′ contains a term equal to p for each
x− k < p ≤ x and a term equal to 2p for each k < p ≤ x/2. Therefore

W (∆′) ≥ π(x)− π(x− k) + π

(
x

2

)
− π(k).(27)

Since x ≥ 2k + t1k and x− k < k + t2k, we see from (27) that

W (∆′) ≥ π(2k + t1k)− π(k + t2k) + π(k + t1k/2)− π(k).

Hence it is enough to prove

(28) π((2 + t1)k)− π((1 + t2)k) + π

((
1 +

t1
2

)
k

)

− π(k)−
[

3

4
π(k)

]
+ 1 ≥ 0.

Using Lemma 1(i), (ii) and

log Y

logZ
= 1 +

log(Y/Z)

logZ
and

log Y

logZ − 1
= 1 +

1 + log(Y/Z)

logZ − 1
,

we see that the left hand side of (28) is at least

(29)
2∑

i=1

b

(
2 + t1
i

k

)
− a((1 + t2)k)− 7

4
a(k) + 1

=
k

(log(2 + t1)k)2

{
f(k, t1, t2)− g(k, t1, t2)− 7

4
g(k, t1, 0)

}
+ 1

for k ≥ 5393, where

f(k, t1, t2) =

(
1.5t1 − t2 +

1

4

)
(log(2 + t1)k)

+
2∑

i=1

(2 + t1)(1 + log i)

i

(
1 +

1 + log i

log((2 + t1)k/i)− 1

)

and

g(k, t1, t2) = (1 + t2)

(
1 +

log
(

2+t1
1+t2

)

log((1 + t2)k)

)

×
(

1.2762 + log

(
2 + t1
1 + t2

)
+

1.2762 log
(

2+t1
1+t2

)

log((1 + t2)k)

)
.

Then we have

kf ′(k, t1, t2) =

(
1.5t1 − t2 +

1

4

)
−

2∑

i=1

(
2 + t1
i

)(
1 + log i

log((2 + t1)k/i)− 1

)2

.



336 S. Laishram and T. N. Shorey

We write

1.5t1 − t2 +
1

4
= 0.5t1 − (t2 − t1) +

1

4

to observe that the left hand side is positive unless (t1, t2) = (0, 1/4) and
we shall always assume that (t1, t2) 6= (0, 1/4).

Let k0 = k0(t1, t2) be such that kf ′(k, t1, t2) is positive at k0. Since
kf ′(k, t1, t2) is an increasing function of k, we see that f(k, t1, t2) is also an
increasing function of k for k ≥ k0. Also g(k, t1, t2) is a decreasing function
of k. Hence (29) is an increasing function of k for k ≥ k0. Let k1 = k1(t1, t2)
≥ k0 be such that (29) is non-negative at k1. Then (28) is valid for k ≥ k1.
For k < k1, we check inequality (28) by using the exact values of π(ν). Again
for k not satisfying (28), we take x = 2k + r with t1k ≤ r < t2k and check
that the right hand side of (27) is at least the right hand side of (26).

Let 2k ≤ x < 49
24k. Then t1 = 0, t2 = 1/24 and we find k1 = 5393 by

(29). For k < 5393, we check that (28) holds except at the following values
of k:




19, 20, 47, 48, 71, 72, 73, 74, 80, 81, 83, 86, 89, 103, 104, 105, 106, 107, 108,

109, 110, 111, 112, 113, 114, 115, 116, 134, 151, 152, 153, 167, 168, 172,

173, 174, 175, 176, 186, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 203,

204, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280,

281, 282, 283, 284, 285, 286, 287, 288, 293, 295, 296, 299, 449, 450, 451, 452,

453, 463, 464, 467, 468, 469, 470, 472, 473, 480, 481, 482, 483, 484, 485, 491,

503, 504, 505, 506, 635, 636, 637, 638, 683, 704, 709, 710, 711, 712, 713, 714.

For the above values of k, we write x = 2k+ r with 0 ≤ r < k/24 and show
that the right hand side of (27) is at least the right hand side of (26) since
(x, k) /∈ S4.

We apply similar arguments to the intervals




49

24
k ≤ x < 25

12
k,

25

12
k ≤ x < 13

6
k,

13

6
k ≤ x < 9

4
k,

9

4
k ≤ x < 19

8
k,

19

8
k ≤ x < 5

2
k,

5

2
k ≤ x < 11

4
k,

11

4
k ≤ x < 3k.

We find k1 = 5393 for each of these intervals. Further the contributions of
π((1 + t1/2)k)−π(k) in (28) and π(x/2)−π(k) in (27) are necessary for the
proof. Finally, we observe that (26) is valid for all pairs (x, k) with x ≥ 19

8 k.
This proves (a).

(b) We divide 29
12k− 1 < x < 3k into the subintervals 29

12k− 1 < x < 5
2k,

5
2k ≤ x < 21

8 k, 21
8 k ≤ x < 11

4 k, 11
4 k ≤ x < 3k. We apply the arguments of

(a) to each of these subintervals to conclude that W (∆′) ≥ π(2k) − π(k),
which implies (17).
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In view of Lemma 5, it remains to prove Theorems 3 and 4 for x ≥ 3k,
which we assume. Further we may also suppose (20). Otherwise both (16)
with k ≥ 19 and (17) follow. Now we derive from Lemma 4 that x < k9/4.

On the other hand, we prove x ≥ k9/4. This is a contradiction. We split the
proof of x ≥ k9/4 in the following three lemmas.

Lemma 6. If (20) holds and x ≥ 3k, then x ≥ 7k.

Lemma 7. If (20) holds and x ≥ 7k, then x ≥ k3/2.

Lemma 8. If (20) holds and x ≥ k3/2, then x ≥ k9/4.

We shall give proofs of Lemmas 6–8 in the next section; then the proofs
of Theorems 3 and 4 will be complete.

3. Proofs of Lemmas 6-8

Proof of Lemma 6. Suppose 3k ≤ x < 7k. We show that

W (∆′) ≥M(k),(30)

which contradicts (20). Let (s+ t1)k ≤ x < (s+ t2)k with integers 3 ≤ s ≤ 6
and t1, t2 ∈ {0, 1/4, 1/2, 3/4, 1} such that t2 − t1 = 1/4. Then ∆′ contains a
term equal to ip with (x − k)/i < p ≤ x/i for each i with 1 ≤ i < s and a
term equal to sp for k < p ≤ x/s. Therefore

W (∆′) ≥
s−1∑

i=1

(
π

(
x

i

)
− π

(
x− k
i

))
+ π

(
x

s

)
− π(k).(31)

Since x ≥ (s+ t1)k and x− k < (s− 1 + t2)k, we observe from (31) that

W (∆′) ≥
s−1∑

i=1

(
π

(
s+ t1
i

k

)
− π

(
s− 1 + t2

i
k

))
+ π

(
s+ t1
s

k

)
− π(k).

Hence it is enough to show

(32)

s−1∑

i=1

(
π

(
s+ t1
i

k

)
− π

(
s− 1 + t2

i
k

))
+ π

(
s+ t1
s

k

)

− π(k)−M(k) ≥ 0.

Using (19) and Lemma 1(i), (ii), we see that the left hand side of (32) is at
least

(33)
s−1∑

i=1

(
b

(
s+ t1
i

k

)
− a
(
s− 1 + t2

i
k

))
+ b

(
s+ t1
s

k

)
− a(2k)

=
k

(log(s+ t1)k)2

{
F (k, s, t1, t2)−

s−1∑

i=1

G(k, s, t1, t2, i)−G(k, s, t1, 1, s/2)
}
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for k ≥ 5393, where

F (k, s, t1, t2) =

( s−1∑

i=1

(
1 + t1 − t2

i

)
+
t1
s
− 1

)
(log(s+ t1)k)

+
s∑

i=1

(s+ t1)(1 + log i)

i

(
1 +

1 + log i

log((s+ t1)k/i)− 1

)

and

G(k, s, t1, t2, i) =

(
s− 1 + t2

i

)(
1 +

log
( (s+t1)i
s−1+t2

)

log
(
s−1+t2

i k
)
)

×
(

1.2762 + log

(
(s+ t1)i

s− 1 + t2

)
+

1.2762 log
( (s+t1)i
s−1+t2

)

log
(
s−1+t2

i k
)

)
.

Then

kF ′(k, s, t1, t2) =

( s−1∑

i=1

(
1 + t1 − t2

i

)
+
t1
s
− 1

)

−
s∑

i=1

s+ t1
i

(
1 + log i

log((s+ t1)k/i)− 1

)2

.

If s = 2, we note that F and G are functions similar to f and g appearing
in Lemma 5. As in Lemma 5, we find K1 := K1(s, t1, t2) such that (33) is
non-negative at k = K1 and it is increasing for k ≥ K1. Hence (32) is valid
for k ≥ K1. For k < K1, we check inequality (32) by using the exact values of
π(ν). Again for k not satisfying (32), we take x = sk+ r with t1k ≤ r < t2k
and check that the right hand side of (31) is at least the right hand side of
(30).

Let 3k ≤ x < 13
4 k. Here t1 = 0, t2 = 1

4k and we find K1 = 29000. We
check that (32) holds for 3 ≤ k < 29000 except at k = 10, 12, 19, 22, 40, 42,
52, 55, 57, 100, 101, 102, 124, 125, 126, 127, 142, 143. For these values of k,
putting x = 3k + r with 0 ≤ r < 1

4k, we show that the right hand side
of (31) is at least the right hand side of (30). Hence the assertion follows in
3k ≤ x < 13

4 k.

For x ≥ 13
4 k, we apply similar arguments to the intervals (s + t1)k ≤

x < (s + t2)k with integers 3 ≤ s ≤ 6 and t1, t2 ∈ {0, 1/4, 1/2, 3/4, 1} such
that t2 − t1 = 1/4. We find K1 = 5393 for each of these intervals except for
6k ≤ x < 25

4 k where K1 = 5500.

Proof of Lemma 7. We argue by contradiction. We assume (20) and

7k ≤ x < k3/2. Then k ≥ 50. Further by Lemma 3 and
(x
k

)
≥
(7k
k

)
, we have
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(
7k

k

)
< (2.83)k+k3/4

k
3
2

(M(k)−1)(34)

since x < k3/2. We observe from Lemma 2 that
(

7k

k

)
=

(7k)!

k!(6k)!
>

√
2π7k e−7k(7k)7k

√
2πk e−kkke1/12k

√
2π6k e−6k(6k)6ke1/72k

>
0.4309√

k
e−7/72k(17.65)k.

Combining this with (34), we get

1 > exp

(
log(0.4309k)− 7

72k

)
(17.65)k(2.83)−k−k

3/4
k−

3
2
M(k).(35)

Using (19), Lemma 1(i), (ii) and exp
( log(0.4309k)

k − 7
72k2

)
≥ 1, we derive for

k ≥ 5393 that

1 > 6.2367(2.83)−k
−1/4

k
− 3

log 2k
(1+ 1.2762

log 2k
)+ 3

2(log k−1)

> 6.2367 exp

(
3

2
+

3

2 log k − 2

)
(2.83)−k

−1/4
k
− 3

log 2k
(1+ 1.2762

log 2k
)

> 27.95(2.83)−k
−1/4

k
− 3

log 2k
(1+ 1.2762

log 2k
)

=: h(k),

since exp
(

3
2 log k−2

)
> 1 for k ≥ 3. We see that h(k) is an increasing function

of k and h(k) > 1 at k = 5393. Therefore k < 5393. By using the exact
values of M(k), we now check that (35) does not hold for 50 ≤ k < 5393.

Proof of Lemma 8. We argue by contradiction. Assume (20) and k3/2 ≤
x < k9/4. We derive from Lemma 4 that k ≤ 70. Let k = 10, 11, 12, 13. By
Lemmas 4, 6 and 7, we can take max(7k, k3/2) ≤ x < k9/4 for k = 10, 11, 12
and max(7k, k3/2) ≤ x < k2 for k = 13. For these values of x and k, we find
that

W (∆′) ≥
6∑

i=1

(
π

(
x

i

)
− π

(
x− k
i

))
≥M(k),

which contradicts (20).

Therefore we assume k ≥ 14. Let k3/2 ≤ x < k25/16. By Lemmas 6 and 7,
we can take x ≥ max(7k, k3/2) so that we can assume k ≥ 32. Then

(
x

k

)
≥
(

max(7k, {k3/2})
k

)
,

where {ν} denotes the least integer ≥ ν. From (21), we have

ordp

((
x

k

))
≤
[

log x

log p

]
≤
[

25

16

log k

log p

]
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and hence
(
x

k

)
≤
( π(k)∏

i=1

p

[
25
16

log k
log pi

]
i

)
xk−µ <

( π(k)∏

i=1

p

[
25
16

log k
log pi

]
i

)
k

25
16

(M(k)−1)

by (20). Combining the above estimates for
(
x
k

)
, we get

(
max(7k, {k3/2})

k

)
<

( π(k)∏

i=1

p

[
25
16

log k
log pi

]
i

)
k

25
16

(M(k)−1),

which is not possible for 32 ≤ k ≤ 70. By similar arguments, we arrive
at a contradiction for max(7k, k25/16) ≤ x < k26/16 in 23 ≤ k ≤ 70,
max(7k, k26/16) ≤ x < k27/16 in 17 ≤ k ≤ 70 and max(7k, k27/16) ≤ x < k7/4

in 14 ≤ k ≤ 70 except at k = 16. Let k = 16 and max(7k, k27/16) ≤ x < k7/4.
Then we observe that

W (∆′) ≥
6∑

i=1

(
π

(
x

i

)
− π

(
x− 16

i

))
≥ 5 = M(16),

which contradicts (20).

Now we consider x ≥ k7/4. We observe that k7/4 ≥ 7k since k ≥ 14.
Further we derive from Lemma 4 that k ≤ 24. We apply similar arguments
for 14 ≤ k ≤ 24 as above to arrive at a contradiction in the intervals
k7/4 ≤ x < k15/8 except at k = 16, k15/8 ≤ x < k31/16 and k31/16 ≤ x < k2.
The case k = 16 and k7/4 ≤ x < k15/8 is excluded similarly to the above.
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