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On the difference of the consecutive primitive roots

by

Yonghui Wang (Beijing) and Claus Bauer (San Francisco, CA)

1. Introduction. Let q be an odd prime number and consider the set
of consecutive primitive roots mod q with representatives 1 < g1 < · · · <
gφ(q−1) < q. In 1962, Burgess [B1, Theorem 3] gave an asymptotic formula
for the number of primitive roots in every interval of length greater than
q1/4+ε. In 1998, C. Cobeli and A. Zaharescu [CZ] proved that this sequence
has a Poisson distribution if q is very large. In this paper, we study the
average value of the differences of gi+1 − gi. We define

Vγ(q) :=
∑

1≤i<φ(q−1)

(gi+1 − gi)γ .(1)

To the best knowledge of the authors, Vγ(q) has not been studied hitherto
for any value of γ > 0, not even in case γ = 2. In this paper, we estimate
Vγ(q) unconditionally and assuming GRH.

In the unconditional case, we obtain an estimate for γ in the range
0 < γ < 4. We first apply the estimate of character sums due to Burgess
[B1], to prove an estimate for 0 < γ < 3. We call this “Method I”. Then
we apply a new method to estimate character sums that was developed by
Friedlander and Iwaniec [FI]. Using this method, which we call “Method II”,
we can estimate Vγ(q) for the larger range 0 < γ < 4. In this respect, we can
regard this paper as an application of the new method by Friedlander and
Iwaniec [FI] which is superior to Burgess’s in this case. Assuming GRH, we
modify our Method I to prove the estimate for Vγ(q) for all γ > 0.

In particular, we prove the following two theorems:
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Theorem 1.1. For any fixed real number 0 < γ < 4, we have

Vγ(q) :=
∑

1≤i<φ(q−1)

(gi+1 − gi)γ �γ φ(q − 1)P−γ

where P = φ(q − 1)/(q − 1), and f �γ g is the usual Vinogradov symbol
denoting the relationship |f | ≤ cg for some constant c depending on γ.

We will use all these notations in the rest of this paper.

Corollary 1.2. Assuming the Grand Riemann Hypothesis (GRH ), for
any fixed real number γ > 0,

Vγ(q) :=
∑

1≤i<φ(q−1)

(gi+1 − gi)γ �γ φ(q − 1)P−γ.

2. Lemmas for Method I. In this section, we establish the estimates
needed for Method I. We make use of an idea of Montgomery and Vaughan in
[MV], which is related to a discrete version of the Selberg integral. Further,
we apply estimates for character sums shown by Burgess.

First, we introduce the following characteristic function:

δ(n) =
{

1 if n is a primitive root mod q,

0 otherwise.
It is well known, and proved in detail in C. Cobeli and A. Zaharescu [CZ],
that

δ(n) =
∑

k|q−1

µ(k)
k

∑

χk=χ0

χ(n),(2)

where χ are Dirichlet characters mod q, and χ0 is the principal character.
Without further mention, we will use the fact that if k | q−1, then there are
exactly k characters mod q with χk = χ0.

We define

Ms(q;h) :=
q∑

n=1

( h∑

m=1

δ(n+m)− hP
)s
.

This is the sth moment of the number of primitive roots modulo q in an
interval of length h about its mean hP . It can be considered as the discrete
form of the Selberg integral which was first introduced in [MV]. For further
use, we state two lemmas:

Lemma 2.1 ([M, p. 118, (13.2)]). Assuming GRH , if χ is a non-principal
character modulo q, then

Sh(n) :=
∣∣∣

h∑

m=1

χ(n+m)
∣∣∣�ε h

1/2qε �r h
1/2+1/r

if h > q1/2r2
by taking ε = 1/2r3 for a sufficiently large positive integer r.
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Lemma 2.2 (Burgess [B2]). If q is a prime, χ is a non-principal char-
acter modulo q , and h and r are arbitrary positive integers, then

Sh(n)� h1−1/rq1/4r+1/4r2
log q,

where the implied constant is independent of all variables. Furthermore, for

any sufficiently small ε > 0, there exists a δ = δ(ε) such that if χ is a
non-principal character modulo q, and h is an integer satisfying h ≥ q1/4+ε,
then

Sh(n)� h1−δ(ε).

We will use these two lemmas to establish the following estimates:

Lemma 2.3. For any fixed positive integer s, and for any positive integer
h that satisfies h ≥ q1/4+ε,

Ms(q;h)�s,ε qP
shs(1−δ/2),

where δ = δ (ε) is independent of s, and ε is sufficiently small.

Lemma 2.4. Assuming GRH , for any fixed positive integer s and any
sufficiently large integer r > 0, for any positive integer h > q1/2r2

, we have

Ms(q;h)�s,r qP
sh(1/2+2/r)s,

where s and r are independent of each other.

Proof of Lemma 2.3. Applying (2), we see

(3) Ms(q;h)

=
q∑

n=1

( h∑

m=1

∑

k|q−1

µ(k)
k

∑

χk=χ0

χ(m+ n)− hP
)s

=
q∑

n=1

( ∑

χ (mod q)

h∑

m=1

χ(m+ n)
∑

k|q−1, ord (χ)|k

µ(k)
k
− hP

)s

=
q∑

n=1

(
P

∑

χ6=χ0 (mod q)

µ(ord(χ))
φ(ord(χ))

h∑

m=1

χ(m+ n) + P

h∑

m=1

χ0(m+ n)− hP
)s
,

where ord(χ) denotes the order of χ, i.e. ord(χ) = min{k > 0 | χk = χ0} and
the last equality in (3) holds due to the following relation: For any integer
t that divides q − 1, we have

∑

k|q−1, t|k

µ(k)
k

=
∑

tk′|q−1

µ(tk′)
tk′

=
µ(t)
t

∑

k| q−1
t

(k,t)=1

µ(k)
k

=
µ(t)
t

∏

p| q−1
t

(p,t)=1

(
1− 1

p

)

=
µ(t)
t

∏

p|q−1

(
1− 1

p

)/∏

p|t

(
1− 1

p

)
=
µ(t)
φ(t)

P.
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Since q is an odd prime number, for any h ≤ q we obtain
∣∣∣

h∑

m=1

χ0(m+ n)− h
∣∣∣ = #{1 ≤ m ≤ h | (m+ n, q) 6= 1} ≤ 1.

Therefore,

Ms(q;h) =
q∑

n=1

(
P

∑

χ6=χ0 (mod q)

µ(ord(χ))
φ(ord(χ))

h∑

m=1

χ(m+ n) +O(P )
)s

= P s
q∑

n=1

( ∑

χ6=χ0 (mod q)

µ(ord(χ))
φ(ord(χ))

h∑

m=1

χ(m+ n)
)s

+O

(
P s

q∑

n=1

( ∑

χ6=χ0 (mod q)

µ(ord(χ))
φ(ord(χ))

h∑

m=1

χ(m+n)
)s−1

+ · · ·+ 1
)

=: Is +O(Is−1 + · · ·+ 1), say.

Thus, it suffices to estimate Is. As we assume h ≥ q1/4+ε, we can apply
Lemma 2.2 as follows:

|Is| = P s
∣∣∣∣

q∑

n=1

∑

χ1 6=χ0 (mod q)

· · ·
∑

χs 6=χ0 (mod q)

µ(ord(χ1))
φ(ord(χ1))

· · · µ(ord(χs))
φ(ord(χs))

(4)

×
( h∑

m=1

χ1(m+ n)
)
· · ·
( h∑

m=1

χs(m+ n)
)∣∣∣∣

≤ P s
q∑

n=1

∑

t1|q−1, t1>1

· · ·
∑

ts|q−1, ts>1

|µ(t1)| · · · |µ(ts)|
φ(t1) · · ·φ(ts)

×
∑

χ
t1
1 =χ0

· · ·
∑

χtss =χ0

∣∣∣
( h∑

m=1

χ1(m+ n)
)
· · ·
( h∑

m=1

χs(m+ n)
)∣∣∣

� P s
q∑

n=1

∑

t1|q−1

· · ·
∑

ts|q−1

|µ(t1)| · · · |µ(ts)|
φ(t1) · · ·φ(ts)

∑

χ
t1
1 =χ0

· · ·
∑

χtss =χ0

hs(1−δ)

� qP shs(1−δ)
∑

t1|q−1

· · ·
∑

ts|q−1

|µ(t1)|t1 · · · |µ(ts)|ts
φ(t1) · · ·φ(ts)

� qP shs(1−δ)
( ∑

t|q−1

|µ(t)|t
φ(t)

)s
≤ qP shs(1−δ)τ(q − 1)2s

� ε qP
shs(1−δ/2).

Here, δ = δ (ε) is independent of s, and τ (n) =
∑

d|n 1 is the divisor function.
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The third to last inequality is valid because of
∑

t|q−1

|µ(t)|t
φ(t)

=
∏

p|q−1

(
1 +

p

p− 1

)
� τ(q − 1)2.

The last inequality of (4) holds since h ≥ q1/4+ε and τ(n)�δ n
δ/16 for any

given δ > 0.

Lemma 2.4 is proved in the same way by applying Lemma 2.1 instead of
Lemma 2.2. We will also need an estimate which will be used for ranges of
h smaller than those assumed in Lemmas 2.3 and 2.4. In order to establish
this estimate, we will make use of the following lemma:

Lemma 2.5 ([J, Lemma 1]). Let χ1, . . . , χt be Dirichlet characters mod-
ulo an odd prime q with some χi 6= χ0. Let further m1, . . . ,mt be distinct
integers modulo q. Then

∣∣∣
q∑

n=1

χ1(m1 + n) · · ·χt(mt + n)
∣∣∣ ≤ (t− t0 − 1)q1/2 + t0 + 1,

where t0 is the number of characters χi such that χi = χ0.

Proof. This is a special case of J. Johnsen’s [J, Lemma 1].

We now prove the following estimate:

Lemma 2.6. For any integer h that satisfies P−1 < h < q, we have

Ms(q;h)�s,ε q
1/2+ε(hP )s + q(hP )s/2

for any positive integer s ≥ 2.

Proof. By definition,

Ms(q;h) =
q∑

n=1

( h∑

m=1

δ(n+m)− hP
)s

(5)

=
s∑

f=0

(
s

f

)
(−hP )s−f

q∑

n=1

( h∑

m=1

δ(n+m)
)f
.

For f > 0, the inner sum over n can be written as

h∑

m1=1

· · ·
h∑

mf=1

q∑

n=1

δ(n+m1) · · · δ(n+mf ).(6)

It is easily seen that for the estimation of the inner sum over n we only need
to consider the values of the δ-function on distinct elements of m1, . . . ,mf .
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Let B = {m1, . . . ,mf}, and denote by t = card(B) the number of different
elements of B. We can assume that m1, . . . ,mt are distinct. Thus,

(7)
q∑

n=1

δ(n+m1) · · · δ(n+mf )

=
q∑

n=1

δ(n+m1) · · · δ(n+mt)

=
q∑

n=1

( ∑

k1|q−1

µ(k1)
k1

∑

χ
k1
1 =χ0

χ1(n+m1)
)

× · · · ×
( ∑

kt|q−1

µ(kt)
kt

∑

χ
kt
t =χ0

χt(n+mt)
)

=
∑

k1|q−1

· · ·
∑

kt|q−1

µ(k1) · · ·µ(kt)
k1 · · · kt

q∑

n=1

χ0(n+m1) · · ·χ0(n+mt)

+
∑

k1|q−1

· · ·
∑

kt|q−1

µ(k1) · · ·µ(kt)
k1 · · · kt

∑′

χ1,...,χt

q∑

n=1

χ1(n+m1) · · ·χt(n+mt),

where
∑′

χ1,...,χt
denotes the summation over χk1

1 = χ0, . . . , χ
kt
t = χ0 with

some χi 6= χ0. We note that m1, . . . ,mt are distinct modulo q, which implies

q∑

n=1

χ0(n+m1) · · ·χ0(n+mt) = q − t.

Applying Lemma 2.5 and using an argument similar to the proof of Lemma
2.3, we can write the last expression in (7) as follows:

(8) (q − t)
( ∑

k|q−1

µ(k)
k

)t
+O

(
tq1/2

( ∑

k|q−1

|µ(k)|
)t)

= (q − t)P t +Oε(tq1/2+ε) = qP t +Oε(tq1/2+εP t).

We can add the additional term P t to the O-term since P−1 < τ(q−1)� qε.

In order to estimate (6), we denote by S(f, t) the Stirling number of the
second kind, i.e. the number of ways of partitioning a set of cardinality f
into exactly t non-empty subsets. Consequently, S(f, t)t! is the number of
surjective maps from a set of cardinality f onto a set of cardinality t. Using
(8), we can now write the expression in (6) as follows:
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(9)
h∑

m1=1

· · ·
h∑

mf=1

q∑

n=1

δ(n+m1) · · · δ(n+mf )

=
min(f,h)∑

t=1

∑

B⊆{1,...,h}
B={m1,...,mt|mi 6=mj if i6=j}

S(f, t)t!
{ q∑

n=1

δ(n+m1) · · · δ(n+mt)
}

=
min(f,h)∑

t=1

∑

B⊆{1,...,h}, card(B)=t

S(f, t)t!(qP t +Oε(tq1/2+εP t))

=
min(f,h)∑

t=1

(
h

t

)
S(f, t)t!(qP t +Oε(tq1/2+εP t))

=
f∑

t=0

(
h

t

)
S(f, t)t!(qP t +Oε(tq1/2+εP t)),

where we assumed that f ≤ h. An analysis of the final part of the proof will
show that the case f > h can be treated in the same way. In the following,
we set

(
h
t

)
= 0 for t > h and S(f, 0) = 0 for f > 0, S(0, t) = 0 for t > 0,

and S(0, 0) = 1. Thus, from (5) and (9) we obtain

Ms(q;h) = q

s∑

f=0

(
s

f

)
(−hP )s−f

f∑

t=0

(
h

t

)
S(f, t)t!P t +Os,ε(q1/2+ε(hP )s).

We obtain the error term from the estimates S(f, t)t!t�s 1 for t ≤ f ≤ s
and

∑f
t=0

(
h
t

)
P t � (hP )f + (hP ) � (hP )f by P−1 < h. By using combi-

natorial recursions, the main term on the right hand side was estimated in
[MV, Lemma 11] as follows:

µs(h, P ) :=
s∑

f=0

(
s

f

)
(−hP )s−f

f∑

t=0

(
h

t

)
S(f, t)t!P t

� (hP )[s/2] + hP � (hP )s/2,

for any integer s ≥ 2. This proves the lemma.

Montgomery and Vaughan ([MV, p. 326, Lemma 9]) have given a prob-
abilistic interpretation of µs(h, P ). Let X be a binomial random variable
with parameters h and P ; then µs(h, P ) equals the expectation value of the
sth moment of the difference between X and its expected value hP, i.e.,

µs(h, P ) = E((X − hP )s) =
h∑

k=0

(
h

k

)
P k(1− P )h−k(k − hP )s.

This interpretation can help us to understand the theorem.
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3. Lemmas for Method II. In the previous section, we established
Lemmas 2.3 and 2.6 which will allow us to estimate the expression (1) for
all γ > 0 under GRH and in the case of 0 < γ < 3 unconditionally. In order
to extend the range to 0 < γ < 4 we will investigate values of h in the
“middle” range q1/2r < h < q1/4+ε. We use a new method for the estimation
of character sums introduced by Iwaniec and Friedlander [FI]. We first show
the following lemma:

Lemma 3.1. Let D be a (2A + 1)-spaced set modulo q, i.e. |d1 − d2| ≥
2A+ 1 for all d1, d2 ∈ D, and assume |D|(2A+ 1) < q, B < A. Define

ν(u) := ]{(a, b, d) |M − A ≤ a ≤M + A, 1 ≤ b ≤ B,
d ∈ D, a− d ≡ bu (mod q)}.

Then
q∑

u=1

ν2(u)� |D|AB log q.

Proof. We use the usual notation e(x) = exp(2πix). Defining b via bb ≡
1 (mod q), we see that
q∑

u=1

ν2(u) =
q∑

u=1

∣∣∣∣
1
q

∑

d∈D

∑

M−A≤a≤M+A

∑

1≤b≤B

q∑

n=1

e

(
((a− d)b− u)n

q

)∣∣∣∣
2

=
1
q2

∑

a1,a2

∑

b1,b2

∑

d1,d2

∑

n1,n2

e

(
(a1 − d1)b1n1 − (a2 − d2)b2n2

q

)

×
q∑

u=1

e

(
u(n1 − n2)

q

)

=
1
q

∑

a1,a2

∑

b1,b2

∑

d1,d2

∑

n

e

(
((a1 − d1)b1 − (a2 − d2)b2)n

q

)

= ]





(a1, a2, b1, b2, d1, d2)

∣∣∣∣∣∣∣

M −A ≤ a1, a2 ≤M + A,

1 ≤ b1, b2 ≤ B, d1, d2 ∈ D,
(a1 − d1)b2 ≡ (a2 − d2)b1 (mod q)





=: |S|, say.

Due to symmetry, we only need to estimate the subset S ′ of S that satisfies
b1 ≤ b2. Let R = {r = a − d | M − A ≤ a ≤ M + A, d ∈ D}. As D
is a (2A + 1)-spaced set modulo q and |D|(2A + 1) < q, we find that R
is the union of |D| disjoint segments of length 2A + 1 in [1, q] . Defining
ri = ai− di ∈ R, i ∈ {1, 2}, we see that S ′ can be considered as the product
of the set R and the set {(b1, b2) | 1 ≤ b1, b2 ≤ B, b1 ≤ b2} with the
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constraint r1b2 ≡ r2b1 (mod q). We note that the value of the variable r1
is uniquely determined if the variables of r2, b1, b2 are given, since |R| < q.
Furthermore, r2b1 − r1b2 = k0q, hence for given b1, b2 we have r2b1 ≡ k0q
(mod b2). Thus,

|S′| ≤
∑

1≤b2≤B

∑

1≤b1≤b2

∑

r2∈R, r2≡l (mod b2/(b1,b2))

1

≤
∑

1≤b2≤B

∑

1≤b1≤b2

(
|D|
(

2A+ 1
b2/(b1, b2)

+ 1
))

� |D|A
∑

b2≤B

1
b2

∑

b1≤b2
(b1, b2) +O(|D|B2)

� |D|A
∑

b2≤B

1
b2

∑

d|b2
d

∑

b1≤b2, b1≡0 (mod d)

1 +O(|D|B2)

� |D|A
∑

b2≤B
τ(b2) +O(|D|B2)� |D|AB log q.

We also require a lemma of Burgess [B1, Lemma 2] which is based on
A. Weil’s work.

Lemma 3.2. We have
q∑

x=1

∣∣∣
h∑

m=1

e(my)χ(m+ x)
∣∣∣
2r
�r qh

r + q1/2h2r.(10)

Our version of the lemma differs from the original [B1, Lemma 2] by the
additional factor e(my). We show that the original proof still applies.

Proof. We see that
q∑

x=1

∣∣∣
h∑

m=1

e(my)χ(m+ x)
∣∣∣
2r

=
q∑

x=1

h∑

m1=1

· · ·
h∑

m2r=1

e(m1y) · · · e(mry)e(−mr+1y) · · · e(−m2ry)

× χ((m1 + x) · · · (mr + x))χ((mr+1 + x) · · · (m2r + x))

≤
h∑

m1=1

· · ·
h∑

m2r=1

∣∣∣
q∑

x=1

χ((m1 + x) · · · (mr + x))χ((mr+1 + x) · · · (m2r + x))
∣∣∣.

The last expression was estimated in [B1, Lemma 2, formulas (8), (9)]
to obtain the result without the additional factor e(my). We now state a
lemma that will be crucial for Method II.
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Lemma 3.3. Let D be a (2A + 1)-spaced set modulo q and |D|(2A+ 1)
< q. For any given positive integer r, if A > q1/2r, then

|Sχ| :=
∣∣∣

∑

M<a≤M+A

∑

d∈D
χ(a+ d)

∣∣∣� |D|1−1/2rA1−1/rq1/4r+1/4r2
(log q)2.

Remark. This lemma is similar to Theorem 2′ in [FI] with minor
changes in the assumptions and results. In what follows, we adapt the orig-
inal proof to establish Lemma 3.3.

Proof. We define a function f(x) = min(x−M, 1,M +A+ 1−x) in the
interval [M,M + A + 1] and f(x) = 0 elsewhere. Denote by g the Fourier
transform of f, i.e.,

g(y) =
∞�

−∞
f(x)e(−yx) dx.

Applying partial integration as in [BI], we find |g(y)| ≤ min(A + 1, |πy|−1,
(πy)−2). Hence,

∞�

−∞
|g(y)| dy � logA.

Setting BC = A, we obtain

(11) |Sχ|
=
∣∣∣A−1

∑

d∈D

∑

M−A≤a≤M+A

∑

1≤b≤B

∑

1≤c≤C
f(a+ bc)χ(a+ bc+ d)

∣∣∣

≤ A−1
∑

d∈D

∑

M−A≤a≤M+A

∑

1≤b≤B

∞�

−∞

∣∣∣
∑

1≤c≤C
g(y)e(y(a+ bc))χ(a+ d+ bc)

∣∣∣ dy

≤ A−1
∑

d

∑

a

∑

b

∞�

−∞

1
b

∣∣∣∣g
(
y

b

)∣∣∣∣
∣∣∣
∑

1≤c≤C
e(yc)χ((a+ d)b+ c)

∣∣∣ dy,

by variable change and noting that χ(b) 6= 0 for 1 ≤ b ≤ B since q is
prime. Using the estimates established for g(y) above, we find that h(y) :=
|g(y/b)|/b ≤ min(A+ 1, |y|−1, By−2) and

∞�

−∞
h(y) dy � log q.

Using these estimates, we obtain from (11):

|Sχ| � A−1 log q
∑

d

∑

a

∑

b

∣∣∣
∑

1≤c≤C
e(yc)χ((a+ d)b+ c)

∣∣∣

= A−1 log q
∑

u (mod q)

ν(u)
∣∣∣
∑

1≤c≤C
e(yc)χ(u+ c)

∣∣∣
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for some y ∈ R, where

ν(u) = ]{(a, b, d) |M−A≤ a≤M+A, 1≤ b ≤ B, d∈D, a+d≡ bu (mod q)}.
Hence by Lemmas 3.1, 3.2 and by Hölder’s inequality,

|Sχ| � A−1 log q
( ∑

u (mod q)

ν(u)2r/(2r−1)
)1−1/2r

×
( ∑

u (mod q)

∣∣∣
∑

1≤c≤C
e(yc)χ(u+ c)

∣∣∣
2r)1/2r

� A−1 log q
( ∑

u (mod q)

ν(u)2
)1−1/2r

(qCr + q1/2C2r)1/2r

� A−1 log q(|D|AB log q)1−1/2r(qCr + q1/2C2r)1/2r.

Choosing C = q1/2r and B = Aq−1/2r > 1 completes the proof of the lemma.

4. Proof of the theorems

4.1 Method I. Let L(y) = ]{i | 1 ≤ i ≤ φ(q − 1), gi+1 − gi > y}. Then
for any fixed γ > 0, by partial summation,

Vγ = γ

∞�

0

L(y)yγ−1 dy.(12)

We see that in order to prove our theorem, it is sufficient to establish
an upper bound for L(y). We will now derive an upper bound for L(y) that
depends on Ms(q;h). We set h = [y/4], hence y ≥ 4h. If gi+1 − gi > y, then
for gi < n < gi + h, the interval [n + 1, n + h] contains no primitive roots.
Therefore,

L(y)h(hP )s ≤Ms(q;h).(13)

Applying Lemmas 2.3 and 2.6 to (13), we obtain the following upper bounds
for L(y): For sufficiently small ε > 0, by Lemma 2.3,

(14a) L(y)�s,ε φ(q − 1)P−1y−δ1(ε)s/2−1 if y ≥ q1/4+ε,

and by Lemma 2.6, for any integer s ≥ 2,

L(y)�s,ε q
1/2+εy−1 + q(yP )−s/2y−1 if 4P−1 < y < q,

hence

L(y)�ε φ(q − 1)P−1y−3+δ2(ε) + q(yP )−s/2y−1(14b)

if 4P−1 < y < q1/4+ε;

L(y)�r φ(q − 1)P−1y−2r2/3−1 + q(yP )−s/2y−1(14c)

if 4P−1 < y < q1/2r2
, r ∈ Z+.
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The relations (14b) and (14c) hold due to the respective ranges of q and y,
and δ2(ε) can be chosen sufficiently small for sufficiently small ε.

For 0 ≤ y ≤ 4P−1 the trivial estimate L(y) ≤ φ(q − 1) is enough,

γ

4P−1�

0

L(y)yγ−1 dy �γ φ(q − 1)P−γ.(15)

For y > q1/4+ε, we note that δ = δ (ε) is independent of s in (14a). Thus,
we may assume that s is taken so large that δs/2 > γ. Then, by (14a)

γ

∞�

q1/4+ε

L(y)yγ−1 dy �γ,ε φ(q − 1)P−1
∞�

q1/4+ε

yγ−δs/2−2 dy(16)

�γ,ε φ(q − 1)P−1q−1/4 �γ,ε φ(q − 1)

�γ,ε φ(q − 1)P−γ

for all γ > 0.
For 4P−1 < y < q1/4+ε, we use the estimate (14b). For any fixed γ with

0 < γ < 3, we take a δ(ε) such that 0 < γ < 3−δ(ε). Such a δ(ε) can always
be found if ε is chosen sufficiently small. We obtain

(17) γ

q1/4+ε�

4P−1

L(y)yγ−1 dy

�γ,ε φ(q − 1)P−1
q1/4+ε�

4P−1

(y−1−(3−γ−δ(ε)) + (yP )−s/2yγ−2) dy

�γ,ε φ(q − 1)P−γ.

Therefore, Theorem 1.1 follows from (15)–(17) for 0 < γ < 3 by taking
an appropriate ε. Corollary 1.2 (GRH case) follows by the same argument
when we apply Lemma 2.4 instead of Lemma 2.3 and (14c) instead of (14b).
First, under GRH, we deduce from (13) and Lemma 2.4 that

L(y)�r qy
−(1/2−2/r)s−1 �r φ(q − 1)P−1y−(1/2−2/r)s−1

for y ≥ q1/2r2
. Since s is also independent of r in Lemma 2.4, we can take s

sufficiently large such that γ − (1/2− 2/r)s < 0, to obtain

γ

∞�

q1/2r2

L(y)yγ−1 dy �γ,r φ(q − 1)P−1
∞�

q1/2r2

yγ−(1/2−2/r)s−2 dy(18)

�γ,r φ(q − 1)P−γ.
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For y ≤ q1/2r2
, by (14c),

(19) γ

q1/2r2�

4P−1

L(y)yγ−1 dy

�γ,r φ(q − 1)P−1
q1/2r2�

4P−1

(yγ−2r2/3−2 + (yP )−s/2yγ−2) dy

�γ,r φ(q − 1)P−γ,

if we choose r sufficiently large such that γ < 2r2/3. Now, Corollary 1.2
follows from (15), (18) and (19).

4.2. Method II. In this section we prove Theorem 1.1 for 0 < γ < 4. We
will need the following lemma:

Lemma 4.1. Define N to be a set of N integers ni ∈ [1, q − 1], 1 ≤
i ≤ N, such that n1 < · · · < nN and the integers are (2h + 1)-spaced , i.e.
|ni − nj | > 2h+ 1 for i 6= j. If there exists a δ′ such that for all ni ∈ N , the
interval [ni, ni + h] contains at most Ph1−δ′ primitive roots, then for any
positive integer r, if q1/2r2

< h < q, we have

N �r qh
−4+4/r �r φ(q − 1)P−1h−4+4/r.

When the set N is modified so that each ni corresponds to a primitive root
gj and gj+1 − gj > y for 1 ≤ j ≤ N − 1, then

L(y) = N �r φ(q − 1)P−1y−4+4/r(20)

for q1/2r2
< y < q.

Proof. Arguing as in the proof of Lemma 2.4 (see (3)), we see that

∑

ni∈N

h∑

m=1

δ(m+ ni)

= P
∑

ni∈N

∑

χ6=χ0, t=ord(χ)

µ(t)
φ(t)

h∑

m=1

χ(m+ ni) +NhP +O(NP ).

Under the assumption of the lemma, the left hand side is less than NPh1−δ′ .
Comparing both sides, we must have

Nh�
∑

χ6=χ0, t=ord(χ)

1
φ(t)

∣∣∣
∑

ni∈N

h∑

m=1

χ(m+ ni)
∣∣∣(21)

� τ2(q)
∣∣∣
∑

ni∈N

h∑

m=1

χ(m+ ni)
∣∣∣

� N1−1/2r′h1−1/r′q1/4r′+1/4r′2(log q)2τ2(q).
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The last inequality is obtained by applying Lemma 3.3 if h ≥ q1/2r′. Taking
r′ = r3, for h > q1/2r2

> q1/2r′, we obtain

N ≤ N2 �r h
−4q1+2/r′ �r h

−4+4/rq.

This proves the lemma.

Now, we prove Theorem 1.1 for all 0 < γ < 4. Using (20) instead of the
relation (14b), we can follow the argument in (17) to establish

γ

q1/4+ε�

q1/2r2

L(y)yγ−1 dy �γ,ε φ(q − 1)P−γ.(22)

The theorem therefore follows from (16), (19) and (22).
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