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1. Introduction. The Farey tree F is an infinite binary tree whose
nodes are labelled by rationals in [0, 1]; it can be defined inductively as
follows.

Consider the two-point set F1 = {0, 1} with 0 and 1 written as 0
1 and

1
1 respectively. Let n ≥ 1 and 0 = x0,n < x1,n < · · · < xN(n),n = 1 be the
fractions in Fn arranged in order of increase and written in lowest terms;
here N(n) = 2n−1. Then

Fn+1 = Fn ∪ Qn+1 with Qn+1 = {xi−1,n ⊕ xi,n, i = 1, . . . , 2n−1},
where p

q
⊕ p′

q′
=
p+ p′

q + q′

is the mediant of the fractions p
q and p′

q′ . For example,

F2 =
{

0, 1
2 , 1
}
, F3 =

{
0, 1

3 ,
1
2 ,

2
3 , 1
}
, F4 =

{
0, 1

4 ,
1
3 ,

2
5 ,

1
2 ,

3
5 ,

2
3 ,

3
4 , 1
}
.

Fn is sometimes called the Brocot sequence of order n. The elements of Qn
are known as Farey fractions of level n; for n ≥ 2 they are the nodes in the
Farey tree at level n− 1. The first (root) node of the tree is 1

2 .
It is well known (see e.g. Schroeder (1991), p. 337) and straightforward

to check that for the Farey fractions of level n the sum of partial quotients
in their continued fraction representation is exactly n; that is,

Qn =
{p
q = 1/(a1 + 1/(a2 + · · ·+ 1/at) . . .)

with at ≥ 2 and a1 + · · ·+ at = n
}
.

2000 Mathematics Subject Classification: 11J70, 11K60, 11D68.
Key words and phrases: Farey tree, continued fractions, transfer operator, Farey map,

partition of the interval.
The first author was partly supported by Russian Science Foundation grants RFFI

02-01-00912, NSh-136.2003.1 and MD-3321.2004.1 as well as INTAS grant 03-51-5070.

[47]



48 N. Moshchevitin and A. Zhigljavsky

Fractions xi,n ∈ Fn considered as points in [0, 1] make a partition of this
interval into 2n−1 subintervals of different length varying from 1/(FnFn+1)
to 1/n, where Fk is the kth Fibonacci number. This partition is obviously
non-uniform; in this paper we study the asymptotic behaviour of a natu-
ral characteristic that measures this non-uniformity and is defined as fol-
lows.

Let 0 = x0,n < x1,n < · · · < xN(n),n = 1 be some points in [0, 1] and
pi,n = xi,n − xi−1,n (i = 1, . . . , N(n)) be the lengths of the subintervals
[xi−1,n, xi,n). For a fixed β we set

σ
(n)
β = σ(x0,n, . . . , xN(n),n) =

N(n)∑

i=1

pβi,n.(1)

σ
(n)
β is one of the most widely used characteristics of the uniformity of the

partition of [0, 1] generated be the points xi,n (see e.g. Drobot (1981)).

The value 1
1−β log σ(n)

β is the Rényi entropy of order β 6= 1 of this par-
tition (as β → 1 the Rényi entropies tend to the Shannon entropy of
the partition). If the partition is defined by a dynamical system, then the
properly normalised sequence of σ(n)

β converges to the maximum eigen-
value of the transfer operator (3) (see e.g. Vallée (2001)). In an impor-
tant special case β = 2 the quantity (1) can be interpreted as the average
length of the interval [xi−1,n, xi,n) which a random uniformly distributed
point in [0, 1] falls in (see Section 4.2 in Pronzato et al. (1999) for de-
tails).

In a number of papers including Hall (1970) and Kanemitsu et al. (1982),
the limiting behaviour of σ(n)

β is studied in the case when {xi,n} is the
Farey sequence of order n, that is, the set of all fractions p/q in [0, 1] with
gcd(p, q) = 1 and q ≤ n. In the present paper we study the limiting be-
haviour of σ(n)

β when xi,n are the elements of Fn; in this case we will write

σ
(n)
β = σβ(Fn).

The expression for σβ(Fn) can be simplified using the fact that if p
q and

p′
q′ are two neighbours in Fn such that p

q <
p′
q′ , then the length of the interval

[p
q ,

p′
q′
)

is p′/q′ − p/q = 1/(qq′). This yields

σβ(Fn) =
∑

(q,q′)

1
(qq′)β

,

where the sum is taken over the set of pairs of denominators of all the
neighbours in Fn.

The following theorem is the main result of this paper.
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Theorem 1. For any β > 1 we have

σβ(Fn) =
2
nβ
· ζ(2β − 1)

ζ(2β)
+O

(
log n

n(β+1)(2β−1)/(2β)

)
as n→∞.(2)

The proof of the theorem is given in Section 3.
Note that for small β > 1 the rate of convergence in (2) is slow.

However, the fact that for all β > 1 the main term for σβ(Fn) is in-
deed 2

nβ
ζ(2β−1)
ζ(2β) agrees with numerical experiments that the authors have

carried out. As an example, Table 1 illustrates the rate of convergence
in (2) for β = 2, where the main term in the asymptotic formula (2) is
2ζ(3)
ζ(4) n

−2 ∼= 2.22125n−2.

Table 1. Numerically computed values of σ̃n = n(n− 1)σ2(Fn) for n = 2, . . . , 41

n σ̃n n σ̃n n σ̃n n σ̃n

2 1 12 2.225125138 22 2.198914837 32 2.199080361

3 1.666666667 13 2.218892938 23 2.198552286 33 2.199321142

4 2.013333333 14 2.213886731 24 2.198328443 34 2.199573834

5 2.172902494 15 2.209932920 25 2.198214857 35 2.199835181

6 2.237347594 16 2.206846310 26 2.198188931 36 2.200102532

7 2.257088762 17 2.204459272 27 2.198232662 37 2.200373722

8 2.257418374 18 2.202630388 28 2.198331652 38 2.200646994

9 2.250363055 19 2.201244461 29 2.198474352 39 2.200920916

10 2.241355171 20 2.200209351 30 2.198651468 40 2.201194325

11 2.232670354 21 2.199452029 31 2.198855495 41 2.201466280

The order of decrease for σβ(Fn) as n → ∞ is different from n−β for
β ≤ 1. Thus, σ0(Fn) = 2n−1 (this is the number of intervals in the nth level
partition) and σ1(Fn) = 1 (see Lemma 2).

2. Reformulation of the problem in terms of dynamical systems
and continued fractions

2.1. Reformulation in terms of dynamical systems. The Farey map T :
[0, 1]→ [0, 1] is defined by

T (x) =
{
x/(1− x) if 0 ≤ x < 1/2,

(1− x)/x if 1/2 ≤ x ≤ 1.
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The map is shown in Figure 1.
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Fig. 1. The Farey map

There is a simple relation between the Farey fractions of level n and the
Farey map:

Qn = T−n+1(1) = {x ∈ [0, 1] : T n−1(x) = 1} ∀n ≥ 2,

implying Fn = T−n(0) for all n ≥ 1.
The Farey map belongs to a class of so-called almost expanding maps.

It has absolutely continuous invariant density p(x) = 1/x (0 < x < 1)
and it is ergodic with respect to this density; the density p(x) has infinite
mass implying that the metric entropy of T (·) is zero (for details see e.g.
Lagarias (1992)). Moreover, the topological pressure Pβ of the Farey map
is zero for β ≥ 1 (see Prellberg and Slawny (1992)). The pressure can be
defined as Pβ = log λβ, where λβ is the maximal eigenvalue of the transfer
operator Lβ : C[0, 1]→ C[0, 1] defined for f ∈ C[0, 1] by

Lβf(x) =
∑

y:T (y)=x

f(y)
|T ′(y)|β .(3)

For the Farey map the pressure is

Pβ = lim
n→∞

1
n

log
∑

(q,q′)

1
(qq′)β

,(4)

where for fixed n the sum is taken over the set of pairs of denominators of
all the neighbours in Fn.

Prellberg and Slawny (1992) studied the behaviour of the pressure Pβ
for a class of almost expanding maps (including the Farey map) as β ↑ 1; we
consider a version of the pressure for β > 1. Theorem 1 shows that to obtain
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non-trivial limits, the normalisation of the sum in (4) with β > 1 must be
different from 1

n log; this normalization is nβ. A similar phenomenon seems
to hold for some other almost expanding maps; this phenomenon is related
to the non-exponential divergence of the trajectories xn+1 = T (xn) for those
maps.

2.2. Reformulation in terms of continued fractions. Let A be the set of
all integer vectors a = (a1, . . . , at) with t ≥ 1, aj ≥ 1 (j = 1, . . . , t− 1) and
at > 1. Let also

An = {a = (a1, . . . , at) ∈ A : a1 + · · ·+ at = n}.

With each a = (a1, . . . , at) ∈ A we associate the continued fraction
1/(a1+1/(a2+· · ·+1/at) . . .) and the corresponding continuant (the denom-
inator of the fraction), which we write as [a1, . . . , at]; an empty continuant
is equal to 1.

By construction, for all n > 1, each fraction in Fn \ (F1 ∪ Qn) has two
neighbours which belong to the set Qn. Also, every fraction p/q ∈ Qn has
two neighbours, say p−/q− and p+/q+, in Fn \Qn. Explicit formulae for the
continuants of these neighbours are given below.

Lemma 1. For each a ∈ An, the fraction p/q ∈ Qn with continuant
q = q(a) = [a1, . . . , at] has two neighbours in Fn with continuants

q− = q−(a) = [a1, . . . , at−1], q+ = q+(a) = [a1, . . . , at − 1].(5)

Similarly , any fraction p/q ∈ Fn−1 \ F1 with continuant q = q(a) =
[a1, . . . , at] has two neighbours in Fn with continuants

[a1, . . . , at, n−(a1 + · · ·+at)], [a1, . . . , at−1, 1, n−(a1 + · · ·+at)].(6)

The proof is a simple induction with respect to n.

Note that the two neighbours of the fraction p/q with continuants q−
and q+ are not simply left and right: the larger denominator q+ can be on
either side of q.

The first part of Lemma 1 implies that we can rewrite σβ(Fn), the char-
acteristic of interest, as

σβ(Fn) =
∑

a∈An

(
1

(qq−)β
+

1
(qq+)β

)
,(7)

where q = q(a) = [a1, . . . , at] and q− = q−(a), q+ = q+(a) are defined in (5).
For any β > 1 we can easily establish a lower bound for σβ(Fn) in the

following way:
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σβ(Fn) =
∑

a∈An

(
1

(qq−)β
+

1
(qq+)β

)
≥
∑

a∈An

1
(qq−)β

≥ 1
nβ

∑

a∈An

1
(q−)2β

≥ 1
nβ

∑

a∈An: q−<n

1
(q−)2β =

2
nβ

n−1∑

q−=1

ϕ(q−)
(q−)2β

=
2
nβ

∞∑

l=1

ϕ(l)
l2β

+O

(
1

n2β−1

)
as n→∞.

In deriving the lower bound we have neglected the terms with large de-
nominators q−(a), used the inequality q ≤ nq− (see (10)) and the fact
that in the partition generated by Fn there are exactly 2ϕ(l) intervals with
q−(a) = l < n as one of their end-points.

Theorem 1 states that the just derived lower bound

lim inf
n→∞

nβσβ(Fn) ≥ 2
∞∑

l=1

ϕ(l)
l2β

=
2ζ(2β − 1)
ζ(2β)

is in reality the exact limit of nβσβ(Fn) as n →∞. Thus, the main contri-
bution to the sum σβ(Fn) is made by a few terms with small denominators
q− (“major arcs”).

3. Proof of Theorem 1

3.1. More notation and the main steps in the proof. Throughout this
section we assume that β > 1 is a fixed number. Set

r = r(β) =
3β − 2

2(β − 1)
, w = w(n, β) = min{n/2, n(β+1)/(2β) logn}.(8)

The value of r is chosen to satisfy (β−1)(2r−1) = 2β−1 (see Lemma 3);
w = w(n, β) will minimize the error term. Note that since β > 1 we have
w = o(n) as n→∞.

For a subset A(j)
n,i of A, define

Σ
(j)
n,i =

∑

a∈A(j)
n,i

(
1

(qq−)β
+

1
(qq+)β

)
,

where a = (a1, . . . , at), q = q(a) = [a1, . . . , at]; q− = q−(a) and q+ = q+(a)
are defined in (5).

The proof of Theorem 1 is based on a few lemmas and uses the splitting
of the sum σβ(Fn), which is the sum over An, into the sums Σ(j)

n,i over smaller
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subsets of indices a. The first split of An is into the following two subsets:

A(1)
n,1 = {a = (a1, . . . , at) ∈ An : [a1, . . . , at] < nr},
A(1)
n,2 = An \ A(1)

n,1 = {a = (a1, . . . , at) ∈ An : [a1, . . . , at] ≥ nr}.

We then split A(1)
n,1 into two subsets as follows:

A(2)
n,1 = {a ∈ A(1)

n,1 : max
1≤j≤t

aj > n− w},

A(2)
n,2 = A(1)

n,1 \ A
(2)
n,1 = {a ∈ A(1)

n,1 : max
1≤j≤t

aj ≤ n− w}.

Thus, all a ∈ A(2)
n,1 have at least one very large partial quotient aj ; on the

other hand, all aj ’s for a ∈ A(2)
n,2 are relatively small.

Next we split A(2)
n,1 into the set where the largest partial quotient is the

last one and where it is not:

A(3)
n,1 = {a = (a1, . . . , at) ∈ A(2)

n,1 : at > max{a1, . . . , at−1}},
A(3)
n,2 = A(2)

n,1 \ A
(3)
n,1 = {a = (a1, . . . , at) ∈ A(2)

n,1 : at ≤ max{a1, . . . , at−1}}.
The split of An into subsets is shown in Figure 2.

Fig. 2. Split of the index set An

Additionally, we split the sum Σ
(3)
n,1 as

Σ
(3)
n,1 = Σ

(3)+
n,1 +Σ(3)−

n,1 with Σ
(3)+
n,1 =

∑

a∈A(3)
n,1

1
(qq+)β

, Σ
(3)−
n,1 =

∑

a∈A(3)
n,1

1
(qq−)β

.

As a result, we have the following split of the sum σβ(Fn) defined in (7):

σβ(Fn) = Σ
(1)
n,2 +Σ

(2)
n,2 +Σ

(3)
n,2 +Σ

(3)+
n,1 +Σ

(3)−
n,1 .(9)

In Lemma 3 we consider the sum Σ
(1)
n,2 (which accounts for all the terms

with very large denominators) and establish that Σ(1)
n,2 ≤ n−(2β−1) for all n.

In Lemma 5 we prove that Σ(2)
n,2 + Σ

(3)
n,2 � (logn)2β/w2β−1 as n → ∞.

In Lemma 6 we demonstrate that Σ(3)+
n,1 � n−2β as n → ∞; this sum is

obviously asymptotically dominated by the cumulative effect of the others.
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Finally, in Lemma 7 we prove that

Σ
(3)−
n,1 =

1
nβ
· 2ζ(2β − 1)

ζ(2β)
+O

(
1

n2β−1 +
w

nβ+1 +
1

nβw2(β−1)

)
as n→∞.

Therefore, the decomposition (9) and Lemmas 3, 5, 6 and 7 imply the
following asymptotic expansion for the sum σβ(Fn):

σβ(Fn) =
2ζ(2β − 1)
nβζ(2β)

+O

(
1

n2β−1 +
(logn)2β

w2β−1 +
w

nβ+1 +
1

nβw2(β−1)

)

as n→∞.
The choice of w = w(n, β) in accordance with (8) provides the minimum
error term which is O(n−(β+1)(2β−1)/(2β) logn), as stated in (2). This re-
sult is an easy consequence of the fact that the sum of the second and
third terms in O(·) dominates the first and fourth terms. Note also that
(β+ 1)(2β−1)/(2β) > β for all β > 1 so that the error term is smaller than
the main term in this range of β.

3.2. Lemmas

Lemma 2. Let n ≥ 2, a = (a1, . . . , at) ∈ An, q = q(a) = [a1, . . . , at], and
q−, q+ be as defined in (5). We have:

(10) q = q− + q+ ≤ nq−,
(11) q− ≤ q+ ≤ atq−,

(12)
∑

a∈An

(
1
qq−

+
1
qq+

)
= 1,

(13)
1

(qq−)β
+

1
(qq+)β

≤ nβ−1

q2(β−1)

(
1
qq−

+
1
qq+

)
.

Proof. The equality in (10) follows from the definition of Qn. For n = 2
the inequalities in (10) and (11) can be easily checked directly. For n > 2
these inequalities follow from (5) and the standard recurrence for the con-
tinuants of successive continued fraction convergents. The formula (12) ex-
presses the fact that the total length of all the intervals in the partition
generated by the points in Fn is 1.

Let us now prove (13). Using the inequalities q+ ≥ q− and q− ≥ q/n
(see (10) and (11)), for all a ∈ An we obtain

1
(qq−)β

+
1

(qq+)β
≤
(

1
qq−

+
1
qq+

)
max

{
1

(qq−)β−1 ,
1

(qq+)β−1

}

=
1

(qq−)β−1

(
1
qq−

+
1
qq+

)
≤ nβ−1

q2(β−1)

(
1
qq−

+
1
qq+

)
.

Lemma 3. For all n ≥ 1 we have Σ(1)
n,2 ≤ n−(2β−1).
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Proof. As q ≥ nr for a ∈ A(1)
n,2, using the equality (12), the inequality (13)

and the definition of r we obtain

Σ
(1)
n,2 ≤

nβ−1

q2(β−1)

∑

a∈A(1)
n,2

(
1
qq−

+
1
qq+

)
≤ nβ−1

q2(β−1)
≤ nβ−1

n2r(β−1)

=
1

n(β−1)(2r−1)
=

1
n2β−1 .

Lemma 4. For all a = (a1, . . . , at) ∈ A(1)
n,1 with n ≥ 2 we have t ≤

C logn, where C = C(β) = r log((
√

5 + 1)/2).

Proof. This follows from the fact that for all a = (a1, . . . , at) ∈ A(1)
n,1 we

have (√
5 + 1
2

)t
≤ [a1, . . . , at] ≤ nr.

Lemma 5. As n→∞, we have

Σ
(2)
n,2 +Σ

(3)
n,2 �

(logn)2β

w2β−1 .

Proof. Lemma 4 states that for all a ∈ A(1)
n,1 (that is, when q(a) ≤ nr)

we have t ≤ C logn. As n = a1 + · · ·+ at ≤ tmax aj , this implies max aj ≥
n/C logn.

Let a = (a1, . . . , at) ∈ A(2)
n,2 and j be such that aj = max{a1, . . . , at}.

Since aj ≤ n − w, for the sum of the remaining ai’s we have
∑

i6=j ai > w
and similarly to the above, the second largest value of ai’s is larger than or
equal to w/C logn. This implies that for any a = (a1, . . . , at) ∈ A(2)

n,2, there
exist two indices 1 ≤ k 6= l ≤ t such that ak ≥ w/C logn and al ≥ w/C log n
and therefore for at least one index j ≤ t− 1 we have aj ≥ w/C logn.

If a = (a1, . . . , at) ∈ A(3)
n,2 there is j < t such that aj = max{a1, . . . , at}.

Since A(3)
n,2 ⊆ A

(2)
n,1, for this aj we have aj > n− w > w/logn for all n ≥ 3.

Set c = max{1, 1/C} and let n ≥ 3. Then for all a = (a1, . . . , at) ∈
A(2)
n,2 ∪ A

(3)
n,2 we have aj ≥ cw/logn for at least one j ≤ t− 1.

Therefore,

Σ
(2)
n,2 +Σ

(3)
n,2 ≤ 2

∑

a1+···+at−1≤n
∃j:aj≥cw/logn

(
1

(qq−)β
+

1
(qq+)β

)
≤ 4

∑

a1+···+at−1≤n
∃j:aj≥cw/logn

1
(qq−)β

.

(Here we have also used the fact that q+ ≥ q−.) Clearly,

q > ajat · [a1, . . . , aj−1] · [aj+1, . . . , at−1],

q+ ≥ q− > aj · [a1, . . . , aj−1] · [aj+1, . . . , at−1].
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Hence

Σ
(2)
n,2 +Σ

(3)
n,2

≤
∑

j<C logn

∑

cw/logn<aj≤n

∑

a=(a1,...,at)∈A(1)
n,1

aj fixed; j≤t−1

1

a2β
j [a1, . . . , aj−1]2β[aj+1, . . . , at−1]2βaβt

≤ 4C logn
(cw/logn)2β−1

∑

u+v≤w

∑

a1+···+ar=u

1
[a1, . . . , ar]2β

∑

b1+···+bh=v

1

[b1, . . . , bh−1]2βbβh

≤ 4C(logn)2β

(cw)2β−1

∑

a1+···+ar≤w

1
[a1, . . . , ar]2β

∑

b1+···+bh−1≤w

1
[b1, . . . , bh−1]2β

∞∑

bh=1

1

bβh

=
4Cζ(β)
c2β−1 ·

(logn)2β

w2β−1

( ∑

a1+···+ar≤w

1
[a1, . . . , ar]2β

)2

.

Since
∑

a1+···+ar≤w

1
[a1, . . . , ar]2β

≤
∞∑

q=1

ϕ(q)
q2β =

ζ(2β − 1)
ζ(2β)

we obtain

Σ
(2)
n,2 +Σ

(3)
n,2 ≤

4Cζ(β)
c2β−1

(
ζ(2β − 1)
ζ(2β)

)2 (logn)2β

w2β−1 ,

and the lemma follows.

Lemma 6. As n→∞, we have Σ(3)+
n,1 � n−2β.

Proof. Since q+ < q ≤ nq− = n [a1, . . . , at−1] for all a = (a1, . . . , at) ∈ A,
we have

Σ
(3)+
n,1 =

∑

a1+···+at=n
at>n−w, q<nr

1
(qq+)β

≤
∑

n−w<at≤n

∑

a1+···+at−1=n−at

1
(qq+)β

≤ 1
(n− w)2β

∑

a1+···+at−1≤w

1
[a1, . . . , at−1]2β

≤ 2
(n− w)2β

∞∑

q=1

ϕ(q)
q2β � n−2β.

Lemma 7. As n→∞, we have

Σ
(3)−
n,1 =

1
nβ
· 2ζ(2β−1)

ζ(2β)
+O

(
1

n2β−1 +
w

nβ+1 +
1

nβw2(β−1)

)
.
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Proof. We have

Σ
(3)−
n,1 =

∑

a=(a1,...,at)∈An
q(a)<nr, at>n−w

1
(q(a)q−(a))β

=
∑

a=(a1,...,at)∈An
at>n−w

1
(q(a)q−(a))β

−
∑

a=(a1,...,at)∈An
q(a)≥nr, at>n−w

1
(q(a)q−(a))β

.

The second sum is
∑

a1+···+at=n
q(a)≥nr, at>n−w

1
(q(a)q−(a))β

= O(n−(2β−1)) as n→∞

and for the first sum we have
∑

a=(a1,...,at)∈An
at>n−w

1
(q(a)q−(a))β

=
∑

a=(a1,...,at)∈An
a1+···+at−1≤w

1
(q(a)q−(a))β

.

In the Farey tree Fn, each Farey fraction with denominator q−(a) =
[a1, . . . , at−1] such that a1 + · · ·+ at−1 < n is a neighbour to two Farey frac-
tions with denominators q(a) = [a1, . . . , at] with a1 + · · ·+ at = n (see (6)).
Additionally, since

q = atq− + (q−)− = q−(n+O(w)) as n→∞,
we have

1
(q(a)q−(a))β

=
1

nβq2β
−

(
1 +O

(
w

n

))
.

In view of these two facts we obtain

Σ
(3)−
n,1 =

2
nβ

∑

a1+···+at−1≤w
at−1>1 for t>2

1
[a1, . . . , at−1]2β

+O

(
n−(2β−1) +

w

nβ+1

)

=
2
nβ

∞∑

q=1

ϕ(q)
q2β +O

(
1

n2β−1 +
w

nβ+1 + n−β
∑

a1+···+at−1≥w

1
[a1, . . . , at−1]2β

)
.

As
∞∑

q=1

ϕ(q)
q2β =

ζ(2β − 1)
ζ(2β)

and ∑

a1+···+ai≥w

1
[a1, . . . , ai]2β

�
∑

q≥w

1
q2β−1 � w−2(β−1),

the lemma follows.
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