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Integers not of the form c(2a + 2b) + pα
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1. Introduction. Let N = {0, 1, 2, . . .} and let P denote the set of
(positive) primes. There have been some studies on the integers not of the
form 2a+pα and 2a + 2b +pα (where a, b, α ∈ N and p ∈ P). N. P. Romanoff
[7] proved that the set of positive odd numbers which can be represented
in the form 2a + p has positive asymptotic density in the set of all positive
odd integers, while J. G. van der Corput [2] proved a similar result for the
set of positive odd integers which cannot be represented in the form 2a + p.
A step forward was made by P. Erdős [5] who used covering congruences
to exhibit a residue class of odd integers not of the form 2a + p. Using
similar methods, F. Cohen and J. L. Selfridge [1] proved that there exists
an arithmetic progression of odd numbers which are neither the sum nor
the difference of a power of 2 and a prime power; Z. W. Sun [9] constructed
a residue class of odd integers which is not of the form ±2a ± pα where
a, α ∈ N, p ∈ P and any choice of signs can be made.

On the other hand, A. Schinzel observed that for n ≥ 3, the number
22n − 1 is not of the form 2a + 2b + p, where a > b ∈ Z+ and p ∈ P (see the
footnote 1 of [4]). Combining the observation of Schinzel with the idea of
Erdős [5], i.e., the idea of using covering congruences, in 1971 R. Crocker [4]
showed that there are infinitely many positive odd integers not of the form
2a+2b+p where a, b ∈ N and p ∈ P. By generalizing Crocker’s Lemma II via
congruences and using some results on exponential diophantine equations,
Z. W. Sun and M. H. Le [10] strengthened Schinzel’s result by proving
that for n ≥ 4, the number 22n − 1 is not of the form 2a + 2b + pα, where
n, a, b, α ∈ N, a > b and p ∈ P. In 2001 Sun (see [10]) made the following
conjecture.

Conjecture 1.1. For any positive integer c, there are infinitely many
positive odd integers not of the form c(2a + 2b) + pα, where a, b, α ∈ N and
p ∈ P.
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Sun and Le [10] showed that the conjecture holds if c is a Fermat number
22n + 1.

On the basis of the work of Crocker [4] and Erdős [5], with Schlickewei’s
[8] result on S-unit equations and some results on exponential diophantine
equations via congruences, in this paper we give an affirmative answer to
the above conjecture. We prove

Theorem 1.1. For any given positive integer c, there are infinitely many
positive odd integers not of the form c(2a + 2b) + pα, where a, b, α ∈ N and
p ∈ P.

2. Preliminaries. Let S = {0, p1, . . . , ps}, where p1, . . . , ps ∈ P. For
v ∈ S we denote by | |v the v-adic absolute value on Q, where v = 0 stands
for the standard absolute value. An element x ∈ Q is called an S-unit if∏
v∈S |x|v = 1.

Lemma 2.1 ([8]). Let S be a set as above. Then the number of integral
solutions (x1, . . . , xn+1) of the equation

a1x1 + · · ·+ an+1xn+1 = 0, gcd(x1, . . . , xn+1) = 1

where each xi is an S-unit , and ai (i = 1, . . . , n+1) are fixed rational integers
such that no proper sub-sum ai1xi1 + · · ·+ aimxim vanishes, is bounded by

(8(s+ 1))226n+4(s+1)6
.

A system of residue classes ai (modni), 1 ≤ i ≤ k, is called a covering
congruence system of Z if for any given integer n ∈ Z, there is at least one
i ∈ {1, . . . , k} such that n ≡ ai (modni).

Lemma 2.2. Let ai (modni), 0 ≤ ai < ni, 1 ≤ i ≤ k, be a covering
congruence system, p1, . . . , pk be distinct prime divisors of 2n1−1, . . . , 2nk−1
respectively , and x ≡ 2as (mod ps) for every 1 ≤ s ≤ k. If x = 2n + pα for
some n, α ∈ N, then there is an s ∈ {1, . . . , k} such that n = as + ans and
x = 2n + pbs for some a, b ∈ N.

Proof. Since {ai (modni)}ki=1 is a covering system, we have n ≡ as
(modns) for some s ∈ {1, . . . , k}. Moreover, since 2ns ≡ 1 (mod ps) by the
definition of pi’s, we have x = 2n + pα ≡ 2as + pα (mod ps). On the other
hand we have x ≡ 2as (modps) according to our assumptions. Consequently,
p = ps and the lemma follows.

For every nonnegative integer r, let Fr denote the Fermat number 22r+1.
It is well known [6] that

n−1∏

r=0

Fr = Fn − 2 = 22n − 1 for n = 1, 2, . . . ,(1)
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which can be easily proved by induction. This implies that the Fermat num-
bers F0, F1, . . . are pairwise coprime.

Remark 1. As the referee pointed out, the nontrivial fact that F10 has
a prime divisor 212 ·11131+1, which is essential to our argument, was proved
by Selfridge in the 1950’s.

We have

Lemma 2.3. For n ≥ 3 and w ≡ 1 (mod 16), let w
∏n−1
i=0 Bi ≤ 22n − 1,

where Bi |Fi and Bi > 1. Suppose w
∏n−1
i=0 Bi = 2a + 2b + pα, where a, b, α

∈ N, a > b and p ∈ P. Then α > 0, and one of the following statements
holds:

(i) a 6≡ b (mod 2), b ∈ {1, 2} and p = 3.
(ii) a ≡ 3 (mod 4), b = 1 and p = 5.

Proof. This is a special case of Proposition 1 of [10].

As in Crocker [4], we choose the covering congruence system ai (modni),
1 ≤ i ≤ 28, to be

0(3), 0(5), 1(9), 1(10), 8(12), 8(15), 4(18), 7(20), 5(24),
29(30), 2(36), 14(36), 17(40), 34(45), 43(45), 13(48), 37(48),
16(60), 19(60), 26(72), 62(72), 52(90), 37(120), 49(144),
121(144), 103(180), 106(180), 229(360),

where a(n) stands for the residue class a (modn). It can be shown to be
a covering congruence system by straightforward numerical methods; the
corresponding pi of 2ni − 1, 1 ≤ i ≤ 28, are chosen to be

7, 31, 73, 11, 13, 151, 19, 41, 241, 331, 37, 109, 61681, 631, 23311,
97, 673, 61, 1321, 833, 38737, 18837001, 4562284561, 577,
487824887233, 29247661, 54001, 168692292721.

Set
G10 = (2210

+ 1)/(212 · 11131 + 1).

Let Mn = 2n − 1 be the nth Mersenne number. It is well known [6] that
gcd(Mm,Mn) = Mgcd(m,n). With this property, one can check easily that

(pi, 22n − 1) = 1 for every pi and n, 1 ≤ i ≤ 28,

and also

16
28∏

i=1

pi < G10, say
(

16
28∏

i=1

pi

)
v < G10 < (v + 1)

(
16

28∏

i=1

pi

)

for some fixed v ≥ 1; by simple numerical calculation and estimation, v
exists and in fact seems to be very large here (> 2520).
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Consider the following simultaneous conditions:

t ≡ 2ai (mod pi), 1 ≤ i ≤ 28, t ≡ −1 (mod 16), t ≡ 0 (mod 9),

t ≡ 0 (mod (22n − 1)/G10F0), t ≤ 22n − 1.

We denote the above simultaneous system by Sn for every n > 10.
By the Chinese Remainder Theorem, Sn is satisfied by any integer (and

only those integers) such that

t ≡ qn
(

mod
22n − 1
G10

· 48
28∏

i=1

pi

)
, t ≤ 22n − 1,(2)

where one may assume that qn satisfies Sn and 0 < qn < (22n − 1)/G10 ·
16
∏28
i=1 pi, and so qn is fixed for any chosen n. Clearly, there are v (> 2520)

or v + 1 positive integers satisfying (2). We have

Lemma 2.4. Let t be as above. Then t is not of the form 2a + 2b + pα,
where a, b, α ∈ N and p ∈ P.

Proof. We apply Lemma 2.3 with Bi = Fi for 0 ≤ i ≤ n− 1, i 6= 10 and
B10 = F10/G10. Then by the construction of t, it suffices to prove that

(i) t 6= 2a + pα, a, α ∈ N, p ∈ P;
(ii) t 6= 2a + 2 + 3α, a ≡ 0 (mod 2), α > 0;
(iii) t 6= 2a + 4 + 3α, a ≡ 1 (mod 2), α > 0;
(iv) t 6= 2a + 2 + 5α, a ≡ 3 (mod 4), α > 0.

Since 3α ≡ 3, 9, 11, 1 (mod 16) and t ≡ −1 (mod 16), it follows that
t = 2a + 2 + 3α, a ≡ 0 (mod 2), a > 3 cannot hold simultaneously. Since
t ≡ 0 (mod 9) and t 6= 9, we have t 6= 22 + 2 + 3α. Thus (ii) holds.

Modulo 9, t = 2a + 4 + 3α, a ≡ 1 (mod 2), α > 1 hold only when a ≡ 5
(mod 6). Further if a ≡ 5 (mod 6), then modulo 7, we get 2a + 4 + 3α ≡
36 + 3α 6≡ 1 ≡ 2a1 (mod p1), where a1 = 0, p1 = 7; and so we are left with
α = 1, but t = 2a + 7 is impossible since t ≡ −1 (mod 16) and t 6= 15. Thus
(iii) holds.

Modulo 3, t = 2a + 2 + 5α, a ≡ 3 (mod 4), α > 0 hold only when α ≡ 1
(mod 2). Further if α ≡ 1 (mod 2), then modulo 13, since 5α ≡ ±5 (mod 13),
if t = 2a + 2 + 5α ≡ 28 (mod 13) ≡ 2a5 (mod p5), then 2a ≡ 2,−1 (mod 13),
and so a ≡ 1, 6 (mod 12), which contradicts a ≡ 3 (mod 4). Thus (iv) holds.

By Lemma 2.2 and the construction of t, we know that (i) holds only
when there is an s ∈ {1, . . . , 28} such that t = 2a + pαs and a = as + bns for
some b, α ∈ N.

From t ≡ −1 (mod 16), we get a = 1 if ps ≡ 1 (mod 4), a ≥ 2 and α is
odd if ps ≡ −1 (mod 4), whence this is impossible for those s with ps ≡ 1
(mod 4) and as 6= 1; from t ≡ 0 (mod 5), we have 2a± 1 ≡ 0 (mod 5), and so
a ≡ 0 (mod 2) if ps ≡ ±1 (mod 5); from t ≡ 0 (mod 9), we have 2a + 1 ≡ 0
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(mod 3), and so a ≡ 1 (mod 2) if ps ≡ 1 (mod 3). It is easy to check that
we are left with p3 = 73, a3 = 1, n3 = 9 and p1 = 7, a1 = 0, n1 = 3 by the
above considerations, but t 6= 2 + 73α since t ≡ −1 (mod 16). Since t ≡ 2
(mod 11) and α is odd, if t = 8 + 7α, then 7α ≡ 5 (mod 11), and it follows
that −1 =

( 7
11

)α
=
( 5

11

)
= 1, which is impossible. Therefore (i) also holds,

which implies the lemma.

Remark 2. Lemma 2.4 also implies an affirmative answer to Question 1
in [10].

3. Proof of Theorem 1.1. Let c = c0 · 2k with 2 - c0. If c0 6= 1, then
c0(2n − 1) = c(2a + 2b) + pα holds only if c0 = pα1 , whence

2n − 1 = 2a+k + 2b+k + pα2 , pα1 = c0.

Applying Lemma 2.1 with s = 2 and n = 4, we find that the above equation
has only finitely many integral solutions (n, a, b, α2). Therefore there are
infinitely many odd integers of the form c0(2n−1) which are not of the form
c(2a + 2b) + pα, where a, b, α ∈ N and p ∈ P.

Suppose c0 = 1. Then c(2a + 2b) + pα reduces to the form 2a + 2b + pα,
and so it suffices to treat the case of c = 1, which has been done in
Lemma 2.4.

4. More precise conjectures. Finally, I suggest the following precise
conjectures which seem to be correct.

Conjecture 4.1. The set of positive odd integers not of the form 2a +
2b+pα, where a, b, α ∈ N and p ∈ P, has a positive lower asymptotic density.

Conjecture 4.2. The set of positive odd integers not of the form 2a +
2b + pαqβ, where a, b, α, β ∈ N and p, q ∈ P, is infinite and has asymptotic
density 0.

Conjecture 4.3. Every odd integer n can be represented in the form
2a + 2b + pα1

1 pα2
2 pα3

3 , where a, b, α1, α2, α3 ∈ N and p1, p2, p3 ∈ P.

Conjecture 4.4. The set of positive odd integers not of the form ±2a±
2b±pα, where a, b, α ∈ N and p ∈ P, is infinite and has asymptotic density 0.

Conjecture 4.5. Every odd integer n can be represented in the form
±2a ± 2b ± pαqβ, where a, b, α, β ∈ N and p, q ∈ P.
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