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1. Introduction. Arithmetic progressions consisting of almost perfect
powers are widely investigated in the “homogeneous” case. That is, one is
interested in arithmetic progressions of the shape

a0x
l
0, . . . , ak−1x

l
k−1 with ai, xi ∈ Z (0 ≤ i ≤ k − 1),

with some fixed integer l ≥ 2, such that the coefficients ai are “restricted”
in some sense. It was known already by Fermat and proved by Euler (see
[D, pp. 440 and 635]) that four distinct squares cannot form an arithmetic
progression. The contributions of Darmon and Merel [DM] on the Fermat
equation imply that there are no three lth powers with l ≥ 3 in arithmetic
progression, up to the trivial cases.

In this paper we take up the problem when the arithmetic progression
consists of almost perfect “inhomogeneous” powers. Let S = {p1, . . . , ps} be
any set of positive primes with p1 < · · · < ps, and write ZS for the set of
those non-zero integers whose prime divisors belong to S. Put

H = {ηxl | η ∈ ZS , x, l ∈ Z with x 6= 0 and l ≥ 2},
and note that ±1 ∈ H, but 0 6∈ H. To guarantee that the representation
of every element h ∈ H is unique, we further assume that for h = ηxl the
number η is lth power free, x > 0, and l = 2 if h ∈ ZS . In particular, if
x = 1 then η is square-free. The main purpose of this paper is to show
that the abc conjecture implies that the number of terms of any “coprime”
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arithmetic progression in H is bounded by a constant c(s, P ) depending only
on s = |S| and P = ps. Moreover, the number of such progressions having
at least three terms, where the exponents of the powers are ≥ 4, is finite.
We derive a similar statement unconditionally, provided that the exponents
of the terms in the progression are bounded from above. Our main tools,
besides the abc conjecture, will be a theorem of Euler on equation (1) below
with l = 2, the above mentioned result of Darmon and Merel on Fermat-type
ternary equations, and a famous theorem of van der Waerden from Ramsey
theory, about arithmetic progressions.

Finally, we mention that our problem is related to the equation

(1) n(n+ d) · · · (n+ (k − 1)d) = byl

in non-zero integers n, d, b, y, k ≥ 2, l ≥ 2 with gcd(n, d) = 1, P (b) ≤ k,
where for any integer u with |u| > 1 we write P (u) for the greatest prime
factor of u and we put P (±1) = 1. It is easy to show that using (1) one can
write

(2) n+ id = aix
l
i with P (ai) ≤ k − 1 (0 ≤ i ≤ k − 1).

Equation (1) and its various specializations have a very extensive literature.
For related results we just refer to the survey papers and recent articles
[BGyH], [Gy], [GyHS], [SS], [S1]–[S3], [T1], [T2], and the references given
there. We only mention two particular theorems about (1), which are rele-
vant from our viewpoint. Shorey (see [S1]) proved that the abc conjecture
implies that with l ≥ 4, k is bounded by an absolute constant in (1). Ex-
tending this result, Győry, Hajdu and Saradha [GyHS] deduced from the abc
conjecture that with l ≥ 4 and k ≥ 3, equation (1) has only finitely many
solutions. Thus our theorems yield a kind of extension of the above men-
tioned results of Shorey [S1] and Győry, Hajdu and Saradha [GyHS] to the
inhomogeneous case. However, it is important to note that as P (ai) ≤ k− 1
in (2), and we fix the prime divisors of the lth power free part of h ∈ H in
advance, the results obtained here do not imply the corresponding theorems
in [S1] and [GyHS].

2. Main results. In what follows, c0, . . . , c15 will denote constants de-
pending only on s and P . Though s ≤ P , our arguments will be more clear if
we indicate the dependence also upon s. By a non-constant arithmetic pro-
gression we will simply mean a progression with non-zero common difference.

Theorem 1. Suppose that the abc conjecture is valid. Let h0, . . . , hk−1

be any non-constant arithmetic progression in H, with hi = ηix
li
i (0 ≤ i ≤

k − 1), such that gcd(h0, h1) ≤ c0 for some c0. Then

max(k, l) < c1, where l = max
0≤i≤k−1

li.
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Moreover , the number of such progressions with k ≥ 3 and li ≥ 4, is bounded
by some c2.

Remark 1. Inspecting the proof of Theorem 1, one can easily see that
the second part of the statement can be extended as follows. Consider pro-
gressions h0, . . . , hk−1 as above, such that k ≥ 3 and for all i ∈ {0, . . . , k − 1}
there exist j, t ∈ {0, . . . , k − 1} \ {i} with j 6= t and 1/li + 1/lj + 1/lt < 1.
Then the abc conjecture implies that the number of such progressions is
bounded by some c2.

Remark 2. The condition gcd(h0, h1) ≤ c0 in Theorem 1 is necessary.
Indeed, there exist non-constant arithmetic progressions in H consisting of
non-zero perfect powers, having arbitrarily many terms. To see this, observe
that each pair of distinct positive perfect powers can be considered as a
non-constant arithmetic progression of two terms. Suppose that for some
i ≥ 2, h0, . . . , hi−1 is such a progression of positive perfect powers, say
hj = x

lj
j with xj ≥ 1 and lj ≥ 2 (0 ≤ j ≤ i− 1). Let t = 2hi−1 − hi−2 and

l′i =
∏i−1
j=0 lj , and write

h′j = tl
′
ihj for 0 ≤ j ≤ i− 1, h′i = tl

′
i+1.

In this way we obtain a non-constant arithmetic progression h′0, . . . , h
′
i−1, h

′
i

consisting of positive perfect powers, having exponents l0, . . . , li−1, li = l′i+1.
This verifies our claim, which shows that the assumption gcd(h0, h1) ≤ c0
cannot be omitted.

If we drop the abc conjecture, we need a further assumption to get a
finiteness statement for the number of terms in our arithmetic progressions.

Theorem 2. Let l be a fixed integer with l ≥ 2. Then for any non-
constant arithmetic progression h0, . . . , hk−1 in H such that li ≤ l in the
representation hi = ηix

li
i (0 ≤ i ≤ k − 1), we have k ≤ C0(s, P, l), where

C0(s, P, l) is a constant depending only on s, P and l.

Remark 3. Note that in Theorem 2 we do not need the assumption
gcd(h0, h1) ≤ c0. However, the example in Remark 2 shows that the condi-
tion li ≤ l (0 ≤ i ≤ k − 1) is necessary in this case.

Finally, we propose the following

Conjecture. Theorem 1 is true unconditionally, i.e. independently of
the abc conjecture.

3. Some lemmas. To prove our theorems, we need several lemmas.
The first one concerns almost perfect squares in arithmetic progression.

Lemma 1. The product of four consecutive terms in a non-constant pos-
itive arithmetic progression is never a square.
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Proof. This is a classical result of Euler (cf. [M, p. 21]).

Our next lemma is about Fermat-type ternary equations.

Lemma 2. Let l ≥ 3 be an integer. Then the equation

X l + Y l = 2Zl

has no solution in coprime non-zero integers X,Y,Z with XY Z 6= ±1.

Proof. This was proved by Darmon and Merel [DM].

The next lemma is from Ramsey theory, concerning arithmetic progres-
sions.

Lemma 3. For any positive integers u and v there exists a positive in-
teger w such that for any coloring of the set {1, . . . , w} using u colors, we
get a non-constant monochromatic arithmetic progression, having at least v
terms.

Proof. This nice result is due to van der Waerden (cf. [vdW]).

The next statement yields the assertion of Theorem 1 unconditionally in
case of homogeneous powers.

Lemma 4. Let l be a fixed integer with l ≥ 2. Suppose that h0, . . . , hk−1

is an arithmetic progression in H such that hi = ηix
l
i for all i = 0, . . . , k−1.

Then k < C1(s, P, l), where C1(s, P, l) is a constant depending only on s, P
and l.

Proof. Color the terms of the arithmetic progression h0, . . . , hk−1 in such
a way that hi and hj have the same color if and only if ηi = ηj (0 ≤ i, j ≤
k−1). As ηi and ηj are lth power free, at most 2ls colors are necessary. (We
need the factor 2 because of the signs.)

Assume first that l = 2. We apply Lemma 3 with (u, v) = (2s+1, 4) to
conclude that if k ≥ w with some w = w(s), then there exist 0 ≤ i1 <
i2 < i3 < i4 ≤ k − 1 such that hi1 , hi2 , hi3 , hi4 is a non-constant arithmetic
progression of non-zero integers, with ηi1 = ηi2 = ηi3 = ηi4 . Then we have

hi1hi2hi3hi4 = (η2
i1xi1xi2xi3xi4)

2
.

However, by Lemma 1, this is impossible. (Note that it does not make a
difference whether ηi1 is positive or negative.) This gives a contradiction,
whence k < w, and the lemma follows when l = 2.

Suppose now that l ≥ 3. We apply again Lemma 3, this time with (u, v) =
(2ls, 3) to derive that if k ≥ w with some w = w(s, l), then there exist
0 ≤ i1 < i2 < i3 ≤ k − 1 such that hi1 , hi2 , hi3 is an arithmetic progression
with ηi1 = ηi2 = ηi3 . Hence we obtain

(3) xli1 + xli3 = 2xli2 .
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By Lemma 2, as hij 6= 0 (j = 1, 2, 3) and our progression is non-constant,
we deduce that (3) is impossible. Thus we get a contradiction, whence k < w,
and the lemma is proved.

Remark 4. Note that assuming the abc conjecture, this lemma follows
from the aforementioned result of Shorey [S1] in the case of gcd(h0, h1) = 1.

Lemma 5. Suppose that the abc conjecture is valid , and let c3 =C1(s,P, 2)
be the constant given in Lemma 4, corresponding to the exponent l = 2. Then
there exists a c4 such that if h0, . . . , hk−1 is any arithmetic progression in
H with hi = ηix

li
i such that gcd(h0, h1) < c5 and k ≥ 2c3, then li < c4 for

all i = 0, . . . , k − 1.

Proof. Suppose that we have an arithmetic progression h0, . . . , hk−1 as
above, and take any i ∈ {0, . . . , k − 1} with li ≥ 7. (If no such i exists,
then the lemma follows with c4 = 7.) Note that xi > 1. By Lemma 4
we infer that there exists a j with 0 < |i − j| ≤ c3 such that lj ≥ 3.
Choose any t ∈ {0, . . . , k − 1} \ {i, j} with |i − t| ≤ 2. Then for some
coprime non-zero integers λi, λj , λt with max(λi, λj , λt) ≤ |i − j| + 2 we
have λihi + λjhj + λtht = 0. This gives

(4) λiηix
li
i + λjηjx

lj
j + λtηtx

lt
t = 0.

Let D denote the gcd of the above three terms; observe that as gcd(h0, h1)
≤ c5, we have D < c6.

We show that the abc conjecture implies that li is bounded. Note that
when D = 1, and the coefficients of xlii , x

lj
j , x

lt
t are fixed, by a similar ar-

gument Tijdeman derived from the abc conjecture that (4) has only finitely
many solutions (see [T1, p. 234]). Let r ∈ {i, j, t} be the index for which
|λrηrxlrr | is maximal among these three terms. The (effective version of the)
abc conjecture with ε = 1/42 gives

|λrηrxlrr | < c7

( ∏

p|xixjxt
p
)43/42

.

As li ≥ 7, lj ≥ 3, and lt ≥ 2, whence 1/li+1/lj +1/lt < 1−1/42, this yields

|λrηrxlrr | ≤ c8x(1763/1764)lr
r .

If xr = 1 (implying that r = t, lr = 2, and ηr is square-free), then since

(5) xlii < |λiηixlii | ≤ |λrηrxlrr |
and xi > 1, we get li < c9. Otherwise, xr > 1 gives lr < c10, whence
|λrηrxlrr | < c11. Thus using again (5) and xi > 1, we obtain li < c12 also in
this case. As i was taken arbitrarily with li ≥ 7, the statement follows with
c4 = max(7, c9, c12).
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4. Proofs of the theorems. Now we are ready to prove our main
results. It is more convenient to start with the proof of Theorem 2.

Proof of Theorem 2. Let C2(s, P, l) be the maximum of the values
C1(s, P, L) defined in Lemma 4, where L ranges through the interval [2, l].
Apply Lemma 3 to our progression with (u, v) = (l − 1, C2(s, P, l)). (The
terms with the same exponents have the same colors.) Thus Lemma 3
gives some constant C0(s, P, l), depending only on s, P and l, such that
k ≥ C0(s, P, l) would be a contradiction by Lemma 4. Thus k < C0(s, P, l),
and the theorem follows.

Proof of Theorem 1. We may suppose that k ≥ 2c3, where c3 ≥ 2 is given
in Lemma 5. Then by Lemma 5 we have li ≤ c4 for all i = 0, . . . , k − 1.
Thus the first part of the theorem follows from Theorem 2, with c1 =
max(c4, C0(s, P, c4)).

To prove the second part, suppose that li ≥ 4 for all i = 0, . . . , k − 1.
We already know that max(k, l) < c1. Fix k and choose any distinct i, j, t ∈
{0, . . . , k − 1}. Just as in the proof of Lemma 5, we get an equation of the
form

λiηix
li
i + λjηjx

lj
j + λtηtx

lt
t = 0

with some integers λi, λj , λt such that max(|λi|, |λj|, |λt|) < k < c1. More-
over, the gcd of the three terms on the left hand side is bounded by some c13.
Following the argument of Lemma 5, as xi, xj , xt are all > 1, and 1/li+1/lj+
1/lt ≤ 3/4, using the abc conjecture we derive that max(xlii , x

lj
j , x

lt
t ) < c14.

As also max(|ηi|, |ηj|, |ηt|) < c15, the theorem follows.
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