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Four squares of primes and 165 powers of 2
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1. Introduction. It was shown by Linnik [12], [13] that each large even
integer N is a sum of two primes and a bounded number of powers of 2,

N = p1 + p2 + 2ν1 + 2ν2 + · · ·+ 2νk ,(1.1)

where (and throughout) p and ν, with or without subscripts, denote a prime
number and a positive integer respectively. Later Gallagher [2] established
a stronger result by a different method. An explicit value for the number
k of powers of 2 was firstly established by the first author, Liu and Wang
[17], who found that k = 54000 is acceptable. The original value for the
number k was subsequently improved by Li [10], Wang [22], and Li [11].
Recently Heath-Brown and Puchta [6] applied a rather different approach
to this problem and showed that k = 13 is acceptable.

In 1938, Hua [7] proved that each large integer congruent to 5 (mod 24)
can be written as a sum of five squares of primes. In view of this result and
Lagrange’s theorem of four squares, it seems reasonable to conjecture that
each large integer n ≡ 4 (mod 24) is a sum of four squares of primes,

n = p2
1 + p2

2 + p2
3 + p2

4.(1.2)

Motivated by this conjecture and the above works of Linnik and Gallagher,
it is proved in [18] that every large even integer N can be written as a sum
of four squares of primes and powers of 2,

N = p2
1 + p2

2 + p2
3 + p2

4 + 2ν1 + 2ν2 + · · ·+ 2νk .(1.3)

And in [15], it is showed that k = 8330 is acceptable in (1.3).
In this paper we sharpen this result considerably by establishing the

following theorem.

Theorem 1.1. Every large even integer is the sum of four squares of
primes and 165 powers of 2.

2000 Mathematics Subject Classification: 11P32, 11P05, 11N36, 11P55.
Key words and phrases: additive theory of prime numbers, circle method, sieve

methods.

[55]



56 J. Y. Liu and G. S. Lü

Our Theorem 1.1 implies that there is a set = of integers n ≤ x of
cardinality only O(log165 x), such that every large even integer N ≤ x can
be written as N = p2

1 + p2
2 + p2

3 + p2
4 + n, with p1, p2, p3, p4 being primes

and n ∈ =. Thus our result can be compared with other approximations
to the conjecture (1.2). In [4], Greaves gave a lower bound for the number
of representations of an integer as a sum of two squares of integers and
two squares of primes. Later Shields [21], Plaksin [19], and Koval’chik [9]
obtained, among other things, an asymptotic formula for the number of
representations of an integer as a sum of two squares of integers and two
squares of primes. Brüdern and Fouvry [1] proved that every large n ≡ 4
(mod 24) is a sum of four squares of integers with each of their prime factors
greater than n1/68.86. Very recently the first author [14] proved that, with
at most O(N2/5+ε) exceptions, all positive integers n ≡ 4 (mod 24) not
exceeding N can be written as (1.2).

Notation. As usual, ϕ(n) and µ(n) stand for the function of Euler and
Möbius respectively. N is a large integer, and L = log2N. If there is no
ambiguity, we express a

b + θ as a/b+ θ or θ+ a/b. The same convention will
be applied for quotients. The letter ε denotes a positive constant which is
arbitrarily small.

2. Outline of the method. Here we give an outline for the proof of
Theorem 1.1. In order to apply the circle method, we set

P = N1/5−ε, Q = N/PL14.(2.1)

By Dirichlet’s lemma on rational approximation, each α ∈ [1/Q, 1 + 1/Q]
may be written in the form

α = a/q + λ, |λ| ≤ 1/(qQ),(2.2)

for some integers a, q with 1 ≤ a ≤ q ≤ Q and (a, q) = 1. We denote by
M(a, q) the set of α satisfying (2.2), and define the major arcs M and the
minor arcs C(M) as follows:

M =
⋃

q≤P

q⋃

a=1
(a,q)=1

M(a, q), C(M) =
[

1
Q
, 1 +

1
Q

]∖
M.(2.3)

It follows from 2P ≤ Q that the major arcs M(a, q) are mutually disjoint.
Let

(2.4) T (α) =
∑

p2≤N
(log p)e(p2α), G(α) =

∑

2ν≤N
e(2να) =

∑

ν≤L
e(2να)

and

rk(N) =
∑

N=p2
1+···+p2

4+2ν1+···+2νk

(log p1) · · · (log p4).(2.5)
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Then rk(N) can be written as

rk(N) =
1�

0

T 4(α)Gk(α)e(−Nα) dα(2.6)

=
{ �

M
+

�

C(M)

}
T 4(α)Gk(α)e(−Nα) dα.

To handle the integral on the major arcs, we quote the following lemma.

Lemma 2.1. Let M be as in (2.3) with P determined by (2.1). Then for
2 ≤ n ≤ N, we have

�

M
T 4(α)e(−nα) dα =

π2

16
S(n)n+O

(
N

logN

)
.(2.7)

Here S(n) is defined in (5.2), and satisfies S(n)� 1 for n ≡ 4 (mod 24).

This is Theorem 1.2 in [14]. The asymptotic formula (2.7) was previously
established in [16] for the smaller M with P = N 2/15−ε in (2.1).

A crucial step in bounding the contributions of the minor arcs is an
upper bound for the number of solutions of the equation

n = p2
1 + p2

2 − p2
3 − p2

4, |n| ≤ N, p2
j ≤ N.(2.8)

Lemma 2.2. Let n 6= 0 be an integer with n ≡ 0 (mod 24), and r−(n)
the number of representations of n in the form (2.8). Then we have

r−(n) ≤ c1S−(n)
π2

16
N

log4N
(2.9)

with c1 ≤ (1 + ε)6 · 101 · 444 and

(2.10) S−(n) =
(

2− 1
2β0−1 −

1
2β0

) ∏

pβ‖n
p≥3, β≥0

(
1 +

1
p
− 1
pβ+1 −

1
pβ+2

)

where β0 satisfies 2β0 ‖n and the singular series S−(n) is defined by (3.4),
(3.5) and (3.7).

This lemma improves Theorem 2 of [15].
On the minor arcs, we also need estimates for the measure of the set

Eλ = {α ∈ (0, 1] : |G(α)| ≥ λL}.
The following lemma is due to Heath-Brown and Puchta [6].

Lemma 2.3. Let
Gh(α) =

∑

0≤n≤h−1

e(α2n)



58 J. Y. Liu and G. S. Lü

and

F (ξ, h) =
1
2h

2h−1∑

r=0

exp
{
ξRe

(
Gh

(
r

2h

))}
.

Then
meas(Eλ) ≤ N−E(λ),

where

E(λ) =
ξλ

log 2
− logF (ξ, h)

h log 2
− ε

log 2
holds true for any h ∈ N , any ξ > 0 and ε > 0.

On the minor arcs, the new result of Ren [20] (see Lemma 5.4 below) on
exponential sums over primes will also be applied.

The proof of Lemma 2.2 follows the same lines as that of Theorem 2 in
[15], so we only give an outline in §3. In §4, we estimate an integral. In the
last section, we complete the proof of Theorem 1.1.

3. Proof of Lemma 2.2. In this section, boldface symbols denote 4-
dimensional vectors, for example d = (d1, d2, d3, d4). The letter e is reserved
for (1, 1, 1, 1). Also we define |d| = max |dj| and d̃ = d1d2d3d4. For a vector
d, we write µ(d) for µ(d1)µ(d2)µ(d3)µ(d4).

In order to establish Lemma 2.2, we want to sieve the set

A = {(x1, . . . , x4) ∈ N4 : x2
1 + x2

2 − x2
3 − x2

4 = n,(3.1)

1 ≤ |n| ≤ N, 1 ≤ x2
j ≤ N}.

To this end, we require information concerning the distribution of the se-
quence A in arithmetic progressions.

Let x ≡ 0 (modd) denote the simultaneous condition xj ≡ 0 (moddj)
for j = 1, . . . , 4. We need an asymptotic formula for the cardinality of

Ad = {x ∈ A : x ≡ 0 (modd)},
i.e. the number of solutions of the equation

(3.2) d2
1x

2
1 + d2

2x
2
2 − d2

3x
2
3 − d2

4x
2
4 = n, 1 ≤ |n| ≤ N, 1 ≤ d2

jx
2
j ≤ N.

The expected main term of |Ad| is

1

d̃

π

16
S(n,d)I

(
n

N

)
N,(3.3)

where

S(n,d) =
∞∑

q=1

q−4
q∑

a=1
(a,q)=1

e

(
an

q

)
S(q, ad2

1)S(q, ad2
2)(3.4)

× S(q,−ad2
3)S(q,−ad2

4)
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with

S(q, a) =
q∑

m=1

e

(
am2

q

)
,(3.5)

and where

I(x) = 2
min(1,1−x)�

max(0,−x)

v−1/2(1− x− v)1/2 dv.(3.6)

Clearly, for 1 ≤ |n| ≤ N we have 0 ≤ I(n/N) ≤ π. The singular series in
Lemma 2.2 is defined by

S−(n) = S(n, e).(3.7)

Also, we define

ω(d) = ω(d, n) = S(n,d)/S−(n),(3.8)

so that (3.3) becomes

ω(d)

d̃

π

16
S−(n)I

(
n

N

)
N.

The difference between |Ad| and its main term expected above has been
estimated on average in Lemma 9.1 of [18], which is a minor modification
of Theorem 3 in Brüdern and Fouvry [1].

Lemma 3.1. Let ω(d) be as in (3.8), and let D = N 1/22−2ε. Define
R(n,N,d) by

|Ad| =
ω(d)

d̃

π

16
S−(n)I

(
n

N

)
N +R(n,N,d),(3.9)

where S−(n) and I(n/N) are as in (3.7) and (3.6) respectively. Then for
arbitrary A > 0, we have∑

|d|≤D
µ2(d)|R(n,N,d)| � NL−A.

We suppose throughout that µ2(d) = 1. For u, v = 0, 1, 2, let eu,v(p)
denote the following 4-dimensional vector:

(p, . . . , p︸ ︷︷ ︸
u

, 1, . . . , 1︸ ︷︷ ︸
2−u

, p, . . . , p︸ ︷︷ ︸
v

, 1, . . . , 1︸ ︷︷ ︸
2−v

).

Clearly, e0,0(p) = e. It has been proved in [18] that ω(d) has the decompo-
sition

ω(d) =
∏

pu+v‖d̃
ωu,v(p).(3.10)

Trivially, we have ω0,0(p) = 1. For 1 ≤ u + v ≤ 4, the values of ωu,v(p) are
given in Lemmas 8.1 and 8.2 of [18].
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Lemma 3.2. With ωu,v(p) defined as in (3.10), put

Ω(p) = 2ω1,0(p) + 2ω0,1(p)− ω2,0(p)
p

− ω0,2(p)
p

− 4ω1,1(p)
p

(3.11)

+
2ω2,1(p)
p2 +

2ω1,2(p)
p2 − ω2,2(p)

p3 ,

and

W (z) =
∏

2<p≤z

(
1− Ω(p)

p

)
.

Then

log−4 z �W (z) ≤ c2e
−4γ log−4 z

with c2 ≤ 101, where γ denotes the Euler constant.

Proof. This lemma has been proved in [15] with the value c2 = π24/232 =
198.901 . . ., so we only have to show that the value c2 = 101 is acceptable.
To this end, we should estimate 1−Ω(p)/p for all p ≥ 3. We distinguish two
cases according as p |n or not. For convenience we write x = 1/p.

Suppose first that pβ ‖n with p ≥ 3 and β ≥ 1. Then by (3.11) and
Lemma 8.2 in [18],

Ω(p)
p
≥





4x− 11x2 + 9x3 − xβ+1 − xβ+2

1 + x− xβ+1 − xβ+2 if p ≡ 1 (mod 4),

4x− 7x2 + 5x3 − xβ+1 − xβ+2

1 + x− xβ+1 − xβ+2 if p ≡ 3 (mod 4),

and consequently,

(3.12) 1− Ω(p)
p
≤





(1− x)4 9x2 − 2x+ 1
(1− x2)2(1− x)2 if p ≡ 1 (mod 4),

(1− x)4 5x2 − 2x+ 1
(1− x2)2(1− x)2 if p ≡ 3 (mod 4).

One can easily see that for p ≡ 3 (mod 4) and p ≥ 7,

5x2 − 2x+ 1
(1− x2)2(1− x)2 ≤ (1− x2)−11

and for p ≡ 1 (mod 4) and p ≥ 29,

9x2 − 2x+ 1
(1− x2)2(1− x)2 ≤ (1− x2)−11.

Thus

(3.13) 1− Ω(p)
p
≤
{

(1− x)4(1− x2)−11 if p ≡ 1 (mod 4), p ≥ 29,

(1− x)4(1− x2)−11 if p ≡ 3 (mod 4), p ≥ 7.
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Now we consider the second case p -n. For these p, we must have p > 3,
since the other case will contradict n ≡ 0 (mod 24). Thus by (3.11) and
Lemma 8.1 of [18], we have

Ω(p)
p
≥ 4
p+ 1

− 2
p(p− 1)

− 4
p(p+ 1)

=
4p2 − 10p+ 2
p(p2 − 1)

,

and consequently

1− Ω(p)
p
≤ 1− 4x+ 9x2 − 2x3

1− x2 .

It is easily seen that for x < 1/3, we also have

(3.14) 1− Ω(p)
p
≤





(1− x)4 9x2 − 2x+ 1
(1− x2)2(1− x)2 if p ≡ 1 (mod 4),

(1− x)4 5x2 − 2x+ 1
(1− x2)2(1− x)2 if p ≡ 3 (mod 4)

and hence the bound (3.13) still holds true in this case.
From (3.12)–(3.14), we conclude that

∏

3≤p≤z

(
1− Ω(p)

p

)

≤
∏

3≤p≤z

(
1− 1

p

)4 ∏

p≥3

(
1− 1

p2

)−11 ∏

p=5,13,17,
29,37,41

(9x2 − 2x+ 1)(1− x2)11

(1− x2)2(1− x)2

×
∏

p=3,7,11,
19,23

5x2 − 2x+ 1
(1− x2)2(1− x)2 (1− x2)11

≤ 24
∏

2≤p≤z

(
1− 1

p

)4(
1− 1

22

)11 ∏

p≥2

(
1− 1

p2

)−11

×
∏

p=5,13,17,
29,37,41

(9x2 − 2x+ 1)(1− x2)11

(1− x2)2(1− x)2

∏

p=3,7,11,
19,23

(5x2 − 2x+ 1)(1− x2)11

(1− x2)2(1− x)2

≤ 24e−4γ

log4 z

(
3
4

)11

ζ11(2)
∏

p=5,13,17,
29,37,41

9x2 − 2x+ 1
(1− x2)2(1− x)2 (1− x2)11

×
∏

p=3,7,11,
19,23

5x2 − 2x+ 1
(1− x2)2(1− x)2 (1− x2)11.
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Thus we can show that c2 < 101 by computations and the well known fact
ζ(2) = π2/6.

Proof of Lemma 2.2. Let P (z0, z) =
∏
z0≤p<z p and define T (A, z0) to

be the set of all x ∈ A such that p | x̃⇒ p = 2 or p > z0. Then

S(A, z) =
∑

x∈T (A,z0)

4∏

j=1

(µ ∗ 1)((xj, P (z0, z))),

where
(µ ∗ 1)((xj, P (z0, z))) =

∑

d|(xj ,P (z0,z))

µ(d).

We fix z = N1/44−ε and z0 = log20N . Following the lines of [15], we can
show that

S(A, z) ≤W (z0)444e4γ(1 + ε)4 log4 z0

log4N

π

16
S−(n)I

(
n

N

)
N +O

(
N

log5N

)

≤ 101 · 444(1 + ε)5 ·S−(n)
π2

16
N

log4N
,

where we have used Lemmas 3.1 and 3.2. Thus we have

r−(n) ≤ S(A, z) +N2/3 ≤ 101 · 444(1 + ε)6S−(n)
π2

16
N

log4N
.

4. Estimation of an integral. In this section we shall estimate the
integral � 1

0 |T (α)G(α)|4 dα. We have

Lemma 4.1. Let T (α) and G(α) be as in (2.4). Then
1�

0

|T (α)G(α)|4 dα ≤ c3
π2

16
NL4,

where

c3 ≤
(

444 · 101 · 43
25 · 3 +

23

π2 log2 2
)

(1 + ε)9.

To show this, we need

Lemma 4.2. For odd q, let %(q) be the smallest positive integer % such
that 2% ≡ 1 (mod q). Then the series

∑∞
q=1, 2-q µ

2/q%(q) is convergent , and
its value c4 satisfies c4 < 43/25.

Proof. See Lemma 5.2 in [15].

Proof of Lemma 4.1. One easily sees that
1�

0

|T (α)G(α)|4 dα ≤ (log
√
N)4Z(N),(4.1)
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where Z(N) denotes the number of solutions of the equation

p2
1 + p2

2 − p2
3 − p2

4 = 2m1 + 2m2 − 2m3 − 2m4(4.2)

with

pj ≤ N1/2, mj ≤ L.(4.3)

Now we distinguish between two cases.

Case 1. In this case we treat the contribution from those (m1,m2,
m3,m4) such that

2m1 + 2m2 − 2m3 − 2m4 6= 0.(4.4)

Let (m1,m2,m3,m4) be fixed and satisfy, in addition to (4.4), 2m1 +
2m2 − 2m3 − 2m4 ≡ 0 (mod 24). For these (m1,m2,m3,m4), one trivially has
|2m1 + 2m2 − 2m3 − 2m4 | ≤ 2N, so one deduces from Lemma 2.2 that

|{(p1, p2, p3, p4) : pj satisfies (4.2) and (4.3)}|
≤ c1S−(2m1 + 2m2 − 2m3 − 2m4)π22N/(16 log4(2N))

≤ 4c1g(2m1 + 2m2 − 2m3 − 2m4)π2N/(16 log4N),

where g(h) =
∏
p|h, p≥3(1 + 1/p). On the other hand, for (m1,m2,m3,m4)

satisfying (4.4) and 2m1 + 2m2 − 2m3 − 2m4 6≡ 0 (mod 24), we have

|{(p1, p2, p3, p4) : pj satisfies (4.2) and (4.3)}| � N 1/2+ε.

Therefore Z1(N), the number of solutions of (4.2) with pj ,mj satisfying
both (4.3) and (4.4), can be estimated as

Z1(N) ≤ 4c1(1 + ε)
π2

16
N

log4N

∑

1≤m1,...,m4≤L
g(2m1 + 2m2 − 2m3 − 2m4).

Denote by Σ the sum above. Noting that g(h) = g(−h) for h 6= 0, and that
∑

1≤m1,...,m4≤L
1 ≤ 4(1 + ε)

∑

1≤m4≤m1,m2,m3≤L
3m4<m1+m2+m3

1,

we get

Σ ≤ 4(1 + ε)
∑

1≤m4≤m1,m2,m3≤L
3m4<m1+m2+m3

g(2m1 + 2m2 − 2m3 − 2m4).

Here the condition 3m4 < m1 +m2 +m3 in the above sum guarantees (4.4).
For a fixed integral vector (h1, h2, h3) with 1 ≤ hj ≤ L, we have

|{(m1,m2,m3,m4) : 1≤mj≤L,m1−m4 =h1,m2−m4 =h2,m3−m4 =h3}|
≤ min(L− h1, L− h2).

Thus,
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Σ ≤ 4(1 + ε)(4.5)

×
∑

1≤m4≤m1,m2,m3≤L
3m4<m1+m2+m3

g(2m4)g(2m1−m4 + 2m2−m4 − 2m3−m4 − 1)

≤ 4(1 + ε)
∑

0≤h1,h2,h3≤L
h1+h2+h3>0

min(L− h1, L− h2)g(2h1 + 2h2 − 2h3 − 1).

Here the condition h1 + h2 + h3 > 0 indicates that h1, h2, h3 cannot vanish
at the same time. Obviously, there are at most O(L2) terms in the last sum
such that one or two of h1, h2, h3 vanish, and the total contribution of these
terms to Σ is � L3 log logN � L3 logL, on using the elementary bound
g(d)� log log d. Hence (4.5) becomes

Σ ≤ 4(1+ε)
∑

1≤h1,h2,h3≤L
min(L−h1, L−h2)g(2h1+2h2−2h3−1)+O(L3 logL).

Since the positions of h1, h2 are symmetric, one deduces further that

Σ ≤ 8(1 + ε)
∑

1≤h3≤L

∑

1≤h1≤L
(L− h1)

∑

1≤h2≤h1

g(2h1 + 2h2 − 2h3 − 1)(4.6)

+O(L3 logL).

Following the similar arguments in [15], we can use Lemma 4.2 to show
that for H � 1, ∑

1≤h≤H
g(2h − t) ≤ c4H

uniformly for all possible odd numbers t with |t| ≤ N . Thus we obtain
∑

1≤h3≤L

∑

1≤h1≤L
(L− h1)

∑

1≤h2≤h1

g(2h1 + 2h2 − 2h3 − 1) ≤ c4

6
L4 +O(L3+ε).

Inserting this into (4.6), we get Σ ≤ 4
3c4(1 + ε)2 L4, and consequently,

Z1(N) ≤ c1c4

3
(1 + ε)3 π

2NL4

log4N
.(4.7)

Case 2. It has been proved in [15] that the upper bound of Z2(N),
the number of solutions of (4.2) with pj ,mj satisfying (4.3) but not (4.4),
satisfies

Z2(N) ≤ 8(1 + ε)
NL2

log2N
.(4.8)

We can now conclude from (4.7) and (4.8) that

Z(N) = Z1(N) + Z2(N) ≤
(
c1c4

3
+

8
π2 log2 2

)
(1 + ε)3 π

2NL4

log4N
,

which in combination with (4.1) gives Lemma 4.1.
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5. Proof of Theorem 1.1. We need the following four lemmas.

Lemma 5.1 [15, Lemma 6.1]. Let Ξ(N, k) = {n ≥ 2 : n = N − 2ν1 −
· · · − 2νk}, with k ≥ 2. Then for N ≡ 4 (mod 8),

∑

n∈Ξ(N,k)
n≡4 (mod 24)

n ≥ 1
4

(1− ε)NLk.

Lemma 5.2. Let

(5.1) C(q, a) =
q∑

m=1
(m,q)=1

e

(
am2

q

)
, B(n, q) =

q∑

a=1
(a,q)=1

C4(q, a)e
(
−an
q

)
,

and

A(n, q) =
B(n, q)
ϕ4(q)

, S(n) =
∞∑

q=1

A(n, q).(5.2)

Then for n ≡ 4 (mod 24), one has

c5 < S(n)� (log logn)11

with c5 = 4.952, while for n 6≡ 4 (mod 24), one has S(n) = 0.

Proof. This is Proposition 4.3 in [18] except for the value of c5. It has
been shown in [18] that

S(n) = {1 + A(n, 2) + A(n, 22) + A(n, 23)}
∏

p≥3

{1 + A(n, p)},(5.3)

where A(n, q) is defined as in (5.2). It has also been proved in Lemma 4.2
of [18] that when n ≡ 4 (mod 24),

1 +A(n, 2) + A(n, 22) + A(n, 23) = 8, 1 + A(n, 3) = 3.(5.4)

Therefore to estimate S(n) it remains to compute 1 +A(n, p) for p ≥ 5.
We will use the notation

G(χ, n) =
q∑

m=1

χ(m)e
(
nm

q

)
, cq(n) =

q∑

m=1
(m,q)=1

e

(
nm

q

)
,

where cq(n) is the Ramanujan sum. We will also use the notation S(q, a)
introduced in (3.5). By Theorem 7.5.4 in [8], for p ≥ 5 we have

C(p, a) = S(p, a)− 1 = χ(a)S(p, 1)− 1,

where χ is the Legendre symbol
(
a
p

)
. Inserting this into (5.2), one sees that
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B(n, p) = S4(p, 1)cp(−n)− 4S3(p, 1)G(χ,−n) + 6S2(p, 1)cp(−n)

− 4S(p, 1)G(χ,−n) + cp(−n).

Using the well known formulae (see Theorems 7.5.5 and 7.5.8 in [8])

S(p, 1) =
{√

p if p ≡ 1 (mod 4),

i
√
p if p ≡ 3 (mod 4),

and

|G(χ, n)| =
{√

p if p -n,
0 if p |n, cp(n) =

{−1 if p -n,
p− 1 if p |n,

one obtains

B(n, p) ≥





−5p2 + 2p− 1 if p -n, p ≡ 3 (mod 4),

−5p2 − 10p− 1 if p -n, p ≡ 1 (mod 4),

(p− 1)(p2 − 6p+ 1) if p |n.

Hence by (5.2), we have
∏

p≥5

{1 +A(n, p)}

≥
∏

p≡1 (mod 4)
p≥5, p-n

(
1− 5p2 + 10p+ 1

(p− 1)4

) ∏

p≡3 (mod 4)
p≥7, p-n

(
1− 5p2 − 2p+ 1

(p− 1)4

)

×
∏

p≥5
p|n

(
1 +

p2 − 6p+ 1
(p− 1)3

)

>
∏

p≡1 (mod 4)
p≥5

(
1− 5p2 + 10p+ 1

(p− 1)4

) ∏

p≡3 (mod 4)
p≥7

(
1− 5p2 − 2p+ 1

(p− 1)4

)
.

To estimate the products above, we apply the elementary inequality

(1 + x)a < 1 + ax− a(a− 1)
2

x2 if a > 2, −1 < x < 0.

It is easy to see that for p ≥ 23 and p ≡ 1 (mod 4),

1− 5p2 + 10p+ 1
(p− 1)4 ≥

(
1− 1

(p− 1)2

)6

,

while for p ≥ 11 and p ≡ 3 (mod 4),

1− 5p2 − 2p+ 1
(p− 1)4 ≥

(
1− 1

(p− 1)2

)6

.

Thus we have
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∏

p≥5

{1 + A(n, p)}

≥
∏

p=5,13,17

(
1− 5p2 + 10p+ 1

(p− 1)4

)∏

p=7

(
1− 5p2 − 2p+ 1

(p− 1)4

)

×
∏

p≡1 (mod 4)
p≥23

(
1− 1

(p− 1)2

)6 ∏

p≡3 (mod 4)
p≥11

(
1− 1

(p− 1)2

)6

=
∏

p=5,13,17

(
1− 5p2 + 10p+ 1

(p− 1)4

)∏

p=7

(
1− 5p2 − 2p+ 1

(p− 1)4

)

×
∏

p=3,5,
7,13,17

(
1− 1

(p− 1)2

)−6 ∏

p≥3

(
1− 1

(p− 1)2

)6

≥ 2.494447 · (0.6601)6 > 0.2063634,

where we have used
∏
p≥3(1 − (p − 1)−2) = 0.6601 . . . (see [5]). This in

combination with (5.3) and (5.4) ensures that one can take c5 = 4.952. The
proof is complete.

In order to apply Lemma 2.3 in this paper, we need to find an optimal
λ such that E(λ) > 3/4. Thus we have to compute

F (ξ, h) =
1
2h

2h−1∑

r=0

exp
{
ξ ·

h∑

i=1

cos
(

2πr
2i

)}

and optimize for ξ. Use Mathematica 4.1 on a PC and the following proce-
dure:

a=N[Sum[Cos[2πr/2i], {i, 1, 22}]];
b=Apply[Plus, Table[Exp[ξ∗a], {r, 0, 222 − 1}]];
(Log[b/222]/22/Log[2] + 3/4)∗Log[2]/ξ.

We can take ξ = 1.21, h = 22 in Lemma 2.3 to get

Lemma 5.3. Let E(λ) be as in Lemma 2.3. Then

E(0.887167) > 3/4 + 10−10.

Lemma 5.4. Let T (α) be as in (2.4) and α = a/q+λ subject to (a, q) = 1
and λ ∈ R. Then

T (α)� N1/4+ε
√
q(1 + |λ|N) +N2/5+ε +

N1/2+ε
√
q(1 + |λ|N)

.

Proof. This is a special case of Theorem 1.1 in [20].



68 J. Y. Liu and G. S. Lü

Now we prove the main result of this paper.

Proof of Theorem 1.1. We distinguish two cases according as N ≡ 4
(mod 8) or not.

Case 1. Suppose N ≡ 4 (mod 8). Let Eλ be as in Lemma 2.3 andM as
in (2.3) with P,Q determined by (2.1). Then (2.6) becomes

(5.5) rk(N) =
1�

0

T 4(α)Gk(α)e(−Nα) dα =
�

M
+

�

C(M)∩Eλ
+

�

C(M)∩C(Eλ)

.

Introducing the notation Ξ(N, k) and then applying Lemma 2.1, we see
that the first integral on the right-hand side of (5.5) is

(5.6)
∑

n∈Ξ(N,k)

�

M
T 4(α)e(−nα) dα =

π2

16

∑

n∈Ξ(N,k)

S(n)n+O(NLk−1)

≥ c5
π2

16

{ ∑

n∈Ξ(N,k)
n≡4 (mod 24)

n
}

+O(NLk−1) ≥ 4.952
4

(1− ε) π
2

16
NLk,

where in the last two inequalities we have used Lemmas 5.2 and 5.1 respec-
tively.

By Dirichlet’s lemma on rational approximations each real number α ∈
C(M) can be written as α = a/q + λ, (a, q) = 1, with

1 ≤ q ≤ Q0 = N3/4, |λ| ≤ 1/(qQ0).

We let N be the set of α ∈ C(M) satisfying α = a/q + λ, (a, q) = 1, such
that

P0 = N1/4 < q ≤ Q0, |λ| ≤ 1/(qQ0).

On N , we apply Ghosh’s result in [3], which states that

(5.7) max
α∈N
|T (α)| � N1/2+εP

−1/4
0 +N7/16+ε+N1/4+εQ

1/4
0 � N1/2−1/16+ε.

Let J be the complement of N in C(M), so that C(M) = J ∪ N . For
α ∈ J , we have either

P < q ≤ P0, |λ| ≤ 1/(qQ0),

or

q ≤ P, 1/(qQ) < |λ| ≤ 1/(qQ0).

In either case, we have

N1/10−ε �
√
q(1 + |λ|N)� N1/8.

Therefore, Lemma 5.4 gives

max
α∈J
|T (α)| � N2/5+ε.(5.8)
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Collecting (5.7) and (5.8), we have

max
α∈C(M)

|T (α)| � N1/2−1/16+ε.

Thus the second integral in (5.5) satisfies
�

C(M)∩Eλ
� N−E(λ)N2−1/4+4εLk � NLk−1,(5.9)

where we have used Lemma 5.3.
On using the definition of Eλ and Lemma 2.2, the last integral in (5.5)

can be estimated as
�

C(M)∩C(Eλ)

≤ {λL}k−4
1�

0

|T (α)G(α)|4 dα ≤ c3λ
k−4 π

2

16
NLk.(5.10)

Inserting (5.6), (5.9), and (5.10) into (5.5), we get

rk(N) ≥ π2

16
NLk

(
4.952

4
− c3λ

k−4
)

(1− ε)2,(5.11)

when k ≥ 4 and N ≥ Nk,ε. Also when k ≥ 163 and ε = 10−8, one has
(4.952/4 − c3λ

k−4)(1 − ε)2 > 1/90. Consequently, if k ≥ 163 and N ≥ Nk,
then (5.11) becomes

rk(N) ≥ NLk/200.(5.12)

It therefore follows from (5.12) that for any k ≥ 163, every large even integer
N ≥ Nk with N ≡ 4 (mod 8) can be expressed in the form of (1.3).

Case 2. Now suppose N is even but N 6≡ 4 (mod 8). Since for any even
integer N there exist µ1, µ2 ∈ {1, 2, 3} such that N − 2µ1 − 2µ2 ≡ 4 (mod 8),
we deduce from Case 1 that if k ≥ 165 then every even integer N ≥ Nk + 16
can be written in the form of (1.3), and

rk(N) ≥ NLk−2/200.

This completes the proof of Theorem 1.1.
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