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Ergodic and Diophantine properties
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1. Introduction. The important work Lagarias (1993) has renewed
the interest in Diophantine approximation by multidimensional continued
fractions and their ergodic properties. The connections between multidimen-
sional continued fractions and ergodic theory are given a careful study in
Broise-Alamichel & Guivarc’h (2001). A further survey of recent results is
given in Schweiger (2000, 2002).

In this paper a two-dimensional continued fraction will be defined as
follows.

Definition 1. Let B be a subset of the Euclidean plane R2. A map
T : B → B is said to generate a two-dimensional continued fraction if there
is a partition {B(k) : k ∈ I} of B and a set of invertible matrices {α(k) ∈
GL(3,Z) : k ∈ I}, where I is finite or countable and α(k) = ((Aij(k))), such
that

(Tx)i = yi =
Ai0 + Ai1x1 + Ai2x2

A00 +A01x1 + A02x2
, 1 ≤ i ≤ 2,

maps every cell B(k) onto a subset TB(k) of B. Then the fibred system
(B,T ) is called a two-dimensional continued fraction. The partition is called
the time-1-partition.

The most famous example is given by the Jacobi algorithm which is a
straightforward generalization of regular continued fractions. It is defined
piecewise as

T (x1, x2) =
(
x2

x1
−
[
x2

x1

]
,

1
x1
−
[

1
x1

])
.

Definition 2. Let β(k) = ((Bij(k))) denote the inverse matrices of
α(k), k ∈ I. Then we define

β(k1, . . . , ks) := β(k1, . . . , ks−1)β(ks) = ((B(s)
ij )).
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100 F. Schweiger

Then y = T sx is equivalent to

xi =
B

(s)
i0 +B

(s)
i1 y1 +B

(s)
i2 y2

B
(s)
00 +B

(s)
01 y1 +B

(s)
02 y2

, 1 ≤ i ≤ 2,

for some matrix β(k1, . . . , ks).

The matrices β(k1, . . . , ks) = ((B(s)
ij )) produce rational approximations

(
B

(s)
1g

B
(s)
0g

,
B

(s)
2g

B
(s)
0g

)
, 0 ≤ g ≤ 2.

Therefore the problem arises to estimate the differences
∣∣∣∣xi −

B
(s)
ig

B
(s)
0g

∣∣∣∣, 1 ≤ i ≤ 2, 0 ≤ g ≤ 2.

In this paper we will show that Selmer’s algorithm (Section 2) produces
“good” approximations for almost all points (x1, x2) in the following sense.
There is a constant δ > 0 such that for almost all (x1, x2) the inequalities

∣∣∣∣xi −
B

(s)
i1

B
(s)
01

∣∣∣∣�
1

(B01)1+δ , 1 ≤ i ≤ 2,

are valid for s ≥ s(x1, x2). The result for Selmer’s algorithm is an improve-
ment of Lagarias (1993).

In Section 3 the fully subtractive algorithm and a new multiplicative
version obtained by parallel division are considered. These algorithms are
not convergent but exhibit interesting ergodic properties, namely absorb-
ing regions and invariant measures. Since the transient regions of Selmer’s
algorithm and the fully subtractive algorithm are complementary sets, in
Section 4 the interesting question is taken up what will happen when one
mixes both. The new algorithm has a Cantor-like exceptional set with pos-
itive Lebesgue measure. The existence of such sets was first detected as
a strange feature of the Parry–Daniels map (Schweiger (1981), Nogueira
(1995)).

We will use the notations K3 := {b = (b0, b1, b2) : b0 ≥ b1 ≥ b2 ≥ 0},
B2 := {x = (x1, x2) : 1 ≥ x1 ≥ x2 ≥ 0} and the projection map p : K3 →
B2, defined as p(b0, b1, b2) :=

(
b1
b0
, b2b0

)
.

2. Selmer’s algorithm

Definition 3. Let K3 = {b = (b0, b1, b2) : b0 ≥ b1 ≥ b2 ≥ 0} as defined
before. Then define σb := (b0−b2, b1, b2). There are matrices α(i), 0 ≤ i ≤ 2,
such that the permuted triple πσb = α(i) is in K3. The map S which makes
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the diagram

K3 K3

B2 B2

p

��

πσ //

p

��

S
//

commutative is said to generate Selmer’s algorithm.

We list the three matrices α(i) and their inverses β(i), 0 ≤ i ≤ 2:

α(0) =




1 0 −1

0 1 0

0 0 1


 , α(1) =




0 1 0

1 0 −1

0 0 1


 , α(2) =




0 1 0

0 0 1

1 0 −1


 ,

β(0) =




1 0 1

0 1 0

0 0 1


 , β(1) =




0 1 1

1 0 0

0 0 1


 , β(2) =




0 1 1

1 0 0

0 1 0


 .

The 3 cells of the time-1-partition are denoted as ∆(i), 0 ≤ i ≤ 2. It is well
known that D := {x : x1 + x2 ≥ 1} is an absorbing set for this algorithm.
Note that D = ∆(1) ∪∆(2) and SD = D. Since αk(0)b = (b0 − kb2, b1, b2)
we see that if k :=

[
b0−b1
b2

]
then Skx ∈ D. Furthermore S restricted to D

admits the invariant density

g(x1, x2) =
1

x1x2
.

The properties of Selmer’s algorithm can be well understood if one
considers the jump transformation R : D → D with respect to the set
∆(2) = {(x1, x2) : 1 ≤ 2x2} (the technique of jump transformation is ex-
plained in Schweiger (1995) or (2000)). To ensure that the map R is defined
almost everywhere on D we must show that the orbit of almost every point
(x1, x2) ∈ D eventually enters ∆(2). The residual set Dn is the cylinder
∆(1, . . . , 1︸ ︷︷ ︸

n times

) which has the following vertices.

n = 2k + 1: (1, 0),
(
k + 1
k + 2

,
1

k + 2

)
,

(
1,

1
k + 2

)
,

n = 2k + 2: (1, 0),
(

1,
1

k + 2

)
,

(
k + 2
k + 3

,
1

k + 3

)
.

Clearly,

diam∆(1, . . . , 1︸ ︷︷ ︸
n times

)� 1
n

(n→∞)
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and λ(Dn) ↓ 0. Therefore the jump transformation is defined almost ev-
erywhere. In this way a new two-dimensional algorithm appears which is
called Baldwin’s algorithm. It is easy to show that R is ergodic and has the
invariant density

f(x1, x2) =
1

x1(x1 + x2)
.

In Schweiger (2001) it is shown that the approximations B(s)
01 , B

(s)
11 , B

(s)
21 gen-

erated by Baldwin’s algorithm satisfy
∣∣∣∣xi −

B
(s)
i1

B
(s)
01

∣∣∣∣�
1

B
(s)
01

, i = 1, 2,

for all points x = (x1, x2) and furthermore there is a constant δ > 0 such
that ∣∣∣∣xi −

B
(s)
i1

B
(s)
01

∣∣∣∣�
1

(B(s)
01 )1+δ

, i = 1, 2,

is true for almost all points x = (x1, x2).
We will show that this result can be extended to Selmer’s algorithm.
To distinguish both algorithms we denote the entries of the matrices

which belong to Selmer’s algorithm by G(s)
ij , i.e.

((G(s)
ij )) = β(ε1, . . . , εs), εj ∈ {1, 2}, 1 ≤ j ≤ s.

Theorem 1. For Selmer’s algorithm there is a constant δ > 0 such that
for almost all (x1, x2) ∈ D the inequalities

∣∣∣∣x1 −
G

(N)
11

G
(N)
01

∣∣∣∣�
1

(G(N)
01 )1+δ

,

∣∣∣∣x2 −
G

(N)
21

G
(N)
01

∣∣∣∣�
1

(G(N)
01 )1+δ

are valid for N ≥ N(x1, x2).

Proof. We recall that εk+1(x1, x2) = j if Sk(x1, x2) ∈ ∆(j). If e(x1, x2)
:= min{k ≥ 0 : εk+1(x1, x2) = 2} then Baldwin’s algorithm is given by the
equation

R(x1, x2) := Se(x1,x2)+1(x1, x2).

If we denote as before the corresponding matrix elements for Baldwin’s
algorithm by B(s)

ij then

B
(s)
ij = G

(N)
ij

if εN = 2 and

s =
N−1∑

k=0

c∆(2)(S
k(x1, x2)).

Here cE denotes the indicator function of a set E.
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Note that

G
(g+1)
i0 = G

(g)
i1 , G

(g+1)
i1 = G

(g)
i0 , G

(g+1)
i2 = G

(g)
i0 +G

(g)
i2 if εg+1 = 1,

G
(g+1)
i0 = G

(g)
i1 , G

(g+1)
i1 = G

(g)
i0 +G

(g)
i2 , G

(g+1)
i2 = G

(g)
i0 if εg+1 = 2.

Therefore, if εN = 2 is followed by a block εN+1 = · · · = εN+j = 1, 0 ≤ j,
then

G
(N)
i0 = G

(N+1)
i1 = G

(N+3)
i1 = · · · = G

(N+t)
i1 , t ≡ 1 mod 2, t ≤ j,

G
(N)
i1 = G

(N+2)
i1 = G

(N+4)
i1 = · · · = G

(N+t)
i1 , t ≡ 0 mod 2, t ≤ j.

This means that G
(N+t)
i1

G
(N+t)
01

equals G
(N)
i1

G
(N)
01

= B
(s)
i1

B
(s)
01

or G
(N)
i0

G
(N)
00

= B
(s)
i0

B
(s)
00

for 1 ≤ t ≤ j.

The conditions for Baldwin’s algorithm imply that B(s)
i0 = B

(s−1)
i0 or B(s)

i0 =

B
(s−1)
i1 (see Schweiger (2001), Lemma 2). Therefore it is easy to see that the

result given in Schweiger (2001) remains valid if one replaces B(s)
i1 by B

(s)
i0

and the result follows from Baldwin’s algorithm.

Remarks. (1) A block of consecutive digits ε = 1 does not increase the
growth of G(N)

00 and G
(N)
01 . In Schweiger (2001) the result

lim sup
s→∞

logB(s)
01

s
≤ Θ <∞

is used. It is easy to show that even

lim
s→∞

logB(s)
01

s
=
h(R)

3

exists a.e., where h(R) is the entropy of the map R.
If

c0 :=
�

D

dx1 dx2

x1x2

then we define

κ :=
1
c0

�

∆(2)

dx1 dx2

x1x2

and we obtain

lim
N→∞

logG(N)
01

N
= κ lim

s→∞
logB(s)

01

s
.

For the entropies of S and R this means

h(S) = κh(R).
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(2) The following multiplicative acceleration of Selmer’s algorithm seems
to be straightforward:

δb := (b0 −mb2, b1, b2), m =
[
b0
b2

]
.

Permutation and projection gives the algorithm

M(x1, x2) =
(
x2

x1
,

1−mx2

x1

)

with cells

Z(m) =
{
x ∈ B2 :

1
m+ 1

< x2 ≤
1
m

}
, k = 1, 2, . . . .

It is easy to see that MZ(m) is the convex set with vertices
( 1
m , 0

)
,
( 1
m+1 ,

1
m+1

)
, (1, 1), and (1, 0). Therefore no cylinder is full and MZ(m) is not a

union of cylinders of rank 1.
This algorithm has bad Diophantine approximation properties. This can

be illustrated with periodic algorithms of period length 1. Let %0 > 1 be the
largest root of %3 −m%− 1 = 0. Then the pair (ξ, η) = (1/%0, 1/%2

0) has the
periodic expansion mk = m for all k ≥ 1. But for m ≥ 3 the second root %1

satisfies %1 < −1, i.e. |%1| > 1. Since ξB(s)
00 −B

(s)
10 ∼ %s1 we see that

lim inf
s→∞

|ξB(s)
00 −B

(s)
10 | =∞.

3. The Fully Subtractive Algorithm

Definition 4. We define τb := (b0 − b2, b1 − b2, b2). Again there are
matrices γ(i), 0 ≤ i ≤ 2, such that the permuted triple πτb = γ(i)b is in K3.
Projection on B2 generates a map T : B2 → B2 which is said to yield the
Fully Subtractive Algorithm.

The complete list of the matrices γ(i) and their inverses δ(i), 0 ≤ i ≤ 2,
is the following:

γ(0) =




1 0 −1

0 1 −1

0 0 1


 , γ(1) =




1 0 −1

0 0 1

0 1 −1


 , γ(2) =




0 0 1

1 0 −1

0 1 −1


 ,

δ(0) =




1 0 1

0 1 1

0 0 1


 , δ(1) =




1 1 0

0 1 1

0 1 0


 , δ(2) =




1 1 0

1 0 1

1 0 0


 .

The 3 cells of the time-1-partition are denoted as E(i), 0 ≤ i ≤ 2. The
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following maps are the inverse branches of T :

W (0) =
(
x1 + x2

1 + x2
,

x2

1 + x2

)
,

W (1) =
(
x1 + x2

1 + x1
,

x1

1 + x1

)
,

W (2) =
(

1 + x2

1 + x1
,

1
1 + x1

)
.

Again, the line x1 + x2 = 1 plays a crucial role for this algorithm. It is
known that in this case the set E := {x ∈ B2 : x1 + x2 ≤ 1} is absorbing,
i.e. TE = E and for almost every x ∈ B2 there is an N = N(x) such that
TNx ∈ E. Furthermore T restricted to E admits the invariant density

h(x1, x2) =
1

x1x2(1− x1 − x2)
.

However, this result is much more difficult to obtain (Meester & Nowicki
(1989)). The segment x1 + x2 = 1, 0 ≤ x2 ≤ x1 ≤ 1, is fixed under T .
The restriction of T to this segment is isomorphic to the map τ : [0, 1/2]→
[0, 1/2] defined by

τ(t) =
{
t/(1− t), 0 ≤ t ≤ 1/3,

1− t/(1− t), 1/3 ≤ t ≤ 1/2.

Furthermore

E = {x : T jx ∈ E(0) ∪E(1) for all j ≥ 0}.
Remark. The dynamics of the system (E, T ) can be completely re-

duced to the dynamics of continued fractions as follows. Let ψ(x1, x2) :=
(x2/x1, (1− x1 − x2)/x1); then we see that ψE = {(u, v) : 0 ≤ u ≤ 1,
0 ≤ v}. The map T is therefore isomorphic to the map

Θ(u, v) =





(
u

1− u,
v

1− u

)
, 0 ≤ u ≤ 1/2,

(
1− u
u

,
v

u

)
, 1/2 ≤ u ≤ 1

with the invariant density

χ(u, v) =
1
uv
.

If we form the jump transformation with respect to the set {(u, v) : 1/2 ≤
u ≤ 1} we obtain the map

P (u, v) =
(

1
u
− a, v

u

)
,

1
a+ 1

< u ≤ 1
a
,
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with the invariant density

π(u, v) =
1

(1 + u)v
.

Note that the Jacobians of the inverse branches of P with respect to the
measure

µ(X) =
� �

X

du dv

(1 + u+ v)3

are given as

κ(a1, . . . , an;u, v) =
1

(qn + qn−1u+ v)3 ,

where qk = akqk−1 + qk−2 as in the continued fraction algorithm.
From this picture it is clear that the algorithm is not convergent. The

fixed points of T restricted to E are (0, 0) and the periodic points on the
segment x1 + x2 = 1 (or equivalently the points (u, 0) with u having a pe-
riodic continued fraction). Therefore this algorithm cannot produce “good”
Diophantine approximations.

One can also consider the multiplicative acceleration defined by the par-
allel division process δb := (b0 −mb2, b1 −mb2, b2), where m = [b1/b2]. It is
easy to verify that the associated map is given piecewise as

Rx =





(
x2

1−mx2
,
x1 −mx2

1−mx2

)
on ∆(α;m),

(
1−mx2

x2
,
x1 −mx2

x2

)
on ∆(β;m),

where ∆(α;m) is the triangle with vertices (0, 0),
(

m
1+m ,

1
1+m

)
,
(
1, 1

1+m

)
and

∆(β;m) is the triangle with vertices
(
1, 1

m

)
,
(

m
1+m ,

1
1+m

)
,
(
1, 1

1+m

)
.

Theorem 2. R is the jump transformation of T with respect to the set
E(1) ∪ E(2). Therefore the set E is absorbing for R and

k(x1, x2) =
1

x1(x1 + x2)(1− x1 − x2)

is an invariant density for R restricted to E.

Proof. Iteration of T on E(3) gives

Tmx =
(
x1 −mx2

1−mx2
,

x2

1−mx2

)
.

If Tmx ∈ E(1) we obtain

Rx = Tm+1x =
(

x2

1− (m+ 1)x2
,
x1 − (m+ 1)x2

1− (m+ 1)x2

)
.
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If Tmx ∈ E(2) we obtain

Rx = Tm+1x =
(

1− (m+ 1)x2

x2
,
x1 − (m+ 1)x2

x2

)
.

The set E is absorbing for T and therefore absorbing for R. But the restric-
tion of R to E is the jump transformation of the restriction of T to E with
respect to the set E ∩ E(2). Therefore

k(x1, x2) = h

(
x1 + x2

1 + x1
,

x1

1 + x1

)
1

(1 + x1)3 =
1

x1(x1 + x2)(1− x1 − x2)
.

However, Kuzmin’s equation can also be verified directly:
∞∑

m=1

1
(mx1 + x2)((m+ 1)x1 + x2)(1− x1 − x2)

=
∞∑

m=1

1
x1

(
1

mx1 + x2
− 1

(m+ 1)x1 + x2

)
1

1− x1 − x2

=
1

x1(x1 + x2)(1− x1 − x2)
.

Lemma 1. If E is an absorbing set for T then E is an absorbing set for
any jump transformation R stemming from T .

Proof. For almost every x ∈ B there is an N = N(x) such that T nx ∈ E
for n ≥ N . Since (Rnx) is a subsequence of (T nx), clearly E is absorbing
for R.

Remark. The converse statement is not true (even if R is ergodic). An
easy counterexample is

Tx =
{

2x, 0 ≤ x < 1/2,

x− 1/2, 1/2 ≤ x < 1.

Consider the jump transformationR with respect to the subsetB1 = [1/2, 1[.
One calculates that

Rx = 2kx− 1
2
,

1
2k+1 ≤ x <

1
2k
, k = 0, 1, 2, . . . .

So R is ergodic on [0, 1[ and E = [0, 1/2[ is an absorbing set.

4. A strange exceptional set. Both Selmer’s algorithm and the fully
subtractive version have absorbing regions. However, for Selmer’s algorithm
S this region is D = {(x1, x2) ∈ B2 : x1 + x2 ≥ 1}, while for the fully
subtractive version T it is its complement E = {(x1, x2) ∈ B2 : x1+x2 ≤ 1}.
This behaviour leads to the interesting question what will be the properties
of the compositions S ◦ T and T ◦ S.
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We first consider (S ◦ T )x = S(Tx). The 9 cells of the time-1-partition
can be calculated from the compositions W (i)V (j), or equivalently from the
matrices δ(i)β(j), 1 ≤ i, j ≤ 3. The complete list is given as follows:

δ(0)β(0) =




1 0 2

0 1 1

0 0 1


 , δ(0)β(1) =




0 1 2

1 0 1

0 0 1


 ,

δ(0)β(2) =




0 2 1

1 1 0

0 1 0


 , δ(1)β(0) =




1 1 1

0 1 1

0 1 0


 ,

δ(1)β(1) =




1 1 1

1 0 1

1 0 0


 , δ(1)β(2) =




1 1 1

1 1 0

1 0 0


 ,

δ(2)β(0) =




1 1 1

1 0 2

1 0 1


 , δ(2)β(1) =




1 1 1

0 1 2

0 1 1


 ,

δ(2)β(2) =




1 1 1

0 2 1

0 1 1


 .

The associated cylinders of the time-1-partition will be denoted by [i j].
Only the 3 cylinders [0 0], [1 0], [2 0] are full. The other 6 cylinders are

mapped onto the triangle D which itself is the union of 7 cylinders, namely
[2 0], [0 1], [0 2], [1 1], [1 2], [2 1], [2 2]. The triangle E is the union of [0 0]
and [1 0].

A similar calculation can be made for (T ◦S)x = T (Sx). The associated
cylinders will be denoted by {i j}. Here 5 cylinders are full and the 4 cylin-
ders {1 0}, {1 1}, {2 0}, {2 2} are mapped onto the upper triangle D which
itself is a union of 6 cylinders, namely {1 0}, {1 1}, {1 2}, {2 1}, {2 2}, {2 3}.
The lower triangle is the union of {0 1}, {0 2}, {0 3}.

Now it turns out that the ergodic behaviour of S ◦ T is similar to that
of the Parry–Daniels map (Nogueira (1995), Schweiger (1981)).

Theorem 3. Let Γ = {(x1, x2) ∈ B2 : (S ◦ T )jx ∈ E for all j ≥ 0}.
Then λ(Γ ) > 0.

Remarks. (1) Note that E = [0 0] ∪ [1 0]. Since TE = {0 0} ∪ {0 1} a
similar statement is true for T ◦ S.
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(2) It remains to explain why this set is “exceptional”. Let an algo-
rithm produce digits from a digit set I. If J is a proper subset of I then
we consider the set E(J) of all points whose expansions contain digits
from J only. For many algorithms, the set E(J) is a set of measure zero.
For example, for Tx = 3x mod 1 we find I = {0, 1, 2}. For J = {0, 2}
the set E(J) is essentially the well known Cantor set. For Selmer’s al-
gorithm again we have I = {0, 1, 2}. Since ∆(0) is a transient set for
J = {1, 2} the set E(J) is the triangle D. But since there is no escape
from D possible this behaviour is not so exciting. Here the situation is
different. The proof will show that Γ consists of infinitely many segments
of variable length which are glued together in the point (0, 0). Since the
cylinders [0 0] and [1 0] are full cylinders one may think that Γ is more
like the Cantor set but the proof shows that it has positive Lebesgue mea-
sure.

Proof. We again use the maps

ψ(x1, x2) =
(
x2

x1
,

1− x1 − x2

x1

)
, ψ−1(u, v) =

(
1

1 + u+ v
,

u

1 + u+ v

)
.

Note that ψB2 = {(u, v) : 0 ≤ u ≤ 1, u + v ≥ 0} and ψE = {(u, v) : 0 ≤
u ≤ 1, v ≥ 0}. A calculation shows that the restriction of ψ ◦ (S ◦ T ) ◦ ψ−1

to the set ψE is given as

Θ(u, v) =





(
u

1− u,
−u+ v

1− u

)
, 0 ≤ u ≤ 1/2,

(
1− u
u

,
−1 + u+ v

u

)
, 1/2 ≤ u ≤ 1.

We form the jump transformation with respect to the set {(u, v) : 1/2 ≤
u ≤ 1} and obtain the map

P (u, v) =
(

1
u
− a, −1 + u+ v

u

)
,

1
a+ 1

< u ≤ 1
a
.

Lebesgue measure λ on B2 induces on ψE the finite measure

µ(X) =
� �

X

du dv

(1 + u+ v)3 .

The Jacobian of a cylinder B?(a1, . . . , an) = {(u, v) : u ∈ B(a1, . . . , an)}
(here B(a1, . . . , an) refers to the associated continued fraction expansion)
with respect to the map P is given as

κ(a1, . . . , an;u, v) =
1

(An +Bnu+ v)3 .
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The numbers An, Bn satisfy the recursion relations

An+1 = Anan+1 +Bn + an+1 − 1, Bn+1 = An + 1.

Hence
An+1 = Anan+1 + An−1 + an+1.

The growth of An can be compared with the growth of the corresponding
continued fraction

qn+1 = qnan+1 + qn−1.

Therefore, clearly qn ≤ An. The theorem of Borel–Bernstein implies that for
almost all u ∈ [0, 1] the inequality

an+1 <
qn−1

(n+ 1)2

is true for n ≥ N(u).
We claim that for some constant K = K(u),

An ≤ K
n∑

j=1

1
j2 qn.

For n < N(u) we choose K large enough to start the induction. But then

An+1 = an+1An + An−1 + an+1

≤ K
( n∑

j=1

1
j2

)
qnan+1 +K

( n−1∑

j=1

1
j2

)
qn−1 +

qn−1

(n+ 1)2

≤ K
( n+1∑

j=1

1
j2

)
qn+1.

Therefore

An ≤ K
π2

6
qn

for all n ≥ 1 for some K = K(u). This means
qn
An
≥ γ > 0, γ = γ(u) a.e.

Then
∑

(a1,...,an)

1
A2
n

=
∑

(a1,...,an)

q2
n

A2
n

1
q2
n

≥
∑

(a1,...,an)

γ2(u)
1

qn(qn + qn−1)
.

For the sequence of functions fn defined by

fn(u) =
q2
n

A2
n

, u ∈ B(a1, . . . , an),

we find inf fn ≥ γ2(u) > 0 a.e. Hence
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∑

(a1,...,an)

1
A2
n

≥
1�

0

fn(u) du ≥
1�

0

inf fn(u) du > 0.

Since µ(B?(a1, . . . , an))� 1/A2
n we see that

µ(Γ ) = µ
( ∞⋂

n=1

⋃

(a1,...,an)

B?(a1, . . . , an)
)
> 0

and hence λ(Γ ) > 0.

Conjecture. The set Γ is an absorbing set.
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