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Distinguishing Hecke eigenvalues of primitive cusp forms

by
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Introduction. Let f and g be distinct primitive cusp forms of level one,
i.e. normalised Hecke eigenforms on Γ = SL2(Z) of weights k1 and k2 say.
We write their Fourier expansions at the infinite cusp in the “standard” way
as follows (z ∈ H):

f(z) =
∞∑

n=1

λf (n)n(k1−1)/2e(nz), g(z) =
∞∑

n=1

λg(n)n(k2−1)/2e(nz).

Here λf (n) (resp. λg(n)) are the Hecke eigenvalues of f (resp. g) normalised
so that the standard L function L(s, f) (resp. L(s, g)) of f (resp. g) which
is given by the analytic continuation of the Dirichlet series

∑∞
n=1 λf (n)/ns

(resp.
∑∞
n=1 λg(n)/ns) has a functional equation under s 7→ 1− s.

The strong multiplicity one theorem for GL(2) says that there are in-
finitely many primes p such that λf (p) 6= λg(p). A refinement of the strong
multiplicity one theorem due to Ramakrishnan (see [15]) says that the set
of primes p such that λf (p) 6= λg(p) has density ≥ 1/8. In this article we
will be interested in “finding” the smallest prime p such that λf (p) 6= λg(p).
We will be specifically interested in the case when k1 6= k2. We will estab-
lish an upper bound C(k1, k2) depending on k1, k2 such that for some prime
p, p ≤ C(k1, k2), we must have λf (p) 6= λg(p). Our motivation for this prob-
lem comes from the strong multiplicity one theorem and our result should
be viewed as an effective version of the theorem in a special case. The exact
statement appears below as Theorem 1.

In the third section of this paper we consider a stronger version of the
problem above which is as follows. The strong multiplicity one theorem
for SL(2) says that there are infinitely many primes p such that |λf (p)| 6=
|λg(p)|. In analogy with our earlier result we will give an upper bound
C̃(k1, k2) depending on k1, k2 such that for some prime p, p ≤ C̃(k1, k2),
we must have |λf (p)| 6= |λg(p)|.

2000 Mathematics Subject Classification: 11F11, 11F12.

[23]



24 J. Sengupta

The plan of the article is as follows. The first section deals with no-
tations and we also recall here some necessary background material. In the
subsequent sections we state and prove our principal results, i.e. Theorems 1
and 2.

We would like to express our gratitude to Ram Murty for discussions
which led us to initiate this project. We are indebted to Jeffrey Hoffstein for
his continuous encouragement and for stimulating discussions, particularly
regarding Proposition 1. We thank the referee for a very thorough reading of
the manuscript and for making several useful suggestions for improvement.

1. Notations. Let k be a positive integer, k even. Sk will denote the
space of cusp forms of weight k for Γ . The subset of primitive forms in Sk,
i.e. the normalised Hecke eigenforms in Sk, will be denoted by S+

k . We recall
that any f ∈ S+

k has the Fourier expansion

f(z) =
∞∑

n=1

λf (n)n(k−1)/2e(nz), z ∈ H.

Here λf (n) is the nth (normalised) Hecke eigenvalue of f, λf (1) = 1. The
standard L function of f, L(s, f), is given by the Dirichlet series

L(s, f) =
∞∑

n=1

λf (n)
ns

.

This series is absolutely convergent in Re s > 1 and has analytic continua-
tion to the entire complex plane and after multiplication by appropriate Γ
factors satisfies a functional equation under s 7→ 1 − s. Let p be a prime.
Then we have λf (p) = αf (p) + βf (p) where αf (p), βf (p) are the p Satake
parameters of f , αf (p)βf (p) = 1. The Ramanujan–Petersson conjecture,
proved by Deligne, says that

|αf (p)| = 1 = |βf (p)|.
Let f ∈ S+

k1
and g ∈ S+

k2
be distinct and let

Ef,g = {p prime | λf (p) 6= λg(p)}, Ẽf,g = {p prime | |λf (p)| 6= |λg(p)|}.
The strong multiplicity one theorem for GL(2) says that the cardinality
of Ef,g is infinite. A refinement of the strong multiplicity one theorem due
to Ramakrishnan ([15]) says that Ef,g has density at least 1/8. It is a conse-
quence of the strong multiplicity one theorem for SL(2) (see [14]) that Ẽf,g
is infinite.

We denote by πf the cuspidal automorphic representation of GL(2,A),
where A is the adele ring of Q, associated to f . Note that πf has trivial
central character. We denote by π

(2)
f the symmetric square lift of πf . This
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is an automorphic representation of GL(3,A) which is cuspidal (cf. [4]).
The standard L function of π(2)

f , L(s, π(2)
f ), is entire and is given in the re-

gion Re s > 1 by the absolutely convergent Dirichlet series
∑∞
n=1 λ

(2)
f (n)/ns

where

λ
(2)
f (n) =

∑

d2|n
λf

(
n2

d4

)
.

2. Distinguishing Hecke eigenvalues of primitive forms of dis-
tinct weights. Let f ∈ S+

k1
and g ∈ S+

k2
with k1 6= k2. We are concerned

here with the “smallest” prime p such that λf (p) 6= λg(p). Our result is the
following. We let k = max(k1, k2).

Theorem 1. Let f and g be as above. Then for any ε > 0 there is
a prime p with p = Oε(k2+ε) such that λf (p) 6= λg(p). Here the implied
constant in the O symbol depends only on ε and is effective.

The remainder of this section will be devoted to the proof of Theorem 1.
Our basic technique for this proof and other results in this paper is the
Rankin–Selberg method. The other tool is the sharp form of the Phragmén–
Lindelöf theorem due to Rademacher (see [9], [13]). We will follow here the
method of Ram Murty in [11] which dealt with both forms of weight 2 and
possibly different levels. In the following without loss of generality we can
assume that k1 > k2.

Proof of Theorem 1. We will estimate for X > 0 the sum
∑

n≤X
(λf (n)− λg(n))2 log2 X

n
.

This sum is equal to

(2.1)
∑

n≤X
λ2
f (n)log2 X

n
+
∑

n≤X
λ2
g(n)log2 X

n
− 2

∑

n≤X
λf (n)λg(n) log2 X

n
.

We will estimate the three summands in (2.1) individually using the
Rankin–Selberg method. We have by Perron’s formula, ifX is not an integer,

(2.2)
∑

n≤X
λ2
f (n) log2 X

n
=

1
2πi

2+i∞�

2−i∞

(∑

n≥1

λ2
f (n)

ns

)
Xs

s3 ds.

Now the Rankin–Selberg convolution L function of πf with itself is given by

L(s, f × f) = ζ(2s)
∞∑

n=1

λ2
f (n)

ns
for σ = Re s > 1.
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We can write the R.H.S. of (2.2) as

1
2πi

2+i∞�

2−i∞

L(s, f × f)
ζ(2s)

Xs

s3 ds.

L(s, f × f) has meromorphic continuation to the entire complex plane and
its only singularity in the half-plane Re s > 0 is a simple pole at s = 1,
while L(s, f×g) is entire. We denote by L∞(s, f×g) the gamma factor that
occurs in the functional equation of L(s, f × g). We have (vide [17])

L∞(s, f × g) = (2π)−2sΓ

(
s+

k1 − k2

2

)
Γ

(
s+

k1 + k2 − 2
2

)
.

This is also valid when k1 = k2.
We can shift the contour of integration to the line Re s = 1/2. The

Phragmén–Lindelöf convexity principle in conjunction with the functional
equation satisfied by L(s, f × f), L(s, g × g) and L(s, f × g) respectively
allows us to estimate these functions on the line Re s = 1/2. This yields for
any ε > 0,

∑

n≤X
λ2
f (n) log2 X

n
=
L(sym2f, 1)

ζ(2)
X +Oε(X1/2k

1/2+ε
1 ),(2.3)

∑

n≤X
λ2
g(n) log2 X

n
=
L(sym2g, 1)

ζ(2)
X +Oε(X1/2k

1/2+ε
2 ),(2.4)

(2.5)
∑

n≤X
λf (n)λg(n) log2 X

n
= Oε(X1/2k1+ε).

We will now use an important result of Goldfeld–Hoffstein–Lieman (cf. ap-
pendix of [6]) which says that there is an effective positive constant C such
that L(sym2f, 1) ≥ C/log(k1 + 1) (resp. L(sym2g, 1) ≥ C/log(k2 + 1)). We
therefore have

∑

n≤X
(λf (n)− λg(n))2 log2 X

n
> 0 for X = Oε(k2+ε),

i.e. λf (n) 6= λg(n) for some n, 1 < n ≤ X. The Hecke eigenvalues λf (n) are
multiplicative and λf (pa) is a polynomial in λf (p) for any positive integer a.
We therefore have

λf (p) 6= λg(p) for some p = Oε(k2+ε).

Remark 1. Our result remains valid when the weights of f and g are
equal, i.e. k1 = k2 = k. We actually get a better result in this case, namely
for any ε > 0 there exists a prime p, p = Oε(k1+ε), such that λf (p) 6= λg(p).
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This is because we now have
∑

n≤X
λf (n)λg(n) log2 X

n
= Oε(X1/2k1/2+ε)

since the convexity bound for the L function L(s, f×g) on the line Re s = 1/2
is Oε((|t|+2)1+εk1/2+ε) for all ε > 0 in this case. However, when the weights
of f and g are equal one knows that there is a prime p, p = O(k), such that
λf (p) 6= λg(p).

Remark 2. The best result one can expect here seems to be p = Oε(kε).
This follows if we assume the Lindelöf hypothesis in the k aspect for the
L functions L(sym2f, s), L(sym2g, s) and L(s, f ×g), i.e. if all these L func-
tions satisfy the estimate Oε,t(kε) on the line Re s = 1/2.

Remark 3. In certain special cases it is possible to improve our result
unconditionally, for instance if the form g is kept fixed and the weight k of
the form f tends to infinity. In this case, Sarnak ([17]) has shown that

L(f ⊗ g, 1/2 + it)�ε,t,g k
158/165.

This shows that there is a prime p, p = Oε(k316/165+ε), such that λf (p) 6=
λg(p).

Remark 4. Moreno ([10]) has earlier proved an effective version of the
strong multiplicity one theorem for cuspidal automorphic representations of
GL(n) for any n. However, his result when specialised to our case yields the
bound p = O(kC(k)) where C(k) is a positive constant depending on k. Our
result is perceptibly better.

It is appropriate to mention here that in the case of the unnormalised
Hecke eigenvalues, i.e. the Fourier coefficients per se, a(n) = λf (n)n(k1−1)/2

of f and b(n) = λg(n)n(k2−1)/2 of g, the problem of finding the “least” n
such that a(n) 6= b(n) has been considered in [5], [12]. In [12] quite definitive
results have been obtained which are probably best possible.

3. Distinguishing absolute values of Hecke eigenvalues of prim-
itive forms. Let f and g be as in Theorem 1. The aim of this section is
to give an explicit upper bound C(k, ε) say, depending on ε and k, such
that for some prime p, p ≤ C(k, ε), we have |λf (p)| 6= |λg(p)|. We denote
by F the symmetric square lift of f and by L(s, F × F ) the corresponding
Rankin–Selberg L-function.

We will first prove a proposition which is crucial for the proof of The-
orem 2. This proposition is the analogue in our context of the main result
of Hoffstein and Lockhart in [6] and is interesting in its own right. We refer
the reader to [6] for any hitherto unexplained notation.
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Proposition 1. Let f ∈ S+
k and let Rf be the residue at the pole s = 1

of L(s, F × F ). There exists a positive effective constant C̃ such that

Rf ≥
C̃

log(k + 1)
.

Proof. We will follow the method of Hoffstein–Lockhart ([6]) and also
employ the very recent result of Ramakrishnan and Wang ([16]). We first
observe that the Rankin–Selberg L function of the symmetric square lift F of
f with itself has a simple pole at s = 1 as its only singularity in the half-plane
Re s > 0. Hoffstein and Ramakrishnan ([7]) have shown that L(s, F × F )
is given by a Dirichlet series having nonnegative coefficients. We also know
that this Dirichlet series is absolutely convergent in the region Re s > 1 and
is given by an Euler product there. In particular its first coefficient is 1. We
now invoke Proposition 1.1 of [6] which is tailor made for estimating the
residue at s = 1 of such Dirichlet series.

Proposition ([6]). Let L(s) be an L-series of the above type, and set
R = Ress=1L(s). Let M > 1. Suppose that L(s) satisfies a growth condition
on the line Re s = 1/2 of the form

|L(1/2 + iγ)| ≤M(|γ|+ 1)B

for some constant B. If L(s) has no real zeros in the range

1− 1
logM

< s < 1,

then there exists an effective constant c = c(B) > 0 such that

R−1 ≤ c logM.

In view of this proposition we need to have at our disposal two ingre-
dients. The first is an estimate of the growth of L(s, F × F ) on the line
Re s = 1/2. This is obtained from the functional equation of L(s, F × F )
via the Phragmén–Lindelöf convexity principle. The second ingredient is the
absence of Landau–Siegel zeros of L(s, F × F ). This is more difficult and
has been very recently accomplished by Ramakrishnan and Wang. We now
turn to a description of their result. We begin by observing that

L(s, F × F ) = ζ(s)L(sym4f, s)L(sym2f, s).

Kim and Shahidi ([8]) have shown that L(symmf, s) for m ≤ 4 are all entire
functions. Furthermore ζ(σ) 6= 0 for 0 < σ < 1 and Goldfeld–Hoffstein–
Lieman (appendix of [6]) have shown that L(sym2f, s) has no Landau–Siegel
zeros. It therefore suffices to show that L(sym4f, s) has no Landau–Siegel
zeros. We now state the result of Ramakrishnan and Wang which is Theo-
rem B′ of [16].
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Theorem (Ramakrishnan and Wang, [16]). Let F be a number field and
let π be a cuspidal automorphic representation of GL(2,AF ) with trivial cen-
tral character which is not of solvable polyhedral type. Then L(s, sym4π) ad-
mits no Landau–Siegel zero. More explicitly , there exists a positive, effective
constant C such that it has no zero in the real interval (1−CL−1, 1) where
L = log[N(π)d2

F (2 +Λ)2N ], where N(π) is the conductor of π, N = [F : Q],
dF is the discriminant of F and Λ the infinite type of π.

In our situation, π = πf , we see thatN(π), dQ andN are all 1 and Λ = k.
Thus L = 2 log(k+2). Furthermore the result of Goldfeld–Hoffstein–Lieman
(see appendix of [6]) says that there exists an absolute effective constant c
such that L(sym2f, s) has no zeros in the real interval (1 − cL−1

1 , 1) where
L1 = log(k + 1) in our case. Let C1 = 1

2 min(c, C/2). Then L(s, F × F ) has
no zeros in the real interval (1− C1L−1

1 , 1).
The sharp form of the Phragmén–Lindelöf convexity theorem ([9], [13])

yields the estimate

L(1/2 + it, F )� (|t|+ 2)9/4+εk3/2+ε ∀ ε > 0.

This will be elaborated on later. Letting A = max(4, C−1
1 ) we see that

L(s, F × F ) satisfies the conditions of the Proposition with M = (k + 1)A

and B = 5/2 for instance. This immediately gives our assertion.

We can now state the main result of this section. We recall that k =
max(k1, k2).

Theorem 2. Let f (resp. g) ∈ S+
k1

(resp. S+
k2

) where k1 6= k2. Then
there is a prime p such that

|λf (p)| 6= |λg(p)| and p = Oε(k4+ε) for any ε > 0.

Proof. As in the case of Theorem 1 we can assume without loss of gen-
erality that k1 > k2. We will again employ the Rankin–Selberg method, this
time with the symmetric square lift of f and g. These we denote by F and
G respectively. Let a(m,n) (resp. b(m,n)) denote the general Fourier coeffi-
cient of F (resp. G). Then, as a Dirichlet series (cf. [6]), the Rankin–Selberg
convolution of F and G is given by

L(s, F ×G) = ζ(3s)
∑ a(m,n)b(m,n)

(m2n)s
.

We will estimate
∑

m2n≤X
(a(m,n)− b(m,n))2 log3 X

m2n

where X > 0.
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Now∑

m2n≤X
(a(m,n)− b(m,n))2 log3 X

m2n

=
∑

m2n≤X
a2(m,n) log3 X

m2n
+

∑

m2n≤X
b2(m,n) log3 X

m2n

− 2
∑

m2n≤X
a(m,n)b(m,n) log3 X

m2n
.

We will estimate the three summands above individually. We have by Per-
ron’s formula, if X 6∈ Z,

∑

m2n≤X
a2(m,n) log3 X

m2n
=

6
2πi

2+i∞�

2−i∞

L(s, F × F )
ζ(3s)

Xs

s4 ds.

Shifting the contour of integration to the line Re s = 1/2, we encounter a
simple pole of the integrand at s = 1. The residue at this simple pole is
(1/ζ(3))RfX. Consequently we have, for X 6∈ Z,

∑

m2n≤X
a2(m,n) log3 X

m2n
=

6
ζ(3)

RfX +
6

2πi

1/2+i∞�

1/2−i∞

L(s, F × F )
ζ(3s)

Xs

s4 ds.

In the following we shall need the gamma factors that enter in the func-
tional equations of L(s, F × F ) and L(s, F × G). We note here that in the
case of L(s, F × F ) we need only know the gamma factors that occur in
the functional equations of L(sym4f, s) and L(sym2f, s). These are avail-
able in [3] and if we denote as before the gamma factors in L(s, F × F ) by
L∞(s, F × F ), we have

L∞(s, F × F ) = π−9s/2Γ 2
(
s

2

)
Γ

(
s+ 1

2

)
Γ 2
(
s+ k1 − 1

2

)

× Γ 2
(
s+ k1

2

)
Γ

(
s+ 2k1 − 2

2

)
Γ

(
s+ 2k1 − 1

2

)
.

Using the procedure described in [3] we can also compute L∞(s, F × G).
This yields

L∞(s, F ×G) = π−9s/2Γ

(
s

2

)
Γ

(
s+ k1 − 1

2

)
Γ

(
s+ k1

2

)
Γ

(
s+ k2 − 1

2

)

× Γ
(
s+ k2

2

)
Γ

(
s+ k1 + k2 − 2

2

)
Γ

(
s+ k1 + k2 − 1

2

)

× Γ
(
s+ k1 − k2

2

)
Γ

(
s+ k1 − k2 + 1

2

)
.

This is also valid when k1 = k2.
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The sharp form of the Phragmén–Lindelöf convexity principle (see [9],
[13]) shows that for t ∈ R and any ε > 0,

L(1/2 + it, F × F ) = Oε((|t|+ 2)9/4+εk
3/2+ε
1 ),

L(1/2 + it,G×G) = Oε((|t|+ 2)9/4+εk
3/2+ε
2 ),

L(1/2 + it, F ×G) = Oε((|t|+ 2)9/4+εk2+ε).

Now 1/|ζ(3/2 + it)| ≤ ζ(3/2) for all t ∈ R. We therefore obtain
∑

m2n≤X
a2(m,n) log3 X

m2n
=

6
ζ(3)

RfX +Oε(X1/2k
3/2+ε
1 ).

Similarly
∑

m2n≤X
b2(m,n) log3 X

m2n
=

6
ζ(3)

RgX +Oε(X1/2k
3/2+ε
2 )

and ∑

m2n≤X
a(m,n)b(m,n) log3 X

m2n
= Oε(X1/2k2+ε).

Proposition 1 tells us that Rf and Rg are ≥ C̃/log(k + 1) where C̃ > 0 is an
effective constant. We therefore deduce that for X = O(k4+ε) we must have
a(m,n) 6= b(m,n) for some (m,n) with m2n ≤ X. The Fourier coefficients
a(m,n) of F (resp. b(m,n) of G) are multiplicative. We will show that for
some m′ ∈ N with m′ ≤ X we must have a(m′, 1) 6= b(m′, 1). Taking this
for granted at the moment we have by multiplicativity a(pl, 1) 6= b(pl, 1) for
some prime divisor p of m′ and some l ∈ N. If l = 1, we are done since
a(p, 1) = a(1, p) = λ

(2)
f (p) 6= b(p, 1) = b(1, p) = λ

(2)
g (p) because F and G are

self-dual cusp forms. Now if l > 1 we deduce by self-duality of F and G that
a(pl, 1) = a(1, pl) = λ

(2)
f (pl) 6= b(pl, 1) = b(1, pl) = λ

(2)
g (pl). It is not difficult

to see that for any a ∈ N, λ(2)
f (pa) is a polynomial in λ

(2)
f (p) with integral

coefficients which depend on a but not on the form f . This can be proved by
induction for instance. λ(2)

f (pl) 6= λ
(2)
g (pl) for some l ∈ N therefore implies

that λ(2)
f (p) 6= λ

(2)
g (p). We now note that λ(2)

f (p) = λf (p2) = λ2
f (p) − 1

and similarly λ(2)
g (p) = λ2

g(p) − 1. Hence we obtain λ2
f (p) 6= λ2

g(p) and this
implies that |λf (p)| 6= |λg(p)| since λf (p), λg(p) are real.

We will now conclude our proof by showing that a(m,n) 6= b(m,n) for
some (m,n) with m2n ≤ X implies that a(m′, 1) 6= b(m′, 1) for somem′ ∈ N,
m′ ≤ X. We prove this as a lemma for the convenience of the reader.

Lemma. Let F1, F2 be two self-dual cusp forms on GL(3) with Fourier
coefficients a1(m,n) and a2(m,n) respectively. Suppose that for some X > 0
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and some pair (m,n) satisfying m2n ≤ X we have a1(m,n) 6= a2(m,n).
Then for some m′ ∈ N, m′ ≤ X, we have a1(m′, 1) 6= a2(m′, 1).

Proof. We have (cf. [2])

a1(m, 1)a1(1, n) =
∑

d|q
a1

(
m

d
,
n

d

)
, q = gcd(m,n),

and

a2(m, 1)a2(1, n) =
∑

d|q
a2

(
m

d
,
n

d

)
.

We are given that a1(m,n) 6= a2(m,n). If m and n are coprime we have
a1(m,n) = a1(m, 1)a1(1, n) 6= a2(m,n) = a2(m, 1)a2(1, n) and hence either
a1(m, 1) 6= a2(m, 1) or a1(1, n) 6= a2(1, n). By self-duality of F and G,
a1(1, n) = a1(n, 1) and similarly a2(1, n) = a2(n, 1) and since m2n ≤ X,
m′ will be either m or n and we are done. So we have to consider the case
when q > 1. This case can be subdivided into two cases.

Case 1: For all d | q, d > 1, we have a1(m/d, n/d) = a2(m/d, n/d). In
this situation we have

a1(m, 1)a1(1, n)− a2(m, 1)a2(1, n) = a1(m,n)− a2(m,n) 6= 0

and as before either a1(m, 1) 6= a2(m, 1) or a1(n, 1) 6= a2(n, 1).

Case 2: For some d | q, d > 1, we have a1(m/d, n/d) 6= a2(m/d, n/d).
Here if d = q, then m̃ = m/q and ñ = n/q are coprime and as before we get
either a1(m̃, 1) 6= a2(m̃, 1) or a1(ñ, 1) 6= a2(ñ, 1) and we are done. If now
we have 1 < d < q, d | q, put m1 = m/d, n1 = n/d. Then a1(m1, n1) 6=
a2(m1, n1) and m1 < m, n1 < n.

Iterating this procedure we arrive at a pair (mj , nj), a1(mj , nj) 6=
a2(mj , nj) such that mj |m, nj |n and gcd(mj , nj) = qj is prime. Now,

a1(mj , 1)a1(1, nj) = a1(mj , nj) + a1(mj/qj , nj/qj),

a2(mj , 1)a2(1, nj) = a2(mj , nj) + a2(mj/qj , nj/qj).

Hence if a1(mj/qj , nj/qj) = a2(mj/qj , nj/qj) we get

a1(mj , 1)a1(1, nj)− a2(mj , 1)a2(1, nj) = a1(mj , nj)− a2(mj , nj) 6= 0

and as before either a1(mj , 1) 6= a2(mj, 1) or a1(nj , 1) 6= a2(nj , 1). If
a1(mj/qj , nj/qj) 6= a2(mj/qj , nj/qj) then since gcd(mj/qj , nj/qj) = 1 we
get either a1(mj/qj , 1) 6= a2(mj/qj , 1) or a1(nj/qj , 1) 6= a2(nj/qj , 1).

This proves the lemma and thereby concludes the proof of Theorem 2.

Remark 5. In the case when the weights of f and g are equal, i.e. k1 =
k2 = k, the situation is entirely analogous to that in Theorem 1, namely
we get a better result in this case and for the same reasons. That is, given
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any ε > 0 there is a prime p, p = Oε(k3+ε), such that |λf (p)| 6= |λg(p)|
because the convexity bound for L(s, F × G) on the line Re s = 1/2 is
Oε((2+ |t|)9/4+εk3/2+ε) in this situation. As far as the author is aware, even
in the equal weight case our result is new.

Remark 6. Moreno’s result in [10] (for GL(3)) applied to our case shows
that there is a prime p such that |λf (p)| 6= |λg(p)| and p ≤ eA where A is a
positive effective constant depending on k. Our result is visibly better.

Remark 7. As in the case of Theorem 1 if we assume the Lindelöf hy-
pothesis in the k aspect for L(s, F ×F ), L(s, F ×G), L(s,G×G) then given
any ε > 0 there exists a prime p, p = Oε(kε), such that |λf (p)| 6= |λg(p)|.

Remark 8. Our result is true also for Maass cusp forms. The role of the
weights of f and g are now played by the eigenvalues of f (resp. g) for the
hyperbolic Laplacian.

Remark 9. The referee has kindly pointed out that F. Brumley ([1]) in
a very recent preprint in the arXiv has obtained similar results for automor-
phic forms for GL(m). However, his results when specialised to the case of
GL(2) forms are weaker than the results proved here.
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