Torsion subgroups of elliptic curves with non-cyclic torsion over \mathbb{Q} in elementary abelian 2-extensions of \mathbb{Q}

by
Yasutsugu Fujita (Sendai)

1. Introduction. Let E be an elliptic curve over \mathbb{Q} and F the maximal elementary abelian 2-extension of \mathbb{Q}, that is, $F:=\mathbb{Q}(\{\sqrt{m} ; m \in \mathbb{Z}\})$. It is known that the torsion subgroup $E(F)_{\text {tors }}$ of $E(F)$ is finite (Ribet [8]). More precisely, Laska and Lorenz showed that there exist at most thirty-one possibilities for $E(F)_{\text {tors }}$ (see [3, Theorem] or Theorem 2.1). However, it is not known whether all the groups listed in Theorem 2.1 can happen as $E(F)_{\text {tors }}$.

Now assume that E has non-cyclic torsion over \mathbb{Q}; then by Mazur's theorem $([4])$, the group $E(\mathbb{Q})_{\text {tors }}$ is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / m \mathbb{Z}$, where $m=2,4,6$ or 8 . Such an elliptic curve has a Weierstrass model $E: y^{2}=$ $x(x+M)(x+N)$, where M and N are non-zero integers with $M>N$. Further we may assume that the greatest common divisor (M, N) of M and N is a square-free integer or 1 , since for any positive integer d, E is isomorphic over \mathbb{Q} to an elliptic curve $E_{d^{2}}$ given by $y^{2}=x\left(x+d^{2} M\right)\left(x+d^{2} N\right)$ by replacing x with x / d^{2} and y with y / d^{3}, respectively. Then using the result of Ono ([6, Main Theorem 1], see also Theorem 2.2), Kwon classified the torsion subgroup of E over all quadratic fields ([2, Theorem 1]); Qiu and Zhang classified the torsion subgroup of E for a certain elliptic curve E with $E(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$ over all elementary abelian 2-extensions of \mathbb{Q}, i.e., over all number fields of type $(2, \ldots, 2)([7$, Theorems 3 and 4$])$; Ohizumi classified the torsion subgroup of E for an elliptic curve E with $E(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$ or $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 6 \mathbb{Z}$ over all bicyclic biquadratic fields, i.e., over all number fields of type $(2,2)$ ([5, Main Theorems 4.1 and 4.2]).

In this paper, first we completely determine the structure of the torsion subgroup $E(F)_{\text {tors }}$ when $E(\mathbb{Q})_{\text {tors }}$ is non-cyclic:

Theorem 1. Let E be an elliptic curve over \mathbb{Q} given by the equation $y^{2}=x(x+M)(x+N)$, where M and N are integers with $M>N$. Assume

[^0]that (M, N) is a square-free integer or 1 . Let $F:=\mathbb{Q}(\{\sqrt{m} ; m \in \mathbb{Z}\})$ be the maximal elementary abelian 2 -extension of \mathbb{Q}. Then $E(F)_{\text {tors }}$ can be classified as follows:
(a) If $E(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$, then $E(F)_{\text {tors }} \simeq \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 16 \mathbb{Z}$.
(b) If $E(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 6 \mathbb{Z}$, then $E(F)_{\text {tors }} \simeq \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 12 \mathbb{Z}$.
(c) If $E(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$, then $E(F)_{\text {tors }} \simeq \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$ or $\mathbb{Z} / 8 \mathbb{Z} \oplus$ $\mathbb{Z} / 8 \mathbb{Z}$. In this case, we may assume that both M and N are squares. Then $E(F)_{\text {tors }} \simeq \mathbb{Z} / 8 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$ if and only if $M-N$ is a square (this is equivalent to the condition that $\left.E_{-1}(\mathbb{Q})_{\mathrm{tors}} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}\right)$.
(d) If $E(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$, then $E(F)_{\text {tors }} \simeq \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}, \mathbb{Z} / 4 \mathbb{Z} \oplus$ $\mathbb{Z} / 8 \mathbb{Z}, \mathbb{Z} / 8 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}, \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 12 \mathbb{Z}$ or $\mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 16 \mathbb{Z}$. In this case, $E(F)_{\mathrm{tors}} \simeq \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$ if and only if $E_{D}(\mathbb{Q})_{\mathrm{tors}} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$ for all square-free integers D. Otherwise, $E(F)_{\text {tors }}$ can be determined depending only on the type (s) of $E_{D}(\mathbb{Q})_{\text {tors }}\left(\right.$ and of $E_{-D}(\mathbb{Q})_{\text {tors }}$ when $\left.E_{D}(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}\right)$ for D with $E_{D}(\mathbb{Q})_{\text {tors }} \not 千 \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$ through the isomorphism $E \simeq E_{D}$ over F.

Secondly, using Theorem 1 we classify the torsion subgroup $E(K)_{\text {tors }}$ for all elementary abelian 2-extensions K of \mathbb{Q} (Section 5). This is a generalization of the result of Kwon ([2, Theorem 1]).

The following notation is in force throughout this paper. F denotes the maximal elementary abelian 2 -extension of \mathbb{Q}. If k is an algebraic extension of \mathbb{Q}, then we denote by \mathcal{O}_{k} the ring of algebraic integers in k. For integers M and N, we denote by (M, N) the greatest common divisor of M and N. For a square-free integer D, we define the D-quadratic twist E_{D} of an elliptic curve $E: y^{2}=x(x+M)(x+N)$ over \mathbb{Q} by $E_{D}: y^{2}=x(x+D M)(x+D N)$. Given a Weierstrass model for E, we often denote by $x(P)$ the x-coordinate of a point P on E. If A is an abelian group, then we denote by $A[n]$ the subgroup of A annihilated by n. For a prime number l and an elliptic curve E over a field k, we denote by $E(k)_{(l)}$ the l-primary part of $E(k)_{\text {tors }}$. For a field k and an element a in k, we mean by \sqrt{a} an element α in the algebraic closure of k satisfying $\alpha^{2}=a$. If a is a positive real number, then we take the positive root as \sqrt{a} and we define $\sqrt{-a}=\sqrt{-1} \sqrt{a}$ with the imaginary unit $\sqrt{-1}$, as usual.

Acknowledgments. We would like to thank Professor Tetsuo Nakamura for his helpful comments and suggestions.
2. Preliminary results. We begin by stating the result of Laska and Lorenz:

Theorem 2.1 ([3, Theorem]). Let E be an elliptic curve over \mathbb{Q}. Then the torsion subgroup $E(F)_{\text {tors }}$ is isomorphic to one of the following thirty-one
groups:

$$
\begin{array}{ll}
\mathbb{Z} / 2^{a+b} \mathbb{Z} \oplus \mathbb{Z} / 2^{a} \mathbb{Z} & (a=1,2,3 \text { and } b=0,1,2,3) \\
\mathbb{Z} / 2^{a+b} \mathbb{Z} \oplus \mathbb{Z} / 2^{a} \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z} & (a=1,2,3 \text { and } b=0,1) \\
\mathbb{Z} / 2^{a} \mathbb{Z} \oplus \mathbb{Z} / 2^{a} \mathbb{Z} \oplus \mathbb{Z} / 5 \mathbb{Z} & (a=1,2,3), \\
\mathbb{Z} / 2^{a} \mathbb{Z} \oplus \mathbb{Z} / 2^{a} \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z} & (a=1,2,3)
\end{array}
$$

or $\{O\}, \mathbb{Z} / 3 \mathbb{Z}, \mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z}, \mathbb{Z} / 5 \mathbb{Z}, \mathbb{Z} / 7 \mathbb{Z}, \mathbb{Z} / 9 \mathbb{Z}, \mathbb{Z} / 15 \mathbb{Z}$.
Just as in [2] or [7], the result of Ono is a basic tool in this paper:
Theorem 2.2 ([6, Main Theorem 1]). Let $E: y^{2}=x(x+M)(x+N)$ be an elliptic curve over \mathbb{Q}, where M and N are integers. Assume that (M, N) is a square-free integer or 1 . Then the torsion subgroup $E(\mathbb{Q})_{\text {tors }}$ can be classified as follows:
(i) $E(\mathbb{Q}) \supset \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$ if and only if M and N are both squares, or $-M$ and $-M+N$ are both squares, or $-N$ and $-N+M$ are both squares.
(ii) $E(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$ if and only if $M=u^{4}$ and $N=v^{4}$, or $-M=u^{4}$ and $-M+N=v^{4}$, or $-N=u^{4}$ and $-N+M=v^{4}$, where u and v are relatively prime positive integers with $u^{2}+v^{2}=w^{2}$ for some integer w.
(iii) $E(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 6 \mathbb{Z}$ if and only if $M=a^{4}+2 a^{3} b$ and $N=$ $b^{4}+2 b^{3} a$, where a and b are relatively prime integers with $a / b \notin$ $\{-2,-1,-1 / 2,0,1\}$.
(iv) In all other cases, $E(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$.

If we write $E=E(M, N)$, then we obtain $E(M, N) \simeq E(-M, N-M) \simeq$ $E(-N, M-N)$ over \mathbb{Q} by replacing x with $x-M$ and $x-N$. Hence, if $E(\mathbb{Q}) \supset \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$ (resp. $E(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$), then we can assume that M and N are both squares (resp. $M=u^{4}$ and $N=v^{4}$) by changing x-coordinates suitably.

The following lemma is useful for finding whether a point on E over a field k is divisible by 2 in $E(k)$ (see [1, Theorem 4.2, p. 85] and its proof):

Lemma 2.3. Let k be a field of characteristic not equal to 2 or 3 , and E an elliptic curve over k given by $y^{2}=(x-\alpha)(x-\beta)(x-\gamma)$ with α, β, γ in k. For $P=(x, y) \in E(k)$, there exists a k-rational point $Q=\left(x^{\prime}, y^{\prime}\right)$ on E such that $[2] Q=P$ if and only if $x-\alpha, x-\beta$ and $x-\gamma$ are all squares in k. In this case, if we fix the sign of $\sqrt{x-\alpha}, \sqrt{x-\beta}$ and $\sqrt{x-\gamma}$, then x^{\prime} equals one of the following:

$$
\sqrt{x-\alpha} \sqrt{x-\beta} \pm \sqrt{x-\alpha} \sqrt{x-\gamma} \pm \sqrt{x-\beta} \sqrt{x-\gamma}+x
$$

or

$$
-\sqrt{x-\alpha} \sqrt{x-\beta} \pm \sqrt{x-\alpha} \sqrt{x-\gamma} \mp \sqrt{x-\beta} \sqrt{x-\gamma}+x
$$

where the signs are taken simultaneously.
Using Theorem 2.2 and Lemma 2.3, Kwon classified the torsion subgroup of $E=E(M, N)$ over all quadratic fields ([2, Theorem 1]) and the torsion subgroup of E_{D} for all square-free integers D :

Theorem 2.4 ([2, Theorem 2]). Let $E: y^{2}=x(x+M)(x+N)$ be an elliptic curve over \mathbb{Q}, where M and N are integers.
(i) If $E(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$, then $E_{D}(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$ for all square-free integers D.
(ii) If $E(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 6 \mathbb{Z}$, then $E_{D}(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$ for all square-free integers D.
(iii) If $E(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$, we may assume that $M=s^{2}$ and $N=t^{2}$ for some integers s and t. If $D=-1$ and $s^{2}-t^{2}= \pm r^{2}$ for some integer r, then $E_{D}(\mathbb{Q}) \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$. In all other cases, $E_{D}(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$.
(iv) If $E(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$, then $E_{D}(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}, \mathbb{Z} / 2 \mathbb{Z} \oplus$ $\mathbb{Z} / 6 \mathbb{Z}, \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$ for only finitely many D and $E_{D}(\mathbb{Q}) \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus$ $\mathbb{Z} / 2 \mathbb{Z}$ for almost all D.
The following proposition is classical (see, e.g., [1, III.1]).
Proposition 2.5. Any integral solution (x, y, z) of $X^{4} \pm Y^{4}=Z^{2}$ satisfies $x y z=0$.
3. Squares of algebraic integers in F. Let $R:=\mathbb{Z}[\{\sqrt{m} ; m \in \mathbb{Z}\}]$; it is a subring of \mathcal{O}_{F}.

Lemma 3.1. If $a \in \mathcal{O}_{F}$ is of degree 2^{d} over \mathbb{Q} for some integer $d \geq 0$, then $2^{d} a \in R$.

Proof. We prove this lemma by induction on d. It is obvious that the lemma holds for $d=0,1$.

Assume that $d \geq 2$. Let $K_{d}:=\mathbb{Q}(a)$. Then K_{d} is a number field of type $(2, \ldots, 2)$ of degree 2^{d} over \mathbb{Q}. We may write

$$
a=\frac{1}{b}\left(b_{0}+b_{1} \sqrt{\theta_{1}}+\cdots+b_{m} \sqrt{\theta_{m}}\right)
$$

with some integer $m \geq d$, where $b_{0} \in \mathbb{Z}, b, b_{1}, \ldots, b_{m}$ are non-zero integers and $\theta_{1}, \ldots, \theta_{m}$ are distinct square-free integers. For each i with $1 \leq i \leq m$, we may choose a basis $\left\{1, \sqrt{\theta_{i 1}}, \ldots, \sqrt{\theta_{i d}}\right\}$ of K_{d} over \mathbb{Q} such that $\theta_{i 1}=\theta_{i}$ and $\theta_{i 2}, \ldots, \theta_{i d} \in\left\{\theta_{1}, \ldots, \check{\theta}_{i}, \ldots, \theta_{m}\right\}$. We define the subfield $K_{d}^{(i)}$ of K_{d} of degree 2^{d-1} to be $\mathbb{Q}\left(\sqrt{\theta_{i 1}}, \sqrt{\theta_{i 3}}, \ldots, \sqrt{\theta_{i d}}\right)$. Let α_{i} be the sum of the elements
in the set

$$
\left\{\frac{1}{b} b_{0}, \frac{1}{b} b_{1} \sqrt{\theta_{1}}, \ldots, \frac{1}{b} b_{m} \sqrt{\theta_{m}}\right\} \cap K_{d}^{(i)}
$$

Note that the terms $(1 / b) b_{0}$ and $(1 / b) b_{i} \sqrt{\theta_{i}}$ appear in the sum α_{i}, since $(1 / b) b_{0},(1 / b) b_{i} \sqrt{\theta_{i}} \in K_{d}^{(i)}$. Then $\alpha_{i} \in K_{d}^{(i)}$ and we can write $a=\alpha_{i}+$ $\beta_{i} \sqrt{\theta_{i 2}}$ with some $\beta_{i} \in K_{d}^{(i)}$. Let σ be a generator of the Galois group $\operatorname{Gal}\left(K_{d} / K_{d}^{(i)}\right)$. Then $2 \alpha_{i}=a+a^{\sigma} \in K_{d}^{(i)} \cap \mathcal{O}_{F}$. By the inductive assumption, $2^{d} \alpha_{i}=2^{d-1} 2 \alpha_{i} \in R$. Since the terms in the sum $2^{d} \alpha_{i}$ are linearly independent over \mathbb{Z}, each term in $2^{d} \alpha_{i}$ is contained in R; in particular, $2^{d}(1 / b) b_{0}, 2^{d}(1 / b) b_{i} \sqrt{\theta_{i}} \in R$. Since this holds for each i with $1 \leq i \leq m$, we obtain

$$
2^{d} a=2^{d} \frac{1}{b} b_{0}+2^{d} \frac{1}{b} b_{1} \sqrt{\theta_{1}}+\cdots+2^{d} \frac{1}{b} b_{m} \sqrt{\theta_{m}} \in R .
$$

This completes the proof of the lemma.
We need the following lemmas in order to verify that a certain element in F is not a square in F.

Lemma 3.2. For $a \in \mathcal{O}_{F}$, an odd prime l and an integer $i \geq 0$, if $l^{i} \sqrt{l}$ divides a^{2} in \mathcal{O}_{F}, then so does l^{i+1}.

Proof. If $l^{i} \sqrt{l}$ divides a^{2} in \mathcal{O}_{F}, then $a / \sqrt{l^{i}} \in \mathcal{O}_{F}$, since $\left(a / \sqrt{l^{i}}\right)^{2}=$ $a^{2} / l^{i} \in \mathcal{O}_{F}$. By replacing a with $a / \sqrt{l^{i}}$, it suffices to prove the assertion for $i=0$.

Let $F^{\prime}:=\mathbb{Q}(\{\sqrt{m} ; m$ is an integer indivisible by $l\})$. Since Lemma 3.1 implies that $2^{d} a \in R$ for some integer $d \geq 0$, we may write $2^{d} a=\alpha+\beta \sqrt{l}$ with $\alpha, \beta \in R \cap \mathcal{O}_{F^{\prime}}$. Thus

$$
\begin{equation*}
2^{2 d} a^{2}=\left(\alpha^{2}+\beta^{2} l\right)+2 \alpha \beta \sqrt{l} \tag{3.1}
\end{equation*}
$$

Assume that \sqrt{l} divides a^{2} in \mathcal{O}_{F}. The equation (3.1) implies that \sqrt{l} divides α^{2} in \mathcal{O}_{F}. Lemma 3.1 allows us to write $\alpha^{2}=\sqrt{l}(\gamma+\delta \sqrt{l}) / 2^{e}$ with $\gamma, \delta \in$ $R \cap \mathcal{O}_{F^{\prime}}$ and some integer $e \geq 0$. Hence $2^{e} \alpha^{2}=\gamma \sqrt{l}+\delta l$. However, $\alpha^{2} \in$ $\mathcal{O}_{F^{\prime}}$, together with the linear independence of 1 and \sqrt{l} over $\mathcal{O}_{F^{\prime}}$, implies that $\gamma=0$. Hence $2^{e} \alpha^{2}=\delta l$. Since $\left(\sqrt{2^{e}} \alpha / \sqrt{l}\right)^{2}=\delta \in \mathcal{O}_{F}$, we have $\left(\sqrt{2^{e}} / \sqrt{l}\right) \alpha \in \mathcal{O}_{F}$. Hence it is easy to find that \sqrt{l} divides α in \mathcal{O}_{F}. It follows from (3.1) that l divides $2^{2 d} a^{2}$ in \mathcal{O}_{F}, that is, l divides a^{2} in \mathcal{O}_{F}.

Remark 3.3. When $l=2$, Lemma 3.2 does not hold in general. For example, let $a=1+\sqrt{-1}+\sqrt{2}$. Then

$$
a^{2}=2 \sqrt{2} \frac{1+\sqrt{-1}}{\sqrt{2}}(1+\sqrt{2})
$$

Since $(1+\sqrt{-1}) / \sqrt{2} \in \mathcal{O}_{F}$, it is obvious that $2 \sqrt{2}$ divides a^{2} in \mathcal{O}_{F}. Suppose
that 4 divides a^{2} in \mathcal{O}_{F}. Then we must have

$$
\frac{1+\sqrt{-1}}{2} \in \mathcal{O}_{F} \cap \mathbb{Q}(\sqrt{-1})=\mathcal{O}_{\mathbb{Q}(\sqrt{-1})}
$$

since $a^{2} / 4=(1+\sqrt{-1}) / 2+(1+\sqrt{-1}) / \sqrt{2}$, which contradicts the fact that $\mathcal{O}_{\mathbb{Q}(\sqrt{-1})} \subset R$. It follows that a^{2} is divisible not by 4 but by $2 \sqrt{2}$ in \mathcal{O}_{F}.

Lemma 3.4 ([7, Assertion, p. 166]). For any $m \in \mathbb{Z}, \sqrt{m}$ is a square in F if and only if $|m|$ is a square in \mathbb{Q}.

Proof. Suppose that \sqrt{m} is a square in F. Then it is not difficult to find that it can be expressed as $\sqrt{m}=c(a+b \sqrt{m})^{2}$, where $c \in \mathbb{Q}$ and $a, b \in \mathbb{Z}$. If m is not a square in \mathbb{Q}, then $a^{2}+b^{2} m=0$, that is, $m=-(a / b)^{2}$. The converse obviously holds.
4. Proof of Theorem 1. We begin by examining the structure of $E(F)_{(2)}$ when $E(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$.

Proposition 4.1. Assume that $E(\mathbb{Q})_{\mathrm{tors}} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$. Then $E(F)_{(2)}$ $\simeq \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 16 \mathbb{Z}$.

Proof. We may assume that $M=u^{4}$ and $N=v^{4}$, where u and v are relatively prime integers with $u>v>0$ and $u^{2}+v^{2}=w^{2}$ for some integer $w>0$.

First, we show that $E(F) \not \supset \mathbb{Z} / 8 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$. By Lemma 2.3, we can find a point $P=(x, y)$ of order 4 on E such that $x=u^{2} w \sqrt{u^{2}-v^{2}}-u^{4}$. Suppose that $E(F) \supset \mathbb{Z} / 8 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$. Then by Lemma $2.3, x+u^{4}=u^{2} w \sqrt{u^{2}-v^{2}}$ must be a square in F. This means that $\sqrt{u^{2}-v^{2}}$ is a square in F. It follows from Lemma 3.4 that $u^{2}-v^{2}$ is a square in \mathbb{Q}, which contradicts Proposition 2.5 and the assumption $u^{2}+v^{2}=w^{2}$. Hence $x+u^{4}=u^{2} w \sqrt{u^{2}-v^{2}}$ is not a square in F. Therefore, $E(F) \not \supset \mathbb{Z} / 8 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$.

Secondly, we show that $E(F) \not \supset \mathbb{Z} / 32 \mathbb{Z}$. Let

$$
P_{3}=(u v(u+w)(v+w), u v w(u+v)(v+w)(w+u))
$$

Then P_{3} is a point of order 8 in $E(\mathbb{Q})$ and $[4] P_{3}=(0,0)$. Using Lemma 2.3, we can find a point $P_{4}=\left(x_{4}, y_{4}\right)$ of order 16 in $E(F)$ such that $[2] P_{4}=P_{3}$ and $x_{4}=\sqrt{\xi} \eta$, where

$$
\begin{aligned}
& \eta=\sqrt{\xi}+\sqrt{\eta_{1}}+\sqrt{\eta_{2}}+\eta_{3} \\
& \xi=u v(u+w)(v+w), \quad \eta_{1}=u w(u+v)(w+v) \\
& \eta_{2}=v w(v+u)(w+u), \quad \eta_{3}=w(u+v)
\end{aligned}
$$

Note that $\xi, \eta_{1}, \eta_{2}, \eta_{3} \in \mathbb{Z}$ and $\eta \in \mathcal{O}_{F}$. Since $u^{2}+v^{2}=w^{2},(u, v)=1$ and η is symmetric with respect to u, v, we may assume that $u=2 m n, v=m^{2}-n^{2}$, $w=m^{2}+n^{2}$, where m and n are relatively prime integers with $m>n>0$
and $m \not \equiv n(\bmod 2)$. Then

$$
\begin{aligned}
\sqrt{\xi} & =2 m(m+n) \sqrt{m n\left(m^{2}-n^{2}\right)} \\
\eta_{1} & =4 m^{3} n\left(m^{2}+n^{2}\right)\left(m^{2}+2 m n-n^{2}\right) \\
\eta_{2} & =(m+n)^{2}\left(m^{4}-n^{4}\right)\left(m^{2}+2 m n-n^{2}\right) \\
\eta_{3} & =\left(m^{2}+n^{2}\right)\left(m^{2}+2 m n-n^{2}\right)
\end{aligned}
$$

We see that none of ξ, η_{1} and η_{2} is a square in \mathbb{Q} by using $(u, v)=1$ and $u^{2}+v^{2}=w^{2}$ (see [2, p. 157]). We need the following lemma:

Lemma 4.2. There exists an odd prime l and an integer $i \geq 0$ such that x_{4} is divisible not by l^{i+1} but by $l^{i} \sqrt{l}$ in \mathcal{O}_{F}.

Proof of Lemma 4.2. Suppose that the square-free part of $m n\left(m^{2}-n^{2}\right)$ is 2 . Then both $m+n$ and $m-n$ are squares and either $m=2\left(m^{\prime}\right)^{2}, n=$ $\left(n^{\prime}\right)^{2}$ or $m=\left(m^{\prime}\right)^{2}, n=2\left(n^{\prime}\right)^{2}$ for some integers m^{\prime}, n^{\prime}, since any two of $m, n, m+n, m-n$ are relatively prime. If $m=2\left(m^{\prime}\right)^{2}$ and $n=\left(n^{\prime}\right)^{2}$, then both $2\left(m^{\prime}\right)^{2}+\left(n^{\prime}\right)^{2}$ and $2\left(m^{\prime}\right)^{2}-\left(n^{\prime}\right)^{2}$ must be squares, which cannot happen, since either $2\left(m^{\prime}\right)^{2}+\left(n^{\prime}\right)^{2}$ or $2\left(m^{\prime}\right)^{2}-\left(n^{\prime}\right)^{2}$ is congruent with 2 or 3 modulo 4. If $m=\left(m^{\prime}\right)^{2}$ and $n=2\left(n^{\prime}\right)^{2}$, then both $\left(m^{\prime}\right)^{2}+2\left(n^{\prime}\right)^{2}$ and $\left(m^{\prime}\right)^{2}-2\left(n^{\prime}\right)^{2}$ must be squares, which contradicts the fact that 2 is not a congruent number. Hence there exists an odd prime l which divides the square-free part of $m n\left(m^{2}-n^{2}\right)$. In order to prove the lemma, it suffices to show that \sqrt{l} does not divide η in \mathcal{O}_{F}.

Suppose that \sqrt{l} divides η in \mathcal{O}_{F}. Since l divides either η_{1} or η_{2}, Lemma 3.1 implies that l divides η_{3}. Hence, it is easy to see that l divides both $m n$ and $m^{2}-n^{2}$, which contradicts $(m, n)=1$. Therefore, \sqrt{l} does not divide η in \mathcal{O}_{F}. This completes the proof of the lemma.

Now comparing Lemma 3.2 with Lemma 4.2, we easily find that x_{4} is not a square in \mathcal{O}_{F}. It follows from Lemma 2.3 that $P_{4} \notin 2 E(F)$.

Next, using Lemma 2.3 we can find a point $P_{4}^{\prime}=\left(x_{4}^{\prime}, y_{4}^{\prime}\right)$ of order 16 in $E(F)$ such that $[2] P_{4}^{\prime}=P_{3}+Q_{1}=P_{3}^{\prime}$ and

$$
\begin{array}{r}
x_{4}^{\prime}=\sqrt{u v(u+w)(v-w)}\{\sqrt{u w(u-v)(w-v)}+\sqrt{v w(v-u)(w+u)} \\
+\sqrt{u v(u+w)(v-w)}+w(u-v)\}
\end{array}
$$

where $P_{3}^{\prime}=(u v(u+w)(v-w), u v w(u-v)(v-w)(w+u))$ and $Q_{1}=\left(-u^{4}, 0\right)$. Since x_{4}^{\prime} is obtained by substituting $-v$ into v in x_{4}, it is easy to show that x_{4}^{\prime} is not a square in F. It follows from Lemma 2.3 that $P_{4}^{\prime} \notin 2 E(F)$. Put $Q_{2}:=P_{4}^{\prime}-P_{4} \in E(F)$. Then $[2] Q_{2}=P_{3}^{\prime}-P_{3}=Q_{1}$. Note that Q_{2} is not a multiple of P_{4}, since Q_{1} would then be a multiple of $[8] P_{4}=(0,0)$. Suppose that there exists a point P of order 32 in $E(F)$. Then $[2] P=[a] P_{4}+[b] Q_{2}$ for some integers $a \in\{1,3,5,7,9,11,13,15\}$ and $b \in\{0,1,2,3\}$, since $E(F) \not \supset$
$\mathbb{Z} / 8 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$. Now we define a point $Q \in\left\langle P_{4}\right\rangle \oplus\left\langle Q_{2}\right\rangle$ as follows:

$$
Q:= \begin{cases}-[(a-1) / 2] P_{4}-[b / 2] Q_{2} & \text { if } b=0,2 \\ -[(a-1) / 2] P_{4}-[(b-1) / 2] Q_{2} & \text { if } b=1,3\end{cases}
$$

Then $[2](P+Q)=P_{4}$ or P_{4}^{\prime}. Since $P+Q \in E(F)$, we must have either $P_{4} \in 2 E(F)$ or $P_{4}^{\prime} \in 2 E(F)$, which is a contradiction. Therefore, $E(F) \not \supset$ $\mathbb{Z} / 32 \mathbb{Z}$. Consequently, $E(F)_{(2)} \simeq \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 16 \mathbb{Z}$, which completes the proof of Proposition 4.1.

When $E(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 6 \mathbb{Z}$, we define $E(F)_{\left(2^{\prime}\right)}$ as follows:

$$
E(F)_{\left(2^{\prime}\right)}:=\{P \in E(F) ;[n] P=O \text { for some odd integer } n\}
$$

We can easily determine the structure of $E(F)_{\left(2^{\prime}\right)}$ using Theorem 2.1 and Theorem 1 (ii) in [2], which implies that $E(\mathbb{Q}(\sqrt{D})) \not \supset \mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z}$ for all square-free integers D.

Proposition 4.3. Assume that $E(\mathbb{Q})_{\mathrm{tors}} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 6 \mathbb{Z}$. Then $E(F)_{\left(2^{\prime}\right)}$ $\simeq \mathbb{Z} / 3 \mathbb{Z}$.

Proof. It suffices to show that $E(F) \not \supset \mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z}$, since Theorem 2.1 implies that $E(F) \not \supset \mathbb{Z} / 6 p \mathbb{Z}$ for any odd prime p. By the triplication formula, the x-coordinates of points of order 3 on E are the roots of some equation of degree 4 with coefficients in \mathbb{Q}. Assume that $E(\mathbb{Q}) \supset \mathbb{Z} / 3 \mathbb{Z}$. Then one of the roots is the x-coordinate of a point P_{1} of order 3 in $E(\mathbb{Q})$. Hence, if $E(F) \supset$ $\mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z}$, then some polynomial $g(x)$ of degree 3 with coefficients in \mathbb{Q} must be decomposed as a product of linear polynomials in F. Since the Galois group $\operatorname{Gal}(F / \mathbb{Q})$ has no element of order 3 , there exists $\alpha \in \mathbb{Q}$ such that $g(\alpha)=0$. Let E be given by $y^{2}=f(x)$, let D be the square-free part of $f(\alpha)$ and put $\beta:=\sqrt{f(\alpha)}$. Then the point $P_{2}=(\alpha, \beta)$ is of order 3 in $E(\mathbb{Q}(\sqrt{D}))$, and P_{1} and P_{2} generate $E[3]$. Hence $E(\mathbb{Q}(\sqrt{D})) \supset E[3]$, which contradicts Theorem 1(ii) in [2]. Therefore, $E(F) \not \supset \mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z}$. ■

In order to determine the structure of $E(F)_{(2)}$, we need an elementary lemma:

Lemma 4.4. Let $\alpha, \beta \in \mathbb{Q}$ and let γ be a square-free integer. If $\alpha+\beta \sqrt{\gamma}$ is a square in F, then $\alpha^{2}-\beta^{2} \gamma$ is a square in \mathbb{Q}.

Proof. If $\alpha+\beta \sqrt{\gamma}$ is a square in F, then it can be expressed as $\alpha+\beta \sqrt{\gamma}=$ $c(a+b \sqrt{\gamma})^{2}$, where $c \in \mathbb{Q}$ and $a, b \in \mathbb{Z}$. This means that $c\left(a^{2}+b^{2} \gamma\right)=\alpha$ and $2 a b c=\beta$. Then $4\left(a^{2} c\right)^{2}-4 \alpha\left(a^{2} c\right)+\beta^{2} \gamma=0$. Hence

$$
a^{2} c=\frac{\alpha \pm \sqrt{\alpha^{2}-\beta^{2} \gamma}}{2} \in \mathbb{Q}
$$

Therefore, $\sqrt{\alpha^{2}-\beta^{2} \gamma} \in \mathbb{Q}$.

Since we have $E_{D}(\mathbb{Q})_{(2)} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$ for all square-free integers D by Theorem $2.4(\mathrm{ii})$, it suffices to show the following.

Proposition 4.5. Assume that $E(\mathbb{Q})_{(2)} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$ and $E_{D}(\mathbb{Q})_{(2)}$ $\simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$ for all square-free integers D. Then $E(F)_{(2)} \simeq \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$.

Proof. By Lemma 2.3, the x-coordinate of a point P of order 4 on E equals one of $\pm \sqrt{M N},-M \pm \sqrt{M(M-N)},-N \pm \sqrt{N(N-M)}$. Suppose that $E(F) \supset \mathbb{Z} / 8 \mathbb{Z}$. By Lemma 2.3, there exists a point $P=(x, y)$ of order 4 in $E(F)$ such that $x, x+M$ and $x+N$ are all squares in F.

Suppose that $x= \pm \sqrt{M N}$. By Lemma 3.4, $|M N|$ is a square in \mathbb{Q}. Hence, we may assume that $M=d_{1}^{2} D, N= \pm d_{2}^{2} D$ for some D, a square-free integer or 1 , and some relatively prime integers d_{1}, d_{2}. If $M=d_{1}^{2} D, N=d_{2}^{2} D$, then the D-quadratic twist E_{D} of E is given by $y^{2}=x\left\{x+\left(d_{1} D\right)^{2}\right\}\left\{x+\left(d_{2} D\right)^{2}\right\}$. Hence by Theorem $2.2(\mathrm{i})$ we have $E_{D}(\mathbb{Q}) \supset \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$, which contradicts the assumption. Therefore assume that $M=d_{1}^{2} D, N=-d_{2}^{2} D$. Then $x+M$ $= \pm d_{1} d_{2} D \sqrt{-1}+d_{1}^{2} D$. By Lemma 4.4, if $x+M$ is a square in F, then $\sqrt{\left(d_{1}^{2} D\right)^{2}+\left(d_{1} d_{2} D\right)^{2}} \in \mathbb{Q}$, that is, $\sqrt{d_{1}^{2}+d_{2}^{2}} \in \mathbb{Q}$. However, since the D quadratic twist E_{D} of $E=E(M, N)$ is isomorphic over \mathbb{Q} to an elliptic curve $E^{\prime}=E_{D}(-N, M-N)$ given by $y^{2}=x\left\{x+\left(d_{2} D\right)^{2}\right\}\left\{x+\left(d_{1}^{2}+d_{2}^{2}\right) D^{2}\right\}$, we must have $E_{D}(\mathbb{Q}) \simeq E^{\prime}(\mathbb{Q}) \supset \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$ by Theorem $2.2(\mathrm{i})$, which contradicts the assumption.

If $x=-M \pm \sqrt{M(M-N)}$ (resp. $x=-N \pm \sqrt{N(N-M)}$), then we also arrive at a contradiction by replacing M, N and x with $-M, N-M$ and $x+M$ (resp. with $-N, M-N$ and $x+N$) in the above argument. Therefore, $E(F) \not \supset \mathbb{Z} / 8 \mathbb{Z}$. Since it is clear that $E(F) \supset \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$, we obtain the assertion.

When $E(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$, the structure of $E(F)_{(2)}$ depends on whether $E_{-1}(\mathbb{Q})_{\text {tors }}$ is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$. Note that in this case $E_{-1}(\mathbb{Q})_{\text {tors }}$ is isomorphic to either $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$ or $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$ (see Theorem 2.4(iii)).

Proposition 4.6. Assume that $E(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$. If $E_{-1}(\mathbb{Q})_{\text {tors }}$ $\simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$, then $E(F)_{(2)} \simeq \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$. Otherwise, $E(F)_{(2)} \simeq \mathbb{Z} / 8 \mathbb{Z}$ $\oplus \mathbb{Z} / 8 \mathbb{Z}$.

Proof. We may assume that $M=s^{2}$ and $N=t^{2}$, where s and t are relatively prime integers with $s>t>0$. Then

$$
E(\mathbb{Q})_{\text {tors }}=\left\langle Q_{1}\right\rangle \oplus\left\langle P_{2}\right\rangle \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}
$$

where $P_{2}=(s t, s t(s+t))$ and $Q_{1}=\left(-s^{2}, 0\right)$. Note that $[2] P_{2}=(0,0)$. By Lemma 2.3, $E(F) \supset \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$ and there exist points P_{3} and Q_{2} of order 8 and order 4 , respectively, in $E(F)$ such that $[2] P_{3}=P_{2},[2] Q_{2}=Q_{1}$ and $x\left(P_{3}\right)=s t+s \sqrt{t(s+t)}+t \sqrt{s(s+t)}+(s+t) \sqrt{s t}, x\left(Q_{2}\right)=-s^{2}+s \sqrt{s^{2}-t^{2}}$.

Suppose that $P_{3} \in 2 E(F)$. Since

$$
x\left(P_{3}\right)=\sqrt{s t}\left\{\frac{1}{\sqrt{2}}(\sqrt{s}+\sqrt{t}+\sqrt{s+t})\right\}^{2}
$$

we see that $x\left(P_{3}\right)$ is a square in F if and only if $\sqrt{s t}$ is a square in F; hence by Lemma 3.4 , st is a square in \mathbb{Q}. This means that there exist positive integers u, v such that $s=u^{2}, t=v^{2}$, since $(s, t)=1$. Thus

$$
\begin{aligned}
x\left(P_{3}\right)+M & =u^{2} v^{2}+u^{2} v \sqrt{u^{2}+v^{2}}+u v^{2} \sqrt{u^{2}+v^{2}}+\left(u^{2}+v^{2}\right) u v+u^{4} \\
& =u(u+v) \sqrt{u^{2}+v^{2}}\left(v+\sqrt{u^{2}+v^{2}}\right)
\end{aligned}
$$

Since $(u, v)=1$, we have $\left(v, u^{2}+v^{2}\right)=1$. Note that by Theorem 2.2(ii), $u^{2}+v^{2}$ is not a square in \mathbb{Q}, since $E(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$. Suppose that the square-free part of $u^{2}+v^{2}$ is 2 . If we write $u^{2}+v^{2}=2 w^{2}$ with some integer $w>0$, then $x\left(P_{3}\right)+M=u w(u+v)(2 w+v \sqrt{2})$. Since $x\left(P_{3}\right)+M$ is a square in F, we can write $2 w+v \sqrt{2}=c(a+b \sqrt{2})^{2}$, where $c \in \mathbb{Q}$ and $a, b \in \mathbb{Z}$ with $(a, b)=1$. Then $c\left(a^{2}+2 b^{2}\right)=2 w$ and $2 a b c=v$, which means that $v\left(a^{2}+2 b^{2}\right)=4 a b w$. Since v is odd because of $u^{2}+v^{2}=2 w^{2}$, we must have $a^{2}+2 b^{2} \equiv 0(\bmod 4)$, that is, $a \equiv b \equiv 0(\bmod 2)$, which contradicts $(a, b)=1$. Therefore there exists an odd prime l which divides the square-free part of $u^{2}+v^{2}$. However for such a prime l, \sqrt{l} does not divide $v+\sqrt{u^{2}+v^{2}}$ in \mathcal{O}_{F} because of $\left(v, u^{2}+v^{2}\right)=1$ and Lemma 3.1; hence there exists an integer i such that $x\left(P_{3}\right)+M$ is divisible not by l^{i+1} but by $l^{i} \sqrt{l}$ in \mathcal{O}_{F}, which contradicts Lemma 3.2. It follows that $x\left(P_{3}\right)+M$ is not a square in F, and from Lemma 2.3 that $P_{3} \notin 2 E(F)$.

CASE 1: $E_{-1}(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$. In this case, by Theorem 2.4(iii), $s^{2}-t^{2}$ is not a square in \mathbb{Q}. Suppose that $E(F) \supset \mathbb{Z} / 8 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$, that is, $Q_{2} \in 2 E(F)$. Then by Lemma 2.3, $x\left(Q_{2}\right), x\left(Q_{2}\right)+M$ and $x\left(Q_{2}\right)+N$ are all squares in F. Since $x\left(Q_{2}\right)+M=s \sqrt{s^{2}-t^{2}}$, Lemma 3.4 implies that $x\left(Q_{2}\right)+M$ is a square in F if and only if $s^{2}-t^{2}$ is a square in \mathbb{Q}, which contradicts the assumption. Hence $E(F) \not \supset \mathbb{Z} / 8 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$. Using Lemma 2.3, we can find a point P_{3}^{\prime} of order 8 in $E(F)$ such that $[2] P_{3}^{\prime}=P_{2}+Q_{1}=P_{2}^{\prime}$ and $x\left(P_{3}^{\prime}\right)=-s t+s \sqrt{-t(s-t)}-t \sqrt{s(s-t)}+(s-t) \sqrt{-s t}$, where $P_{2}^{\prime}=$ $(-s t,-s t(s-t))$. Since $x\left(P_{3}^{\prime}\right)$ is obtained by substituting $-t$ into t in $x\left(P_{3}\right)$, it is easy to see that $x\left(P_{3}^{\prime}\right)+M$ is not a square in F. It follows from Lemma 2.3 that $P_{3}^{\prime} \notin 2 E(F)$. Put $Q_{2}^{\prime}:=P_{3}^{\prime}-P_{3} \in E(F)$. Then $[2] Q_{2}^{\prime}=P_{2}^{\prime}-P_{2}=Q_{1}$. Suppose that there exists a point P of order 16 in $E(F)$. Then $[2] P=$ $[a] P_{3}+[b] Q_{2}^{\prime}$ for some integers $a \in\{1,3,5,7\}$ and $b \in\{0,1,2,3\}$, since $E(F) \not \supset \mathbb{Z} / 8 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$. Now we define a point $Q \in\left\langle P_{3}\right\rangle \oplus\left\langle Q_{2}^{\prime}\right\rangle$ as follows:

$$
Q:= \begin{cases}-[(a-1) / 2] P_{3}-[b / 2] Q_{2}^{\prime} & \text { if } b=0,2 \\ -[(a-1) / 2] P_{3}-[(b-1) / 2] Q_{2}^{\prime} & \text { if } b=1,3\end{cases}
$$

Then $[2](P+Q)=P_{3}$ or P_{3}^{\prime}. Since $P+Q \in E(F)$, we must have either $P_{3} \in$ $2 E(F)$ or $P_{3}^{\prime} \in 2 E(F)$, which is a contradiction. Therefore, $E(F) \not \supset \mathbb{Z} / 16 \mathbb{Z}$. Consequently, $E(F)_{(2)} \simeq \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$.

CASE 2: $E_{-1}(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$. In this case, by Theorem 2.4(iii), $s^{2}-t^{2}=r^{2}$ for some integer $r>0$. Then $x\left(Q_{2}\right)=s(r-s)$. By Lemma 2.3, $E(F) \supset \mathbb{Z} / 8 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$. In fact, there exists a point Q_{3} of order 8 in $E(F)$ such that $[2] Q_{3}=Q_{2}$ and $x\left(Q_{3}\right)=s \sqrt{r(r-s)}+(s-r) \sqrt{-r s}+r \sqrt{s(s-r)}+$ $s(r-s)$. Thus

$$
x\left(Q_{3}\right)+M=\sqrt{-r s}\left\{\frac{1}{\sqrt{2}}(\sqrt{s}-\sqrt{-r}+\sqrt{s-r})\right\}^{2} .
$$

However, by Proposition 2.5 and $(r, s)=1$ it is easy to see that $r s$ is not a square in \mathbb{Q}. It follows from Lemma 3.4 that $x\left(Q_{3}\right)+M$ is not a square in F, and from Lemma 2.3 that $Q_{3} \notin 2 E(F)$.

Next, we show that $E(F) \not \supset \mathbb{Z} / 16 \mathbb{Z}$. Using Lemma 2.3, we can find a point R_{3} of order 8 in $E(F)$ such that $[2] R_{3}=R_{2}$ and

$$
\begin{aligned}
x\left(R_{3}\right)= & \sqrt{r t} \frac{1+\sqrt{-1}}{\sqrt{2}}\left\{\frac{\sqrt{r+s}+\sqrt{r-s}}{\sqrt{2}}\right\}^{2} \\
& +t \sqrt{r}\left\{\frac{1+\sqrt{-1}}{\sqrt{2}}\right\}^{2} \frac{\sqrt{r+s}+\sqrt{r-s}}{\sqrt{2}} \\
& +r \sqrt{t} \frac{1+\sqrt{-1}}{\sqrt{2}} \frac{\sqrt{r+s}+\sqrt{r-s}}{\sqrt{2}}+t(r \sqrt{-1}-t),
\end{aligned}
$$

where $R_{2}=(t(r \sqrt{-1}-t), r t(r \sqrt{-1}-t))$ and $[2] R_{2}=\left(-t^{2}, 0\right)$. Then we have

$$
\begin{aligned}
x\left(R_{3}\right)+N= & \sqrt{r t} \frac{1+\sqrt{-1}}{\sqrt{2}}\left\{\frac{\sqrt{r+s}+\sqrt{r-s}}{\sqrt{2}}+\sqrt{r}\right\} \\
& \times\left\{\frac{\sqrt{r+s}+\sqrt{r-s}}{\sqrt{2}}+\sqrt{t} \frac{1+\sqrt{-1}}{\sqrt{2}}\right\} .
\end{aligned}
$$

Put

$$
A:=\frac{\sqrt{r+s}+\sqrt{r-s}}{\sqrt{2}}+\sqrt{r}, \quad B:=\frac{\sqrt{r+s}+\sqrt{r-s}}{\sqrt{2}}+\sqrt{t} \frac{1+\sqrt{-1}}{\sqrt{2}}
$$

Note that $A, B, x\left(R_{3}\right)+N \in \mathcal{O}_{F}$ and that both A and B divide $x\left(R_{3}\right)+N$ in \mathcal{O}_{F}. Suppose that $x\left(R_{3}\right)+N$ is a square in \mathcal{O}_{F}.

First, suppose that there exists an odd prime l which divides the squarefree part of t. Since $r<s, \sqrt{r+s}$ and $\sqrt{r-s}$ are linearly independent over \mathbb{Z}; and since $(r+s, r-s)$ divides $(2 r, 2 s)=2, l$ does not divide $(r+s$, $r-s$). Hence by Lemma 3.1, \sqrt{l} does not divide $\sqrt{r+s}+\sqrt{r-s}$ in \mathcal{O}_{F}, which means that \sqrt{l} does not divide B in \mathcal{O}_{F}. If $\sqrt{r+s}, \sqrt{r-s}$ and $\sqrt{2 r}$ are linearly independent over \mathbb{Z}, then it is clear that \sqrt{l} does not divide A
in \mathcal{O}_{F} because of $(l, 2 r)=1$ and Lemma 3.1. Otherwise, the square-free part of $r+s$ equals that of $2 r$; it is either 1 or 2 , since $s=m^{2}+n^{2}$ and $r=2 m n$ or $m^{2}-n^{2}$ for some relatively prime integers m, n. Then the square-free part of $r-s$ is either -1 or -2 . Thus A can be expressed as $A=a_{0}+a_{1} \sqrt{-1}+a_{2} \sqrt{2}+a_{3} \sqrt{-2}$ with integers $a_{0}, a_{1}, a_{2}, a_{3}$. Hence by Lemma 3.1 there exists an integer i such that A is divisible not by $l^{i} \sqrt{l}$ but by l^{i} in \mathcal{O}_{F}. Therefore for some integer $e, x\left(R_{3}\right)+N$ is divisible not by l^{e+1} but by $l^{e} \sqrt{l}$ in \mathcal{O}_{F}. It follows from Lemma 3.2 that $x\left(R_{3}\right)+N$ is not a square in \mathcal{O}_{F}, which contradicts the assumption. Therefore, either $t=\left(t^{\prime}\right)^{2}$ or $t=2\left(t^{\prime}\right)^{2}$ for some integer t^{\prime}.

Secondly, suppose that there exists an odd prime p which divides the square-free part of r. In the same way as above, we easily see that \sqrt{p} does not divide A in \mathcal{O}_{F}, that B can be expressed as $B=a_{0}+a_{1} \sqrt{-1}+a_{2} \sqrt{2}+$ $a_{3} \sqrt{-2}$ with integers $a_{0}, a_{1}, a_{2}, a_{3}$ (since either $t=\left(t^{\prime}\right)^{2}$ or $\left.t=2\left(t^{\prime}\right)^{2}\right)$ and that $x\left(R_{3}\right)+N$ is not a square in \mathcal{O}_{F}, which contradicts the assumption. Therefore, either $r=\left(r^{\prime}\right)^{2}$ or $r=2\left(r^{\prime}\right)^{2}$ for some integer r^{\prime}. It follows that $r=\left(r^{\prime}\right)^{2}$ and $t=\left(t^{\prime}\right)^{2}, r=2\left(r^{\prime}\right)^{2}$ and $t=\left(t^{\prime}\right)^{2}$ or $r=\left(r^{\prime}\right)^{2}$ and $t=2\left(t^{\prime}\right)^{2}$. It is not difficult to see that none of these cases happens because of Proposition 2.5. It follows that $x\left(R_{3}\right)+N$ is not a square in F, and from Lemma 2.3 that $R_{3} \notin 2 E(F)$.

Now let P_{4}, Q_{4}, R_{4} be points of order 16 on E such that $[2] P_{4}=P_{3}$, $[2] Q_{4}=Q_{3},[2] R_{4}=R_{3}$, and put $\mathcal{P}:=\left\{P_{4}+P ; P \in E[8]\right\}, \mathcal{Q}:=\left\{Q_{4}+P ;\right.$ $P \in E[8]\}, \mathcal{R}:=\left\{R_{4}+P ; P \in E[8]\right\}$. Then it is obvious that $E[16]=$ $E[8] \sqcup \mathcal{P} \sqcup \mathcal{Q} \sqcup \mathcal{R}$. Since P_{4}, Q_{4}, R_{4} cannot be in $E(F)$, we obtain $E(F) \not \supset$ $\mathbb{Z} / 16 \mathbb{Z}$. Consequently, $E(F)_{(2)} \simeq \mathbb{Z} / 8 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$. This completes the proof of Proposition 4.6.

In order to prove Theorem 1, we need one more proposition due to Qiu and Zhang.

Proposition 4.7 ([7, Theorem 2 and Remark 2]). Let E be an elliptic curve over \mathbb{Q}. Assume that $E(\mathbb{Q})_{\text {tors }}=E(\mathbb{Q})_{(2)}$ and $E_{D}(\mathbb{Q})_{\text {tors }}=E_{D}(\mathbb{Q})_{(2)}$ for all square-free integers D. Then $E(F)_{\text {tors }}=E(F)_{(2)}$.

Remark 4.8. Although Theorem 2 and Remark 2 in [7] are expressed in terms of a number field K of type $(2, \ldots, 2)$ instead of F, it is clear that they are also valid for F.

Now all we have to do is put the propositions together.
Proof of Theorem 1. Since if $E(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$ or $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$, then $E_{D}(\mathbb{Q})_{\text {tors }}=E_{D}(\mathbb{Q})_{(2)}$ for all square-free integers D by Theorem 2.4, (a) follows from Propositions 4.1 and 4.7; (c) follows from Propositions 4.6 and 4.7 (note that by Theorem $2.4(\mathrm{iii}), M-N$ is a square if and only if $E_{-1}(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$). We obtain (b) just by combining Propositions
4.5 and 4.3. In (d), if $E_{D}(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$ for all D, then $E(F)_{\text {tors }} \simeq$ $\mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$ from Propositions 4.5 and 4.7 ; if $E_{D}(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$ (resp. $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 6 \mathbb{Z}$) for some D, then (a) (resp. (b)) shows that $E(F)_{\text {tors }} \simeq$ $\mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 16 \mathbb{Z}$ (resp. $\mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 12 \mathbb{Z}$) through the isomorphism $E \simeq E_{D}$ over F; if $E_{D}(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$ and $E_{-D}(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$ (resp. $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$) for some D, then (c) shows that $E(F)_{\text {tors }} \simeq \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$ (resp. $\mathbb{Z} / 8 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$). This completes the proof of Theorem 1 .
5. A classification over number fields of type $(2, \ldots, 2)$. Let E : $y^{2}=x(x+M)(x+N)$ be an elliptic curve over \mathbb{Q}, where M and N are integers with $M>N$ such that (M, N) is a square-free integer or 1 . Let K be a number field of type $(2, \ldots, 2)$. It is not difficult to determine the structure of $E(K)_{\text {tors }}$ because of Theorem 1.

CASE 1: $E(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$. We may assume that $M=u^{4}$ and $N=v^{4}$, where u and v are relatively prime integers with $u>v>0$ and $u^{2}+v^{2}=w^{2}$ for some integer $w>0$.
(I) By Lemma 2.3, $E(K) \supset \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$ if and only if $\sqrt{-1}, \sqrt{u^{4}-v^{4}}$ $\in K$. Since $u^{4}-v^{4}=w^{2}\left(u^{2}-v^{2}\right)$, we see that $\sqrt{u^{4}-v^{4}} \in K$ if and only if $\sqrt{u^{2}-v^{2}} \in K$. Hence, $E(K) \supset \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$ if and only if $\sqrt{-1}, \sqrt{u^{2}-v^{2}}$ $\in K$.
(II) We find a necessary and sufficient condition for $E(K)_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus$ $\mathbb{Z} / 16 \mathbb{Z}$. Let $P_{3}=(u v(u+w)(v+w), u v w(u+v)(v+w)(w+u)) \in E(\mathbb{Q})$ and $P_{3}^{\prime}=P_{3}+Q_{1} \in E(\mathbb{Q})$, where $Q_{1}=\left(-u^{4}, 0\right)$. Then P_{3} and P_{3}^{\prime} are of order 8 and $x\left(P_{3}^{\prime}\right)=u v(u+w)(v-w)$. Assume that $E(K)_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 16 \mathbb{Z}$. Then it is easy to see that either P_{3} or P_{3}^{\prime} is contained in $2 E(K)$. By Lemma 2.3, this is equivalent to the condition that either

$$
\sqrt{u v(u+w)(v+w)}, \sqrt{u w(u+v)(w+v)} \in K
$$

or

$$
\sqrt{u v(u+w)(v-w)}, \sqrt{u w(u-v)(w-v)} \in K
$$

On account of (I), we obtain the following: $E(K)_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 16 \mathbb{Z}$ if and only if either $\sqrt{-1} \notin K$ or $\sqrt{u^{2}-v^{2}} \notin K$ and either

$$
\sqrt{u v(u+w)(v+w)}, \sqrt{u w(u+v)(w+v)} \in K
$$

or

$$
\sqrt{u v(u+w)(v-w)}, \sqrt{u w(u-v)(w-v)} \in K
$$

(III) Assume that $E(K)_{\text {tors }} \simeq \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 16 \mathbb{Z}$. By Theorem 1(a), there exists a point P_{4} of order 16 in $E(F)$ such that $[2] P_{4}=P_{3}$. Let $P_{3}^{\prime \prime}:=P_{3}+Q_{2}$, where Q_{2} is a point of order 4 in $E(K)$ such that $[2] Q_{2}=Q_{1}$. If $P_{4} \notin E(K)$, then it is not difficult to find that there exists a point $P_{4}^{\prime \prime} \in E(K)$ (of order 16) such that $[2] P_{4}^{\prime \prime}=P_{3}^{\prime \prime}$. However since $[2]\left(P_{4}^{\prime \prime}-P_{4}\right)=P_{3}^{\prime \prime}-P_{3}=Q_{2}$, we have $Q_{2} \in 2 E(F)$. Hence $E(F) \supset \mathbb{Z} / 8 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$, which contradicts

Theorem 1(a). Therefore we must have $P_{4} \in E(K)$. On account of (I) and (II), we obtain the following: $E(K)_{\text {tors }} \simeq \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 16 \mathbb{Z}$ if and only if

$$
\sqrt{-1}, \sqrt{u^{2}-v^{2}}, \sqrt{u v(u+w)(v+w)}, \sqrt{u w(u+v)(w+v)} \in K
$$

(IV) In all other cases, we obtain $E(K)_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$ from Theorem 1(a).

CASE 2: $E(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 6 \mathbb{Z}$. By Theorem $1(\mathrm{~b})$, we may restrict ourselves to the 2-primary part of $E(K)_{\text {tors }}$.
(I) By Lemma 2.3, $E(K) \supset \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 6 \mathbb{Z}$ if and only if $\sqrt{M}, \sqrt{N} \in K$, $\sqrt{-M}, \sqrt{-M+N} \in K$ or $\sqrt{-N}, \sqrt{-N+M} \in K$.
(II) By Lemma 2.3 and Theorem 1 (b), $E(K)_{\text {tors }} \simeq \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 12 \mathbb{Z}$ if and only if $\sqrt{-1}, \sqrt{M}, \sqrt{N}, \sqrt{M-N} \in K$.
(III) In all other cases, we obtain $E(K)_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 6 \mathbb{Z}$ from Theorem 1(b).

CASE 3: $E(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$. We may assume that $M=s^{2}$ and $N=t^{2}$, where s and t are relatively prime integers with $s>t>0$. Put $r:=\sqrt{s^{2}-t^{2}}$.
(I) By Lemma 2.3, $E(K) \supset \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$ if and only if $\sqrt{-s^{2}}, r \sqrt{-1}$ $\in K$, namely, $\sqrt{-1}, r \in K$.
(II) Assume that $E(K) \not \supset \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$. Let $P_{1}=(0,0), Q_{1}=\left(-s^{2}, 0\right)$, $P_{2}=(s t, s t(s+t))$ and $P_{2}^{\prime}=(-s t, s t(t-s))$, where $[2] P_{2}=P_{1}$ and $P_{2}+Q_{1}$ $=P_{2}^{\prime}$. Then $E(K) \supset \mathbb{Z} / 8 \mathbb{Z}$ if and only if either $P_{2} \in 2 E(K)$ or $P_{2}^{\prime} \in 2 E(K)$. By Lemma 2.3, this is equivalent to the condition that either $\sqrt{s t}, \sqrt{s(s+t)}$ $\in K$ or $\sqrt{-s t}, \sqrt{s(s-t)} \in K$. On account of (I), we obtain the following: $E(K)_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$ if and only if either $\sqrt{-1} \notin K$ or $r \notin K$ and either

$$
\sqrt{s t}, \sqrt{s(s+t)} \in K \quad \text { or } \quad \sqrt{-s t}, \sqrt{s(s-t)} \in K
$$

(III) We find a necessary and sufficient condition on which $E(K) \supset$ $\mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$. Assume that $E(K) \supset \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$.

Let $P_{2}=(s t, s t(s+t)), Q_{2}=(s(r-s), r s(r-s) \sqrt{-1})$ and $R_{2}=$ $(t(r \sqrt{-1}-t), r t(r \sqrt{-1}-t))$, where $[2] P_{2}=P_{1},[2] Q_{2}=Q_{1}$ and $[2] R_{2}=R_{1}=$ $\left(-t^{2}, 0\right)$. Then it is obvious that $E(K) \supset \mathbb{Z} / 8 \mathbb{Z}$ if and only if P_{2}, Q_{2} or R_{2} is contained in $2 E(K)$. By Lemma 2.3, this is equivalent to the condition that $\sqrt{s t}, \sqrt{s(s+t)} \in K, \sqrt{s(r-s)}, \sqrt{r s} \in K$ or $\sqrt{r(r+t \sqrt{-1})}, \sqrt{r t \sqrt{-1}} \in K$ (note that $\sqrt{-1} \in K$ by the assumption that $E(K) \supset \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$). Since

$$
\sqrt{r(r+t \sqrt{-1})}= \pm \frac{\sqrt{2 r}}{2}(\sqrt{r+s}+\sqrt{r-s})
$$

and

$$
\sqrt{r t \sqrt{-1}}= \pm \frac{\sqrt{2 r t}}{2}(1+\sqrt{-1})
$$

the third condition can be replaced with $\sqrt{2 r t}, \sqrt{2 r(r+s)}, \sqrt{2 r(r-s)} \in K$. Further, since $\sqrt{2 r(r-s)}=2 r t \sqrt{-1} / \sqrt{2 r(r+s)}$, we see that $\sqrt{2 r(r-s)} \in$ K if and only if $\sqrt{2 r(r+s)} \in K$. Similarly we find that $\sqrt{s(r-s)} \in$ K if and only if $\sqrt{s(r+s)} \in K$. Hence $E(K) \supset \mathbb{Z} / 8 \mathbb{Z}$ if and only if $\sqrt{s t}, \sqrt{s(s+t)} \in K, \sqrt{r s}, \sqrt{s(r+s)} \in K$ or $\sqrt{2 r t}, \sqrt{2 r(r+s)} \in K$ (on the assumption that $E(K) \supset \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$). On account of (I), we obtain the following: $E(K) \supset \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$ if and only if $\sqrt{-1}, r \in K$ and

$$
\sqrt{s t}, \sqrt{s(s+t)} \in K, \sqrt{r s}, \sqrt{s(r+s)} \in K \quad \text { or } \quad \sqrt{2 r t}, \sqrt{2 r(r+s)} \in K
$$

(IV) We easily see that $E(K)_{\text {tors }} \simeq \mathbb{Z} / 8 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$ if and only if $\sqrt{-1}, r$, $\sqrt{s t}, \sqrt{s(s+t)}, \sqrt{r s}, \sqrt{s(r+s)}, \sqrt{2 r t}, \sqrt{2 r(r+s)} \in K$, that is,

$$
\sqrt{-1}, r, \sqrt{r s}, \sqrt{s t}, \sqrt{s(r+s)}, \sqrt{s(s+t)} \in K
$$

Note that this case can occur only if $r \in \mathbb{Q}$.
(V) In all other cases, we obtain $E(K)_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$ from Theorem 1(c).

CASE 4: $E(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$. If $E_{D}(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$ (resp. $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 6 \mathbb{Z}, \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z})$ and $\sqrt{D} \in K$ for some square-free integer D, then we may consider ourselves to be in Case 1 (resp. Case 2, Case 3) through the isomorphism $E \simeq E_{D}$ over F. Hence in the case where $E_{D}(\mathbb{Q})_{\text {tors }} \simeq$ $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}, \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 6 \mathbb{Z}$ or $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$ for some D, assume that $\sqrt{D} \notin K$; in the case where $E_{D}(\mathbb{Q})_{\mathrm{tors}} \simeq E_{-D}(\mathbb{Q})_{\mathrm{tors}} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$ for some D, assume that $\sqrt{D} \notin K$ and $\sqrt{-D} \notin K$.

CASE 4.1: $E_{D}(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$ for some square-free integer D. We may assume that $M=D\left(u^{\prime}\right)^{4}$ and $N=D\left(v^{\prime}\right)^{4}$, where u^{\prime} and v^{\prime} are relatively prime positive integers such that $\left(u^{\prime}\right)^{2}+\left(v^{\prime}\right)^{2}$ is a square. By Lemma 2.3, it is clear that $E(K) \not \supset \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$ because of $\sqrt{D} \notin K$.
(I) By Lemma 2.3, $E(K) \supset \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$ if and only if either $\sqrt{-D}$, $\sqrt{-D\left\{\left(u^{\prime}\right)^{4}-\left(v^{\prime}\right)^{4}\right\}} \in K$ or $\sqrt{-D}, \sqrt{-D\left\{\left(v^{\prime}\right)^{4}-\left(u^{\prime}\right)^{4}\right\}} \in K$, that is, $\sqrt{-D}$ $\in K$ and either $\sqrt{\left(u^{\prime}\right)^{2}-\left(v^{\prime}\right)^{2}} \in K$ or $\sqrt{\left(v^{\prime}\right)^{2}-\left(u^{\prime}\right)^{2}} \in K$. Suppose that $E(K) \supset \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$. Then since $P_{1}=(0,0) \notin 2 E(K)$, either $Q_{1}=$ $\left(-D\left(u^{\prime}\right)^{4}, 0\right)$ or $R_{1}=\left(-D\left(v^{\prime}\right)^{4}, 0\right)$ is contained in $4 E(K)$; hence $P_{1} \in 4 E(F)$ implies that $E(F) \supset \mathbb{Z} / 8 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$, which contradicts Theorem 1(a). Therefore we obtain the following: $E(K)_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$ if and only if $\sqrt{-D} \in$ K and either

$$
\sqrt{\left(u^{\prime}\right)^{2}-\left(v^{\prime}\right)^{2}} \in K \quad \text { or } \quad \sqrt{\left(v^{\prime}\right)^{2}-\left(u^{\prime}\right)^{2}} \in K
$$

(II) In all other cases, we obtain $E(K)_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$.

CASE 4.2: $E_{D}(\mathbb{Q})_{\mathrm{tors}} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$ for some square-free integer D. We may assume that $M=D\left(s^{\prime}\right)^{2}$ and $N=D\left(t^{\prime}\right)^{2}$, where s^{\prime} and t^{\prime} are relatively
prime positive integers. By Lemma 2.3, it is clear that $E(K) \not \supset \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$ because of $\sqrt{D} \notin K$.
(I) By Lemma 2.3, $E(K) \supset \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$ if and only if either $\sqrt{-D}$, $\sqrt{-D\left\{\left(s^{\prime}\right)^{2}-\left(t^{\prime}\right)^{2}\right\}} \in K$ or $\sqrt{-D}, \sqrt{-D\left\{\left(t^{\prime}\right)^{2}-\left(s^{\prime}\right)^{2}\right\}} \in K$, that is, $\sqrt{-D}$ $\in K$ and either $\sqrt{\left(s^{\prime}\right)^{2}-\left(t^{\prime}\right)^{2}} \in K$ or $\sqrt{\left(t^{\prime}\right)^{2}-\left(s^{\prime}\right)^{2}} \in K$. Suppose that $E(K)_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$. Then since $P_{1}=(0,0) \notin 2 E(K)$, either $Q_{1}=$ $\left(-D\left(s^{\prime}\right)^{2}, 0\right)$ or $R_{1}=\left(-D\left(t^{\prime}\right)^{2}, 0\right)$ is contained in $4 E(K)$; hence $P_{1} \in 4 E(F)$ implies that $E(F) \supset \mathbb{Z} / 8 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$. It follows from Theorem 1(c) that $E_{-D}(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$. Hence by assumption we must have $\sqrt{-D} \notin K$, which is a contradiction. Therefore we obtain the following: $E(K)_{\text {tors }} \simeq$ $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$ if and only if $\sqrt{-D} \in K$ and either

$$
\sqrt{\left(s^{\prime}\right)^{2}-\left(t^{\prime}\right)^{2}} \in K \quad \text { or } \quad \sqrt{\left(t^{\prime}\right)^{2}-\left(s^{\prime}\right)^{2}} \in K
$$

(II) In all other cases, we obtain $E(K)_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$.

CASE 4.3: $E_{D}(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$ or $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 6 \mathbb{Z}$ for all square-free integers D. Assume that $E_{D}(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 6 \mathbb{Z}$ for some D. Then by Theorem $1(\mathrm{~b})$ we know that $E(F)_{\left(2^{\prime}\right)} \simeq E_{D}(F)_{\left(2^{\prime}\right)} \simeq \mathbb{Z} / 3 \mathbb{Z}$, and by Theorem 2.2(iii) we may assume that the points of order 3 in $E(F)$ are $\left(D a^{2} b^{2}, \pm D \sqrt{D} a^{2} b^{2}(a+b)^{2}\right)$ with some integers a, b. It follows from $\sqrt{D} \notin K$ that $E(K)_{\left(2^{\prime}\right)}=\{O\}$. Therefore this case can be treated just as the case where $E_{D}(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$ for all square-free integers D. Thus from Lemma 2.3 we easily get the following:
(I) $E(K) \supset \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$ if and only if $\sqrt{M}, \sqrt{N} \in K, \sqrt{-M}$, $\sqrt{-M+N} \in K$ or $\sqrt{-N}, \sqrt{-N+M} \in K$.
(II) $E(K)_{\mathrm{tors}} \simeq \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$ if and only if $\sqrt{-1}, \sqrt{M}, \sqrt{N}, \sqrt{M-N}$ $\in K$.
(III) In all other cases, we obtain $E(K)_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$.

Remark 5.1. The result of Qiu and Zhang ([7, Theorem 4]) is contained in Case 4.3. In fact, in Theorem 4 in [7], they classified $E(K)_{\text {tors }}$ on the assumption that M and N are relatively prime square-free integers, not equal to ± 1, which implies that $E(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$ and $E_{D}(\mathbb{Q})_{\mathrm{tors}} \simeq$ $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$ for all square-free integers D ([7, Lemma 2]).

Let d be an integer such that $[K: \mathbb{Q}]=2^{d}$. Then we write $K=K_{d}$. We conclude this paper to give the minimal d_{m} for which each type above can be realized as $E\left(K_{d_{m}}\right)_{\text {tors }}$ with some E and some $K_{d_{m}}$. Close examination will show the following:

- In Case 1 , we have $d_{m}=4$ for the type $\mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 16 \mathbb{Z}$.
- In Case 2 , we have $d_{m}=3$ for the type $\mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 12 \mathbb{Z}$.
- In Case 3, we have $d_{m}=4$ for the type $\mathbb{Z} / 8 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$.
- For all other types, we have $d_{m}=2$.

It is easy to see that this and the classification in this section together imply Theorem 3 in [7] and Main Theorems 4.1 and 4.2 in [5], which are stated for K_{2}.

References

[1] A. W. Knapp, Elliptic Curves, Princeton Univ. Press, Princeton, NJ, 1992.
[2] S. Kwon, Torsion subgroups of elliptic curves over quadratic extensions, J. Number Theory 62 (1997), 144-162.
[3] M. Laska and M. Lorenz, Rational points on elliptic curves over \mathbb{Q} in elementary abelian 2-extensions of \mathbb{Q}, J. Reine Angew. Math. 355 (1985), 163-172.
[4] B. Mazur, Rational isogenies of prime degree, Invent. Math. 44 (1978), 129-162.
[5] K. Ohizumi, Rational torsion points of elliptic curves and certain quartic extensions, master's thesis, Tohoku University, 2001 (in Japanese).
[6] K. Ono, Euler's concordant forms, Acta Arith. 78 (1996), 101-123.
[7] D. Qiu and X. Zhang, Elliptic curves and their torsion subgroups over number fields of type $(2,2, \ldots, 2)$, Sci. China Ser. A 44 (2001), 159-167.
[8] K. A. Ribet, Torsion points of abelian varieties in cyclotomic extensions (Appendix to N. M. Katz and S. Lang, Finiteness theorems in geometric classfield theory), Enseign. Math. 27 (1981), 315-319.

Mathematical Institute
Tohoku University
Sendai 980-8578, Japan
E-mail: fyasut@yahoo.co.jp

[^0]: 2000 Mathematics Subject Classification: Primary 11G05.

