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Normal integral bases and ray class groups

by

Humio Ichimura (Yokohama)

1. Introduction. A finite Galois extension N/F over a number field
F with group G has a normal integral basis (NIB for short) when ON is
cyclic over the group ring OF [G]. Here, OF denotes the ring of integers of
a number field F . For a prime number p, we say that a number field F has
property (Ap) when any tame cyclic extension N/F of degree p has a NIB.
It is well known by Hilbert and Speiser that the rationals Q satisfy (Ap) for
all primes p. On the other hand, Greither et al. [6] proved that any number
field F with F 6= Q does not satisfy (Ap) for some p. For an integer a ∈ OF ,
let ClF (a) be the ray ideal class group of F defined modulo the principal
ideal aOF . Using [6, Corollary 7], we showed in [8, V] that if ζp ∈ F×, then
F satisfies (Ap) if and only if the ray class group ClF (p) is trivial. Here, ζp
is a primitive pth root of unity.

Let p ≥ 3 be a prime number, F a number field, K = F (ζp), and
∆F = Gal(K/F ). In this paper, we study property (Ap) when ζp 6∈ F× but
[K : F ] = 2 in connection with the ray class groups ClK(π) and ClK(p).
Here, π = πp = ζp − 1. For a set X on which ∆F acts, X∆F denotes the
invariant part. First, we prove the following:

Theorem 1. Let p ≥ 3 be a prime number , F a number field such that
ζp 6∈ F×, and K = F (ζp). Assume that [K : F ] = 2. If F satisfies (Ap), then
the ray class groups ClK(π) and ClK(p)∆F are trivial.

We say that a number field F has property (Bp) when for any a ∈ F×,
the cyclic extension K(a1/p)/K has a NIB if it is tame, where K = F (ζp).
A theorem of Kawamoto [12, 13] asserts that Q satisfies (Bp) for all primes p.
Analogously to the result of Greither et al., it is known by [8, IV] that any
number field F 6= Q does not satisfy (Bp) for some p. In [11], we studied
this property in some more detail. Using Theorem 1, we prove the following
“duality” between properties (Ap) and (Bp).
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Theorem 2. Under the setting and assumptions of Theorem 1, assume
further that K/F is ramified at least for one prime divisor (including the
infinite one). Then F satisfies (Ap) only when it satisfies (Bp).

When p = 3, we can prove the following assertion stronger than Theo-
rem 1.

Theorem 3. Let p = 3, F be a number field with ζ3 6∈ F×, and K =
F (ζ3). Then F satisfies (A3) if and only if the ray class groups ClK(π3) and
ClK(3)∆F are trivial.

To prove this, we need the following descent property on NIB.

Theorem 4. Let p = 3, and F , K be as in Theorem 3. Then a tame
cyclic cubic extension N/F has a NIB if and only if NK/K has a NIB.

When p = 3 is unramified at F , this assertion is already known, by a
result of Greither [5, Theorem 2.2].

The following is a consequence of Theorem 3.

Proposition. Let p = 3 and F = Q(
√
d) be a quadratic field with d a

square free integer. Then F satisfies (A3) if and only if

d = −1,−2,−3,−11, 2, 3, 5, 6, 17, 33, 41, 89.

Remark 1. Let p = 2 and K be a number field. It is shown in [8, V]
that the following three conditions are equivalent:

(i) any tame abelian extension over K of exponent 2 has a NIB,
(ii) any tame (2, 2)-extension over K has a NIB,
(iii) the ray class group ClK(4) of K defined modulo 4 is trivial.

Remark 2. Let hp (resp. h+
p ) be the class number of the p-cyclotomic

field Q(ζp) (resp. Q(cos(2π/p))), and let h−p = hp/h
+
p . It is well known by

Kummer that if p -h−p , then p -h+
p (cf. Washington [15, Theorems 5.34, 10.9]).

Under the setting of Theorem 1, let X be the subgroup of K×/(K×)p con-
sisting of classes [x] with x ∈ K× such that the cyclic extension K(x1/p)/K
is tame. Namely,

X = {[x] ∈ K×/(K×)p | (x, p) = 1, x ≡ up mod πp for some u ∈ OK}.
By the action of ∆F , we can decompose X as X = X+ ⊕ X−, where X+

= X∆F . Property (Ap) (resp. (Bp)) is a property on X− (resp. X+). Hence,
Theorem 2 may be regarded as a Galois module analogue of the above
classical duality.

Remark 3. In [11, Theorem 2], we proved that an imaginary quadratic
field F = Q(

√
d) with d a square free negative integer satisfies (B3) if and

only if d = −1, −2, −3, or −11. Hence, by the Proposition, (A3) and (B3)
are equivalent for imaginary quadratic fields. However, in general, (Ap) is
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stronger than (Bp). Actually, we see from [11, Theorem 3] and the Proposi-
tion that there are many real quadratic fields satisfying (B3) but not (A3).

Remark 4. On the descent property on NIB, the following general fact
is known for the unramified case. Let p ≥ 3 be a prime number, F a number
field with ζp 6∈ F×, and K = F (ζp). Then an unramified cyclic extension
N/F of degree p has a NIB if and only if NK/K has a NIB. This was first
shown by Brinkhuis [1] when p = 3 and F is an imaginary quadratic field,
and then by the author [9] for the general case.

This paper is organized as follows. In Section 2, we recall a theorem of
Gómez Ayala on NIB, and give some of its versions. In Section 3, we show
several lemmas related to the theorem. In Section 4, we prove Theorems 1
and 2. In Section 5, we deal with the case p = 3, and prove Theorems 3, 4
and the Proposition.

2. A theorem of Gómez Ayala. In this section, we recall a theorem
of Gómez Ayala on NIB and give some of its versions. Let p be a prime
number, K a number field with ζp ∈ K×, L/K a cyclic extension of degree
p, and G = Gal(L/K). Let g be a fixed generator of G and ζp a fixed

primitive pth root of unity. For 0 ≤ i ≤ p− 1, let O(i)
L be the additive group

of integers x ∈ OL such that xg = ζipx. For an integer ω ∈ OL, the resolvent
ωi is defined by

ωi =
p−1∑

r=0

ζ−irp ωg
r

(0 ≤ i ≤ p− 1).

As is easily seen, we have ωi ∈ O(i)
L . The following lemma is easily shown

and well known to specialists. Let EK = O×K be the group of units of K.

Lemma 1. Under the above setting , the following assertions hold. If L/K
has a NIB , then O(i)

L is cyclic over OK for each i. More precisely , if an
integer ω of L generates OL over OK [G], then the resolvent ωi generates
O(i)
L over OK and

ω0 ∈ EK and
p−1∑

i=0

ωi ≡ 0 mod p.

In [4, Theorem 2.1], Gómez Ayala gave the following necessary and suf-
ficient condition for a tame Kummer extension of prime degree to have a
NIB in terms of a Kummer generator. Let A be a pth power free integral
ideal of a number field K. Namely, ℘p -A for any prime ideal ℘ of K. Then
we can uniquely write

A =
p−1∏

i=1

Aii(1)
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for some square free integral ideals Ai of K relatively prime to each other.
The associated ideals Bj of A are defined by

Bj =
p−1∏

i=1

A
[ij/p]
i (0 ≤ j ≤ p− 1).(2)

Here, for a real number x, [x] denotes the largest integer ≤ x. Clearly, we
have B0 = B1 = OK .

Theorem 5 (Gómez Ayala). Let p be a prime number and K a number
field with ζp ∈ K×. Let L/K be a tame cyclic extension of degree p with
group G. Then L/K has a NIB if and only if there exists an integer a ∈ OL
with L = K(a1/p) satisfying the following three conditions:

(i) the integral ideal aOK is pth power free,
(ii) the associated ideals Bj of aOK defined by (1) and (2) are principal ,
(iii) letting α = a1/p, the congruence

A =
p−1∑

j=0

αj

xj
≡ 0 mod p

holds for some generators xj of the principal ideals Bj.

Further , when this is the case, ω = A/p generates OL over OK [G].

The following is a consequence of this theorem.

Lemma 2. Let p, K, L/K, G be as in Theorem 5. Then L/K has a NIB
if and only if the following conditions are satisfied :

(i) O(i)
L is cyclic over OK for each i with 0 ≤ i ≤ p− 1,

(ii) there exists a generator αi of O(i)
L over OK such that the principal

ideal αpiOK of K is pth power free and

A =
p−1∑

i=0

αi ≡ 0 mod p.

Further , when this is the case, ω = A/p generates OL over OK [G].

Proof. Assume that L/K has a NIB. Under the notation of Theorem 5,
let g be a generator of G with αg = ζpα. By Lemma 1, O(i)

L is cyclic over OK .

Further, we see from (1) and (2) that αi/xi ∈ O(i)
L and (ai/xpi )OK is pth

power free. Therefore, αi = αi/xi generates O(i)
L over OK . Hence, conditions

(i) and (ii) of Lemma 2 are satisfied by Theorem 5. Conversely, assume that
these two conditions are satisfied. Let α = α1 and a = αp (∈ OK), and
choose g ∈ G so that αg = ζpα. Clearly, L = K(a1/p), and condition (i) in
Theorem 5 is satisfied. Let Bj be the ideals associated to the pth power free
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integral ideal aOK . We have αj = αj/yj for some yj ∈ OK since αj ∈ O(j)
L

and αj generates O(j)
L over OK . However, as αpjOK is pth power free, we see

that yjOK = Bj by (2). Therefore, all conditions in Theorem 5 are satisfied,
and hence L/K has a NIB.

The following is a version of this lemma.

Lemma 3. Let p ≥ 3 be a prime number , F a number field with ζp 6∈ F×,
and K = F (ζp). Assume that [K : F ] = 2. Let N/F be a tame cyclic
extension of degree p with group G, and L = NK. Then N/F has a NIB if
and only if the following two conditions are satisfied :

(i) O(i)
L is cyclic over OK for each i with 0 ≤ i ≤ (p− 1)/2,

(ii) for each 0 ≤ i ≤ (p − 1)/2, there exists a generator αi of O(i)
L over

OK such that the principal ideal αpiOK of K is pth power free and

α0 ∈ EF and A = α0 +
(p−1)/2∑

i=1

(αi + α′i) ≡ 0 mod p.

Here and in the proof of this lemma, for an element x (resp. a subset X)
of L, x′ (resp. X ′) denotes its conjugate over N .

Proof. Since L = NK and ζ ′p = ζ−1
p , we easily see that

(O(i)
L )′ = O(p−i)

L , ω′i = ωp−i (1 ≤ i ≤ (p− 1)/2)(3)

for any integer ω ∈ ON . Assume that ON = OF [G]ω for some ω ∈ ON .
Then we see that OL = OK [G]ω by a classical result on rings of integers (cf.
Fröhlich and Taylor [3, III, (2.13)]), and that

ω0 = TrL/K ω ∈ EK ∩ F = EF

by Lemma 1. Here, TrL/K denotes the trace map. From the above and
Lemmas 1, 2, we see that conditions (i) and (ii) of Lemma 3 are satisfied
with αi = ωi. Conversely, assume that conditions (i) and (ii) are satisfied,
and let ω = A/p. Then ω ∈ ON by (ii). By (3) and the conditions of
Lemma 3, we see from Lemma 2 that OL = OK [G]ω. As ω ∈ ON , this
implies that ON = OF [G]ω.

Remark 5. In [10], we gave a generalization of the theorem of Gómez
Ayala (Theorem 5) and some of its applications. A function field analogue
of the theorem is already given in Chapman [2].

3. Lemmas. In this section, we prepare some lemmas related to The-
orem 5 which are necessary to prove our theorems. In what follows, we let
p ≥ 3 be a fixed odd prime number, ζp a fixed primitive pth root of unity,
and π = πp = ζp − 1.
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Lemma 4. Let s, t be integers with 1 ≤ s < t ≤ p − 1. Let K be a
number field , and A1, A2 square free integral ideals of K relatively prime
to each other. If the associated ideals Bj of A = As1A

t
2 defined by (2) are

principal , then A1 and A2 are principal.

Proof. As s < t, we see that [si/p] < [ti/p] for some i with 1 ≤ i ≤ p−1.
Let k be the smallest such integer. Then

[s(k − 1)/p] = [t(k − 1)/p] = [sk/p] = a, [tk/p] = a+ 1

for some integer a. This is because [s(i+1)/p] = [si/p] or [si/p]+1. Therefore,
from the assumption, the ideals Bk−1 = Aa1A

a
2 and Bk = Aa1A

a+1
2 are prin-

cipal. Hence, A2 is principal. Let r be the smallest integer with [sr/p] ≥ 1.
Then [sr/p] = 1 and Br = A1A

[tr/p]
2 . Hence, A1 is also principal.

Lemma 5. Let K be a number field with ζp ∈ K×, and let λ1 and λ2
be integers of K such that the principal ideals λ1OK and λ2OK are square
free and relatively prime to each other and to p. Let a = λ1λ

p−1
2 , and L =

K(a1/p). Assume that L/K has a NIB. Then a ≡ ηp mod πp and λi ≡
ηi mod π for some units η, ηi ∈ EK with i = 1, 2. Further , when p = 3, we
have λi ≡ ηi mod 3 for some ηi ∈ EK .

Proof. When a ∈ (K×)p, we easily see that a, λ1 and λ2 are units of K
from the conditions on λi, and hence the assertion is obvious. So, we may
as well assume that [L : K] = p. Let α = a1/p, and choose a generator
g of Gal(L/K) so that αg = ζpα. For 1 ≤ i ≤ p − 1, let αi = αi/λi−1

2 .

Then αi ∈ O(i)
L , and the ideal αpiOK = λi1λ

p−i
2 OK of K is pth power free.

Hence, by the assumption and Lemma 1, we have O(i)
L = OKαi. Therefore,

by Lemma 2, the congruence

δ0 + δ1α+ δ2
α2

λ2
+ . . .+ δp−1

αp−1

λp−2
2

≡ 0 mod p

holds for some units δi ∈ EK . It follows from this that
p−1∑

i=1

δp−iλ
i−1
2 αp−i + δ0λ

p−2
2 ≡ 0 mod p,(4)

and that
δ0

α2 +
δ1

α
+
δ2

λ2
+

p−3∑

i=1

δi+2

λi+1
2

αi ≡ 0 mod p.(5)

For a congruence (∗) such as (4) and (5), let (∗)g be the congruence obtained
by letting g act on (∗). Let

cj = 1 + ζp + ζ2
p + . . .+ ζjp =

ζj+1
p − 1
ζp − 1

(0 ≤ j ≤ p− 2)
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be a cyclotomic unit. Dividing (4)− (4)g by πα, we obtain
p−2∑

i=1

δp−icp−1−iλi−1
2 αp−1−i + δ1λ

p−2
2 ≡ 0 mod πp−2.(6)

Again, dividing (6)− (6)g by πα, we obtain
p−3∑

i=1

δp−icp−1−icp−2−iλi−1
2 αp−2−i + δ2c1λ

p−3
2 ≡ 0 mod πp−3.

Repeating this process, we finally obtain

δp−1

( p−2∏

i=1

ci

)
α+ δp−2

( p−3∏

i=0

ci

)
λ2 ≡ 0 (modπ),

and hence

α ≡ δp−2

δp−1
λ2 mod π.(7)

Starting from the congruence (5), we similarly obtain

α ≡ δ0/δ1 mod π.

From the last two congruences, we obtain the assertion for the general case.
Finally, let us deal with the case p = 3. By (4), we have

δ2α
2 + δ1λ2α+ δ0λ2 ≡ 0 mod 3.

For an element x ∈ L× with x ≡ 1 mod π3, we have x2 + x + 1 ≡ 0 mod 3.
Hence, it follows from (7) that

δ2α
2 + δ1λ2α+ δ2

1δ
−1
2 λ2

2 ≡ 0 mod 3.

From these two congruences, it follows that λ2 ≡ δ0δ
−2
1 δ2 mod 3. The asser-

tion for the case p = 3 follows from this.

For an ideal A of K with (A, p) = 1, let [A]π be the ideal class in ClK(π)
represented by A.

Lemma 6. Let K be a number field with ζp ∈ K×, a ∈ OK an integer
such that a ≡ 1 mod πp, and L = K(a1/p). Assume that (i) L/K has a
NIB , and (ii) aOK = Ar1A

p−r
2 A

p
3 for some 1 ≤ r ≤ p − 1 and some integral

ideals Ai of K such that A1 and A2 are square free and relatively prime to
each other. Then the classes [Ai]π ∈ ClK(π) are trivial for i = 1, 2, 3.

Proof. As L/K has a NIB, we see from Theorem 5 that there exists an
integer b ∈ OK with L = K(b1/p) such that bOK is pth power free and the
ideals associated to bOK by (1) and (2) are principal. By assumption (ii),
we see that bOK = As1A

p−s
2 for some 1 ≤ s ≤ p− 1. It follows from Lemma

4 that Ai = λiOK for some λi ∈ OK with i = 1, 2. Then

L = K((ε1λ1λ
p−1
2 )1/p)(8)
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for some unit ε1 ∈ EK . As L/K has a NIB, we see from Lemma 5 that
λi ≡ ηi mod π. Hence, the classes [A1]π and [A2]π are trivial. It also follows
from Lemma 5 that ε1λ1λ

p−1
2 ≡ ηp mod πp for some η ∈ EK . From this and

λ2 ≡ η2 mod π, it follows that

εr1λ
r
1λ

p−r
2 ≡ δp mod πp(9)

for some δ ∈ EK . From assumption (ii) and (8), we see that a = εr1λ
r
1λ

p−r
2 xp

for some x ∈ OK and that A3 = xOK . Then, by (9) and a ≡ 1 mod πp, it
follows that x is congruent to a unit modulo π. Therefore, [A3]π = 1.

For a number field K and an integer a ∈ OK , we write OK/a = OK/aOK
for brevity, and let [EK ]a be the subgroup of the multiplicative group
(OK/a)× generated by the classes containing units of K. For an element
x ∈ K× with (x, a) = 1, [x]a denotes the class represented by x. When F is
a subfield of K and a ∈ OF , we naturally regard (OF /a)× as a subgroup of
(OK/a)×.

Lemma 7. (I) For a number field K with ζp ∈ K×, the exponent of
ClK(p) divides p if ClK(π) = {0}.

(II) Let F be a number field with ζp 6∈ F×, and K = F (ζp). Assume that
ClK(π) = {0}. Then ClK(p)∆F = {0} if and only if (OF /p)× ⊆ [EK ]p.

Proof. We put

A = (1 + πOK)/(1 + pOK) (⊆ (OK/p)×) and B = A[EK ]p/[EK ]p.

As ClK(π) = {0}, we see that ClK(p) = B from the exact sequence

{0} → B → ClK(p)→ ClK(π)→ {0}.
Then the first assertion is obvious as A is of exponent p. Let us show the
second one. The “only if” part holds as (OK/p)×/[EK ]p is a subgroup of
ClK(p). We show the “if” part. We have ClK(p) = B as ClK(π) = {0}. Let
d = [K : F ], and let C = [x]p be a class in B∆F with x ∈ OK . Then, since
Cd = [NK/Fx]p, we obtain Cd = 1 by (OF /p)× ⊆ [EK ]p. Here, NK/F denotes
the norm map. Therefore, C = 1 as d divides p − 1 and B is a p-abelian
group.

Let F be a number field with ζp 6∈ F×, and K = F (ζp). When [K : F ]
= 2, for an element x (resp. an ideal A) of K, let x′ (resp. A′) denotes the
conjugate over F .

Lemma 8. Let F be a number field with ζp 6∈ F×, and K = F (ζp).
Assume that [K : F ] = 2. Assume further that ClK(π) and ClK(p)∆F are
trivial. Let a be an integer of K relatively prime to p such that aOK is
square free and (a, a′) = 1, and let b = a(a′)p−1. Then the cyclic extension
L = K(b1/p)/K has a NIB if it is tame.
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Proof. Let Bj be the ideals of K associated to bOK by (1) and (2). Then

B0 = B1 = OK , Bj = (a′)j−1OK for 2 ≤ j ≤ p− 1.

As L/K is tame, b ≡ up mod πp for some u ∈ OK . We see that u ≡ ε mod π
for some unit ε ∈ EK because ClK(π) = {0}. Hence, b = a(a′)p−1 ≡
εp mod πp. On the other hand, aa′ (∈ OF ) is congruent to a unit mod-
ulo p since ClK(p)∆F = {0}. Hence, so is (a′)p−2 = b/(aa′). This implies
that a′ ≡ δ mod p for some unit δ ∈ EK because ClK(p) and its subgroup
(OK/p)×/[EK ]p are p-abelian groups (by Lemma 7). Now, let β = b1/p

(≡ ε mod π). Then

1 +
β

ε
+

p−1∑

j=2

δj−1 βj

(a′)j−1εj
≡

p−1∑

j=0

(β/ε)j ≡ 0 mod p.

Therefore, L/K has a NIB by Theorem 5.

The following is one more consequence of Theorem 5, for which see [11,
Proposition 1]. For a number field F , let hF be the class number of F (in
the usual sense).

Lemma 9. Let p be a prime number , F a number field , and K = F (ζp).
Assume that hF = 1 and (OF /p)× ⊆ [EK ]p. Then F satisfies (Bp).

4. Proofs of Theorems 1 and 2. First, we derive Theorem 2 from
Theorem 1.

Proof of Theorem 2. Assume that F satisfies (Ap). Then ClK(π) and
ClK(p)∆F are trivial by Theorem 1. Since [K : F ] = 2 and ClK(p)∆F = {0},
we see that hF = 1, or hF = 2 and K/F is the Hilbert class field of F .
Hence, by the second assumption of Theorem 2, we must have hF = 1. On
the other hand, (OF/p)× ⊆ [EK ]p by Lemma 7. Hence, F satisfies (Bp) by
Lemma 9.

To prove Theorem 1, the following theorem of Greither et al. [6, Corol-
lary] is crucial.

Theorem 6 (Greither et al.). If a number field F has property (Ap),
then the exponent of the quotient (OF/p)×/[EF ]p divides (p− 1)2/2.

Proof of Theorem 1. This is done in several steps.

Lemma 10. Under the setting of Theorem 1, assume that [K : F ] = 2
and that F satisfies (Ap). Then ClK(πp) is a p-abelian group. Hence, ClK(p),
ClK(π) and ClK are p-abelian groups.

Proof. Let C be an ideal class in ClK(πp) whose order n is relatively
prime to p. It suffices to show that C = 1. Let P ∈ C be a prime ideal



80 H. Ichimura

of K with (P,P′) = 1. Then Pn = aOK for some integer a ∈ OK with
a ≡ 1 mod πp. Let b = a(a′)p−1 and L = K(b1/p). Since

bOK = Pn(P′)n(p−1) and p -n,(10)

the extension L/K is of degree p. It is tame as b ≡ 1 mod πp. As bb′ ∈ (K×)p,
there uniquely exists a tame cyclic extension N/F of degree p with L = NK.
As F satisfies (Ap), N/F and hence L/K have a NIB. Now, it follows from
(10) and Lemma 6 that P = λOK for some λ ∈ OK and that λ ≡ δ mod π
for some δ ∈ EK . As λp ≡ δp mod πp, we see that Cp is trivial in ClK(πp).
This implies that C = 1.

Lemma 11. Under the setting and assumptions of Lemma 10, we have
ClK(π) = {0}.

Proof. We have a natural surjection ϕ : ClK(πp) → ClK(π) compatible
with the action of ∆F . Let C be a nontrivial class in ClK(πp). By Lemma
10, the order of C equals pe for some e ≥ 1. It suffices to show that ϕ(C) = 1.

Let us first show that ϕ(CC ′) = 1. Let P,Q ∈ C be prime ideals of K
with (P,Q) = (P,Q′) = 1. Then PQpe−1 = aOK for some integer a with
a ≡ 1 mod πp. Let b = a(a′)p−1 and L = K(b1/p). We have

bOK = (PQ′)(P′Q)p−1Ap(11)

with

A = Qpe−1−1(Q′)p
e−pe−1−1.(12)

In particular, the cyclic extension L/K is of degree p. As b ≡ 1 mod πp, it
is tame. As bb′ ∈ (K×)p, there exists a tame cyclic extension N/F of degree
p with L = NK. As F satisfies (Ap), L/K has a NIB. Then it follows from
(11) and Lemma 6 that ϕ(CC ′) = [PQ′]π = 1.

Let us deal with the case e = 1. By (12), we have A = (Q′)p−2. By (11)
and Lemma 6, the class ϕ(C ′)p−2 = [A]π is trivial in ClK(π). This implies
that ϕ(C) = 1 since ClK(π) is a p-abelian group by Lemma 10.

Finally, we deal with the case e ≥ 2. Let R,Q1, . . . ,Qp−1 ∈ C be prime
ideals of K which are relatively prime to each other and to their conjugates
over F . Then

R(Q1 . . .Qp−1)(pe−1)/(p−1) = a1OK
for some a1 ∈ OK with a1 ≡ 1 mod πp. Let b1 = a1(a′1)p−1 and L1 =
K(b1/p1 ). Then L1/K is of degree p, and has a NIB as F satisfies (Ap). We
have

b1OK = (RQ1 . . .Qp−1)(R′Q′1 . . .Q
′
p−1)p−1Bp

with
B = (Q1 . . .Qp−1)(pe−1−1)/(p−1)(Q′1 . . .Q

′
p−1)p

e−1−1.
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As L1/K has a NIB, it follows from Lemma 6 that

[B]π = ϕ(C)pe−1−1ϕ(C′)(p−1)(pe−1−1) = 1.

On the other hand, we have seen above that ϕ(C) = ϕ(C ′)−1. Hence,
ϕ(C′)(p−2)(pe−1−1) = 1. Therefore, ϕ(C) = 1 as ClK(π) is a p-abelian group.

Lemma 12. Under the setting and assumptions of Lemma 10, we have
ClK(p)∆F = {0}.

Proof. By Lemma 10, (OK/p)×/[EK ]p is a p-abelian group. Therefore,
we see from Theorem 6 that (OF /p)× ⊆ [EK ]p. Then we obtain ClK(p)∆F =
{0} from Lemmas 7(II) and 11.

Now, Theorem 1 follows from Lemmas 11 and 12.

5. Proofs of Theorems 3, 4 and Proposition

5.1. Proof of Theorem 4. In all what follows, we let p = 3 and π = π3 =
ζ3 − 1. We begin with the following lemma.

Lemma 13. Let F , K be as in Theorem 4, N/F a tame cyclic cubic
extension, and L = NK. Then L/K has a NIB if and only if there exists an
integer λ ∈ OK with L = K((λ(λ′)2)1/3) satisfying the following conditions:

(i) λOK is square free and (λ, λ′) = 1,
(ii) ε3

1λ(λ′)2 ≡ 1 mod π3 for some unit ε1 ∈ EK ,
(iii) λ ≡ ε2 mod 3 for some unit ε2 ∈ EK .

Proof. We can easily show the “if” part using Theorem 5 by an argument
similar to the proof of Lemma 8. So, we assume that L/K has a NIB,
and show the “only if” part. As L/K has a NIB, there exists an integer
a ∈ OK relatively prime to 3 with L = K(a1/3) satisfying the conditions in
Theorem 5. As aOK is cube free, aOK = A1A

2
2 for some square free integral

ideals Ai of K with (A1,A2) = 1. By Lemma 6, the ideals A1 and A2 are
principal. As L = NK, we must have aa′ ∈ (K×)3. From this, it follows
that A2 = A′1. Hence, we can write a = ηλ(λ′)2. Here, η is a unit of K, and
λ ∈ OK is an integer such that λOK is square free and (λ, λ′) = 1. From
aa′ ∈ (K×)3, we have ηη′ = η3

1 for some η1 ∈ EK . As [K : F ] = 2, we see
that η1 ∈ EF . Further, as the quotient EF /NK/FEK is of exponent 2, we
have η1 = η2η

′
2 for some η2 ∈ EK . Therefore, η = η3

2δ for some unit δ ∈ EK
with δδ′ = 1. Hence, replacing a with a/η3

2 and λ with δ′λ, we can write
a = λ(λ′)2. Now, the assertion follows from Lemma 5.

We now turn to the proof of Theorem 4. It suffices to show the “if”
part. Assume that L/K has a NIB, and choose λ, ε1, ε2 as in Lemma 13.
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Let b = ε3
1λ(λ′)2, and β = b1/3 (≡ 1 mod π). We have β′ = ε1ε

′
1λλ

′/β. By
Lemma 1,

O(1)
L = OKβ, O(2)

L = OK
ε1ε
′
1λλ

′

β
.

By Lemma 3, it suffices to show that there exists a unit η ∈ EK such that

1 + βη +
ε1ε
′
1λλ

′

β
η′ ≡ 0 mod 3.

This is equivalent to saying that

(βη)2 + βη + ε1ε
′
1λλ

′ηη′ ≡ 0 mod 3.(13)

As β ≡ 1 mod π, we see that β′ ≡ 1 mod π and hence

ε1ε
′
1λλ

′ ≡ 1 mod π.(14)

On the other hand, we have

b/b′ ≡ ε3
1(ε′1)−3λ−1λ′ ≡ 1 mod π.(15)

From (14) and (15), it follows that ε4
1(ε′1)−2(λ′)2 ≡ 1 mod π, and hence

λ2ε−2
1 (ε′1)4 − 1 = (λε−1

1 (ε′1)2 − 1)(λε−1
1 (ε′1)2 + 1) ≡ 0 mod π.

Claim. λε−1
1 (ε′1)2 ≡ 1 mod π.

Indeed, let P be a prime ideal of K over p, and e = ordPπ. From the
above congruence, we see that λε−1

1 (ε′2)2 ≡ 1 or −1 mod Pe because

(λε−1
1 (ε′2)2 − 1, λε−1

1 (ε′2)2 + 1) | 2 and p 6= 2.

Assume that x = λε−1
1 (ε′1)2 ≡ −1 mod Pe. By the above, we have x ≡

±1 mod (P′)e. Hence, (x′)2 ≡ 1 mod Pe. Thus, b = x(x′)2 ≡ −1 mod Pe.
This contradicts b ≡ 1 mod π. Hence, the claim is shown.

Let η = (ε2ε
−1
1 (ε′1)2)−1. Then, by the Claim and Lemma 13(iii), we see

that
η ≡ 1 mod π and ε1ε

′
1λλ

′ηη′ ≡ 1 mod 3.

Therefore, as β ≡ 1 mod π, congruence (13) holds. Hence, N/F has a NIB.

5.2. Proof of Theorem 3. By Theorem 1, it suffices to show the “if” part.
Assume that F satisfies ClK(π) = {0} and ClK(3)∆F = {0}. In particular,
hK = 1. Let N/F be an arbitrary tame cyclic cubic extension, and L = NK.
By Theorem 4, it suffices to show that L/K has a NIB. As hK = 1, we can
write L = K(a1/3) with

a = ε

r∏

i=1

(πeii (π′i)
fi)

s∏

j=1

%
gj
j (ei ∈ {1, 2}, fi, gj ∈ {0, 1, 2}).

Here, ε ∈ EK , and πi (resp. %j) are integers of K relatively prime to 3
such that πiOK (resp. %jOK) are prime ideals of K of relative degree one
(resp. two) over F . The integers πi, %j are chosen so that NK/Fπi and %j are
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relatively prime to each other. As L = NK, we have aa′ ∈ (K×)3. Therefore,
it follows that ei + fi = 3 and gj = 0. It also follows that ε = ε3

1δ for some
units ε1, δ ∈ EK with δδ′ = 1. Now, letting

b = δ′
∏

ei=1

πi
∏

ei=2

π′i,

we have a = ε3
1b(b

′)2. Here, in the first (resp. second) product, i runs over
integers 1 ≤ i ≤ r with ei = 1 (resp. ei = 2). As bOK is square free and
(b, b′) = 1, we see that L/K has a NIB by Lemma 8.

5.3. Proof of Proposition. It is known and easy to show that F =
Q(
√
−3) satisfies (A3) (cf. [4, p. 110]). Let K = Q(

√
`,
√
−3) be a (2, 2)-

extension of Q with ` a square free integer, and let QK (= 1, 2) be the unit
index of K, and ε a fundamental unit of K. Let ε0 > 0 be a fundamental
unit of the maximal real subfield K+ of K. We can calculate QK and ε using
a classical result in Hasse [7, Section 26]. When QK = 1, we have ε = ε0.
When QK = 2, we can choose ε so that

ε2 =
√
−1 · ε0 or − ε0(16)

according to whether
√
−1 ∈ K× or not. By Uchida [14], there are exactly

13 K’s with hK = 1, namely,

(a) ` = 2, 5, 17, 41, 89,
(b) ` = −1,−2,−11, or
(c) ` = −7,−19,−43,−67,−163.

For this, see also Yamamura [16]. By Theorem 3, a quadratic field F
satisfying (A3) is contained in these K. For a finite abelian group A, we
write A = (n1, . . . , nr) when A is isomorphic to the additive group Z/n1 ⊕
. . .⊕ Z/nr.

First, let us deal with quadratic fields contained in those K in (c). We see
that QK = 2 and (OK/π)× = (8). We have ε0 ≡ ±1 mod π as 3 is ramified
in K+. Hence, by (16), the order of the class [ε]π divides 4. Therefore, we
see that [EK ]π  (OK/π)× and ClK(π) 6= {0}. Hence, by Theorem 3, any
quadratic field F 6= Q(

√
−3) contained in these K does not satisfy (A3).

Next, let us deal with those K in (b). For these K, we see that QK = 2,
and that by (16),

ε = (−1−
√
−1 +

√
−3−

√
3)/2,

√
−2 +

√
−3,
√
−11 + 2

√
−3,

respectively. Using this, we easily see that (OK/3)× = [EK ]3. As hK = 1,
this implies that ClK(3) = {0}. Then it follows from [8, V, Proposition 2]
that K satisfies (A3). Therefore, by Theorem 4, all quadratic fields contained
in these K satisfy (A3).

Finally, let us deal with those K in (a). For these K, we have QK = 1
and (OK/π)× = (8). Using ε = ε0 ≡ ±1±

√
` mod 3 and ` ≡ −1 mod 3, we
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see that the order of the class [ε]π (resp. [ε]3) equals 8. Hence, (OK/π)× =
[EK ]π. This implies that ClK(π) = {0} as hK = 1. Let F = Q(

√
`) be

a real quadratic field contained in these K. We have (OF/3)× = (8) and
(OK/3)× = (3, 3, 8). Thus (OF /3)× ⊆ [EK ]3 since the class [ε]3 is of order 8.
By Lemma 7, this implies that ClK(3)∆F = {0}. Hence, by Theorem 3, a real
quadratic field F = Q(

√
`) with ` in (a) satisfies (A3). Let F = Q(

√
−3`) be

an imaginary quadratic field contained in these K. We see that (OF/3)× =
(2, 3), and that [EK ]3 = (3, 8) is generated by the classes [ζ3]3 and [ε]3.
Let x = 1 +

√
−3`. We see that the class [x]3 ∈ (OF /3)× is of order 3

but x 6≡ ζ3, ζ
2
3 mod 3. Hence, (OF /3)×  [EK ]3. Therefore, any imaginary

quadratic field F 6= Q(
√
−3) contained in these K does not satisfy (A3).

Thus, we have shown the Proposition.
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Aid for Scientific Research (C) (no. 13640036), the Ministry of Education,
Culture, Sports, Science and Technology of Japan.

Note added in proof. After this paper was accepted for publication, a paper of
J. E. Carter appeared in Arch. Math. (Basel) 81 (2003), 266–271. He gives a necessary
and sufficient condition for a number field F to satisfy (A3). His condition is different
from ours, and is obtained by a different method. As an application, he determines the
quadratic fields satisfying (A3). However, some quadratic fields seem to be neglected in
his result.
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