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Computing Galois groups by means of Newton polygons
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Michael Kölle and Peter Schmid (Tübingen)

Newton polygons are useful for computing decompositions of primes in
extension rings, and for computing Galois groups. Suppose f is a polyno-
mial with coefficients in an algebraic number field K and p is a finite prime
of K. Then, following Ore [10], one can associate to f certain polynomials
fm ∈ K[X] according to the slopes, m, of the sides of its Newton polygon
with respect to p. Under some mild assumptions the Galois groups of the fm,
viewed as polynomials over the p-adic completion Kp, turn out to be con-
stituents of GalKp

(f). The point is that the fm are usually much easier to
handle than f , often they are pure polynomials.

1. Introduction. Originally Newton introduced polygons in order to
investigate complex curves of two variables leading to what is now called
the Puiseux series of a curve (cf. [1, pp. 494 ff.] for details). The method
also applies to polynomials in one variable by looking at the various g-adic
expansions. Such a theory has been developed by Ore [10] some eighty years
ago. Ore’s work has found recent interest (e.g. see [2], [5], [7], [8]). The
objective of the present paper is to show how his ideas apply for computing
Galois groups of (global) polynomials.

We fix an algebraic number field K, a finite prime p of K, and a normal-
ized polynomial f ∈ K[X] of degree n ≥ 1:

f =
n∑

i=0

(−1)iaiXn−i = Xn − a1X
n−1 + · · ·+ (−1)nan.

Here “normalized” means that a0 = 1 and that an 6= 0. Denote by vp

the (exponential) p-adic valuation of K. The (standard) Newton polygon of
f with respect to p (and to g(X) = X) is the convex hull of the points
(i, vp(ai)), with ai 6= 0, in the Euclidean R2. We pick a side Sm of this
polygon, determined by its slope m. Write m = h/e, where h and e are
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relatively prime rational integers and e > 0; this is made unique by letting
e = 1 in case m = 0. Let Sm begin with the point (s, vp(as)) and end with
(t, vp(at)). Then there is a unique positive integer d such that de = t− s is
the length of Sm and dh = vp(a−1

s at) is its height.
Let us fix some further notation. Let L be “the” splitting field of f

and G = Gal(L|K). We write G = GalK(f) when G is understood as a
permutation group on the set Zf of zeros of f . Let P be a prime of L above p
(unique up to G-conjugacy) and denote by GP and IP its decomposition and
inertia groups, respectively. We extend vp uniquely to the p-adic completion
Kp and to some algebraic closure Kp containing LP. Then LP = KpL is
the topological closure of L in Kp and GP = Gal(LP|Kp) in the natural
way. Let kp be the (finite) residue class field of Kp.

The rational numbers mi occurring as slopes of the sides of the Newton
polygon of f are characterized by the property that the sets Zf,mi of roots
of f with vp-value mi are not empty (see Statement 1 below). Moreover,

Zf =
⊎

i

Zf,mi

is a decomposition into blocks of GP. By its very definition the Newton
polygon only can give information on GP. Hence our target is to describe
the constituent GZf,mP (for the chosen slope m).

If f is separable (nonzero discriminant) one knows that |Zf,m| = de
(Statement 1), and from a result of van der Waerden [11] one gets some
information on the action of GP on Zf,m (see Statement 4). But this is
helpful for computations only when knowing precisely the decomposition of
p in the root fields K(θ) for θ ∈ Zf,m. The basic idea is to replace Zf,m by
the roots of a polynomial fm easily obtained from Sm. Following Ore [10]
we introduce this factor fm and the polynomial fS associated to S = Sm.
For each i ≥ 0 we have vp(a−1

s as+i) ≥ im, and equality holds precisely when
(s+ i, vp(as+i)) ∈ Sm. The factor is defined by

fm =
de∑

i=0
(s+i,vp(as+i))∈Sm

(−1)ia−1
s as+iX

de−i,

ignoring the points not lying on Sm. The polynomial fm ∈ K[X] is nor-
malized and its Newton polygon consists of one side, say S, with length
de and slope m. Since m = h/e and (h, e) = 1 only points of the form
(jh, je) arise from fm on S (0 ≤ j ≤ d). So, fixing an element π in K
of order 1 at p (vp(π) = 1), we may “shorten” fm obtaining a normalized
polynomial fS ∈ K[X] of degree d such that fm is obtained from fS by sub-
stituting X 7→ π−hXe and multiplying the resulting polynomial with πdh.
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The nonzero coefficients of fS are p-units. This fS as well as the reduction
fS = fS mod p will be called the polynomial(s) associated to S (or to Sm).

Theorem. Suppose that p does not divide the discriminant of fS , that
is, fS = fS mod p is separable. Then fm is separable and |Zf,m| = de
(= deg(fm) = length of the side Sm). If in addition p - e, then the following
hold :

(i) For every root β of fm there exists θ ∈ Zf,m such that Kp(β) =
Kp(θ), and vice versa.

(ii) The constituent GZf,mP is permutation isomorphic to GalKp
(fm).

(iii) IZf,mP is cyclic generated by an element which is the product of d
disjoint e-cycles on Zf,m.

(iv) GZf,mP /I
Zf,m
P is, as a permutation group on the set of orbits of IP

on Zf,m, permutation isomorphic to Galkp
(fS).

Following Ore [10] we say that the side Sm is regular provided fS is
separable. This, as well as possible factorizations of fS , are (essentially)
independent of the choice of the prime element π in the definition of fS .
For altering π amounts to a substitution X 7→ uX in fS(X) for some p-unit
u ∈ K, followed by multiplication with u−d. If Sm is not regular, then there
is a normalized p-integral polynomial g ∈ K[X] whose reduction mod p
is irreducible and a multiple divisor of fS mod p (g - f). Then one should
examine the g-adic Newton polygon of f with respect to p (see Section 7
below).

Let us describe two interesting special cases of the Theorem:

Corollary 1. Suppose that the length of Sm divides its height. If fS =
fS mod p is a product of pairwise distinct normalized irreducible polynomials
in kp[X] of degrees di, then G

Zf,m
P is generated by a permutation which is

the product of the corresponding disjoint di-cycles.

Here e = 1. By assumption Sm is regular. By statement (iii) of the
Theorem I

Zf,m
P = 1 and so

G
Zf,m
P

∼= Galkp
(fS)

by statement (iv). This yields the corollary, which generalizes a classical
result due to Dedekind and Bauer (e.g. see Matzat [6, p. 127]).

Corollary 2. Suppose that length and height of Sm are nonzero and
relatively prime. If p does not divide e, then G

Zf,m
P = I

Zf,m
P is cyclic of

order e.

Here d = 1. It follows that fm = Xe − b is a pure polynomial and that
fS = X − π−hb is linear, where b = (−1)e+1a−1

s as+e and π−hb is a p-unit
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in K. The Theorem applies. Note also that fm must be irreducible over Kp

and that its splitting field agrees with that of a certain prime factor of f
over Kp.

The assumption p - e refers to tame ramification. The Theorem indeed
implies the familiar result on totally and tamely ramified local extensions
(see [9, II.7.7]). In this case f is an Eisenstein polynomial with respect
to p, the Newton polygon of f consisting of one side S = Sm with slope
m = 1/n. Here we have fm = Xn − (−1)n+1an and fS = X − u for some p-
unit u. If p does not divide e = n (tame ramification) then, by the Theorem,
Kp(θ) = Kp(n

√
(−1)n+1an) for a root θ of f (suitably chosen).

Our terminology follows Neukirch [9] (number theory) and Dixon–Morti-
mer [3] (permutation groups).

2. Background. We keep the assumptions and notations introduced
above. Thus Sm is a side of the Newton polygon of f with respect to p
which has length de and slope m = h/e, with the extreme points (s, vp(as))
and (t, vp(at)), s < t (t− s = de).

Statement 1. Let the roots θ1, . . . , θn of f (counting multiplicities) be
indexed in such a way that vp(θi)≤vp(θj) if i<j. Then θs+1, . . . , θt=θs+de
are just those roots with vp-value m, and the polynomial f̂m=

∏de
i=1(X−θs+i)

has its coefficients in Kp.

For a proof we refer to [9, Theorems II.6.3 and II.6.4]. We regard f̂m ∈
Kp[X] as a local polynomial (though its coefficients are in Kp∩L). We have
|Zf,m| ≤ de and equality holds if and only if f̂m is separable.

Recall that |IP| = eP is the ramification index of P over p ([9, II.9.9]).
Since vP(θt) = ePvp(θt) = h ·eP/e is an integer, we see that e is a divisor of
|IP|. This is a basic, and often used, information on the order of the Galois
group G which is immediate from the Newton polygon.

Statement 2. Let f =
∏
i f

(i) be a factorization over K into normal-
ized polynomials f (i). Then Sm is obtained by “joining” the sides S(j)

m of
the Newton polygons of those f (j) admitting the slope m. Moreover , fm and∏
j f

(j)
m give rise to the same points on Sm and fS ≡

∏
j f

(j)
S (mod p).

For p-integral polynomials (and m > 0) this follows from the results
proved in Chapter 1 of [10] (see Theorems 5 and 7). That it is true in
general may be seen from Statement 1 on the basis of Proposition 1 below.
Of course, to a normalized polynomial f̂ ∈ Kp[X] we assign the obvious
Newton polygon (with respect to vp). Statement 2 carries over to such local
polynomials. If the polygon of f̂ consists of one side Ŝ then, ignoring the
coefficients of the polynomial yielding points not lying on Ŝ and shortening
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the resulting factor, picking the same prime element π ∈ K as before, we
obtain an associated (local) polynomial f̂Ŝ .

Statement 3. Suppose f̂ ∈ Kp[X] is normalized , irreducible and N̂ =
Kp(θ) for some root θ of f̂ . Then the Newton polygon of f̂ consists of
one side Ŝ and the associated polynomial f̂Ŝ mod p is a power of an ir-
reducible polynomial g ∈ kp[X]. The degree of g divides the residue class
degree r(N̂ |Kp).

From Statement 1 it is immediate that the Newton polygon is as asserted
(see also [9, II.6.5]). By abuse of notation let f̂ = f and Ŝ = Sm = S (so
that deg(f̂) = n = de and m = h/e). So by definition

fm(X) = πdhfS(π−hXe).

If m = 0 then f and fm = fS are integral and have the same reduction
mod p, which must be a power of an irreducible g by Hensel’s lemma ([9,
II.4.6]). Then the image of θ in the residue class field of N̂ is a root of g.
It follows that deg(g) divides r(N̂ |Kp). Recall that the maximal unramified
subextension of N̂ |Kp is cyclic of degree r(N̂ |Kp). (Our notation differs from
that in [9], reserving the letter f for polynomials.)

The general case is treated as follows (cf. [10, Theorem 3 in Chap. 2] for
the case m > 0). We know from Statement 1 that vp(π−hθe) = −h+em = 0.
Hence π−hθe is a unit in N̂ . Let g be the minimum polynomial over kp

of its residue class. Then deg(g) divides r(N̂ |Kp). Let g be the minimum
polynomial over Kp of π−hθe. Then g is integral and the reduction g mod p
a power of g (Hensel). Let t = deg(g). Define the polynomial g̃ by

g̃(X) = πthg(π−hXe).

Observe that g and g̃ are normalized. We even know that g(0) is a unit
in Kp. Using the fact that g is integral this shows that the Newton polygon
of g̃ is a side S̃ with length te and slope m. Its associated polynomial g̃S̃
is obtained from g by leaving out those monomials where the coefficients
are nonunits. In particular, it has the same reduction mod p. Now θ is a
root of g̃ and so g̃ = f · f̃ for some f̃ ∈ Kp[X], because f is the minimum
polynomial of θ. It follows from Statement 2 that fS mod p (like g̃S̃ mod p)
is a power of g, as desired.

The local polynomial f̂m of Statement 1 is normalized. By considering
the elementary symmetric functions of its roots we see that its polygon
consists of one side of length de and slope m which, therefore, may be
identified with the side S assigned to the global polynomial fm. In what
follows we write f̂S in place of (f̂m)S for the associated polynomial.
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Statement 4. Suppose f is irreducible over K and N = K(θ) (⊆ L)
for some root θ of f . Let M denote the set of primes ℘ of N above p
satisfying v℘(θ) = e℘m, where e℘ is the ramification index over p. Then
there are normalized irreducible polynomials f̂℘ ∈ Kp[X] of degree e℘r℘,
with r℘ denoting the residue class degree, such that

f̂m =
∏

℘∈M
f̂℘.

Over the unramified extension field of Kp of degree r℘ the polynomial f̂℘
decomposes into a product of Galois conjugate irreducible polynomials of
degree e℘ (℘ ∈ M).

This follows from a classical result of van der Waerden [11]. In fact, the
roots of f̂℘ belong to an orbit of Zf under the action of GP, which in turn
decomposes under IP into r℘ orbits of length e℘ (see also [6, Theorem 1,
p. 126]). The 1-1 correspondence ℘ ↔ f̂℘ is achieved as follows: A double
coset GθσGP for σ ∈ G corresponds to the GP-orbit of θσ and determines
the prime ℘ = Pσ−1 ∩ N (so that the P(τσγ)−1

for τ ∈ Gθ = Gal(L|N),
γ ∈ GP, are all the primes in L above ℘).

We have v℘(θ) = v℘σ (θσ) for all primes ℘ of N above p and all σ ∈ G.
It follows that ℘ ∈ M if and only if there is σ ∈ G such that P |℘σ and
θσ ∈ Zf,m, which gives the statement.

The primes ℘ in M = Mθ are said to belong to the side Sm. Since
v℘(θ) = h · e℘/e is an integer, e divides e℘.

3. Global and local polynomials to a side. By definition the local
polynomial f̂m is a divisor of f over Kp whereas the global polynomial fm
is just constructed using certain coefficients of f . Computation of f̂m from
f is not easy and often appears even impracticable.

Lemma. Write f̂m =
∑de
i=0(−1)iciXde−i (so that c0 = 1). We have

vp(a−1
s as+i − ci) > im for all i = 0, . . . , de = t− s.

Proof. We order the roots θ1, . . . , θn of f totally as in Statement 1.
Then we have vp(θj) < m for j ≤ s and vp(θj) > m for j > t = s + de.
The coefficients ai of f for i 6= 0 are the elementary symmetric functions
of the θj . We have vp(ai) = vp(θ1 · · · θi) whenever (i, vp(ai)) is an extreme
point of the polygon. This holds, in particular, for i = s (with the obvious
convention when s = 0). The coefficients ci, i 6= 0, of f̂m are the elementary
symmetric functions of the θs+1, . . . , θt (Statement 1). Hence

ci =
∑

s<l1<···<li≤t
θl1 · · · θli
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for each i = 1, . . . , de. It follows that vp(ci) ≥ im. Consider

%i = as+i − asci =
∑

1≤l1<···<ls+i≤n
θl1 · · · θls+i −

( ∑

1≤l1<···<ls≤n
θl1 · · · θls

)
ci.

Taking into account the expression for ci, this %i is the difference of terms
where each term is a sum of products of just s+ i of the roots θj (allowing
certain multiplicities). The partial sum

(θ1 · · · θs) ·
∑

s<l1<···<li≤t
θl1 · · · θli

occurs in both as+i and asci, hence disappears in %i. But the vp-value of
this part is at least equal to vp(as)+im, and all other products appearing in
%i have larger vp-values. We conclude that vp(%i) > vp(as) + im. The result
follows.

Proposition 1. The points lying on S resulting from fm and from f̂m
are the same and fS ≡ f̂S (mod p).

Proof. It follows from the lemma that both polynomials fm and f̂m yield
the same points lying on S. Recall that f̂S = (f̂m)S is obtained from (the
factor to) f̂m, like fS from fm, using the same prime element π. Thus the
lemma even tells us that fS − f̂S is divisible by π. The proof is complete.

4. Regularity. In this section we assume that Sm is regular. Our dis-
cussion is motivated by the main theorem in Ore [10] (Theorem 5 in Chap. 2;
see [2] and [7] for re-statements).

Proposition 2. Suppose p does not divide the discriminant of fS. Then
both f̂m and fm are separable (of degree de). There is a 1-1 correspondence
ϕ ↔ ψ between the normalized prime factors over Kp of fm and f̂m such
that :

(i) Both ϕ and ψ have the same Newton polygon (a side with slope m)
and the same associated polynomial g ∈ kp[X], which is irreducible
over kp.

(ii) Letting θ and β denote roots of ϕ and ψ, respectively , both Kp(θ) and
Kp(β) have over Kp ramification index e and residue class degree
deg(g).

Proof. By hypothesis and Proposition 1 we may write

f̂S mod p = fS mod p =
∏

i

gi,

where the gi are distinct normalized irreducible polynomials over kp. Con-
sider the normalized prime factors f (j) of f over K whose Newton polygon
with respect to p has a side S(j)

m with slope m. From Statements 1 and 2
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it follows that each f (j) is a simple divisor of f and that f̂m =
∏
j f̂

(j)
m is

separable of degree de.
Even more is true. By Statement 2 the associated polynomial mod p to

f (j) and S
(j)
m is a product g̃j of certain of the gi, and

∏
j g̃j = fS mod p.

By Hensel’s lemma we may write fS =
∏
i gi where each gi ∈ Kp[X] is

normalized, integral with reduction gi. Via the substitution X 7→ π−hXe,
followed by multiplication with πdeg(gi)h, from gi we get a normalized poly-
nomial f (i)

m ∈ Kp[X] of degree e · deg(gi). Since
∑
i deg(gi) = d = deg(fS)

this yields a factorization
fm =

∏

i

f (i)
m

over Kp. The Newton polygon of each f (i)
m must be a side with slope m and

with associated polynomial gi. Since gi is irreducible over kp, from Statement
2 it follows that f (i)

m must be irreducible over Kp. Separability of fS mod p
implies that fm is separable.

Replacing f by some f (j), if necessary, we therefore may assume that
f is irreducible over K. Then, if we let N = K(θ) for some root θ of f ,
Statement 4 applies. We obtain the prime factorization

f̂m =
∏

℘∈M
f̂℘

over Kp indexed by the set M of primes of N belonging to Sm. By State-
ments 3 and 2 (and separability of f̂S mod p) the Newton polygon of any
f̂℘ is a side with slope m and irreducible associated polynomial g℘ mod p,
which must be one of the gi. In this manner we get a 1-1 correspondence
℘↔ i which we use to re-write g℘ = gi and f℘ = f

(i)
m . Thus fm =

∏
℘∈M f℘

likewise.
Recall that deg(f℘) = e · deg(g℘) and deg(f̂℘) = e℘ · r℘ (Statement 4),

and that e is a divisor of e℘ for all ℘ ∈ M. From Statement 3 we know that
deg(g℘) divides r(N̂ |Kp) where N̂ = Kp(θσ) for some root θσ of f̂℘ in LP

(with σ ∈ G). Then P |℘σ and N̂ = (Nσ)℘σ . It follows that r(N̂ |Kp) =
r℘ (= r℘σ ). From

∑

℘

e · deg(g℘) = deg(fm) = deg(f̂m) =
∑

℘

e℘ · r℘

we may conclude that e℘ = e and deg(g℘) = r℘ for all ℘ ∈ M. This
completes the proof.

5. Tame ramification. Let ϕ and ψ be normalized, irreducible poly-
nomials of the same degree over Kp having the same Newton polygon, a side
Σ with slope m (with m = h/e as usual).
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Proposition 3. Assume that ϕ and ψ have the same associated poly-
nomial g and that it is irreducible over kp. If p does not divide e, then to
every root θ of ϕ there is a root β of ψ such that Kp(θ) = Kp(β), and vice
versa.

Proof. By symmetry it suffices to show that, for a fixed root θ of ϕ,
there exists a root β of ψ with the required property. In place of vp we use a
multiplicative (discrete) valuation | · | on Kp, somehow normalized (|π| < 1).

By Statement 1 all the roots of ϕ and of ψ have vp-value m = h/e. Hence
|θ|e = |π|h = |β|e for each root β of ψ. It follows that

θe = πhuθ, βe = πhuβ

for some units uθ, uβ (|uθ| = |uβ | = 1).
Let T̂ be the unramified (cyclic) extension field of Kp of degree deg(g)

(within Kp). Note that π is a prime element of T̂ . Over the residue class
field of T̂ the polynomial g decomposes into a product of Galois conjugate
linear polynomials, and ϕ and ψ decompose correspondingly over T̂ (in
view of Statement 3). Replace ϕ by the minimum polynomial of θ over T̂ ,
and replace ψ by the appropriate prime factor over T̂ . The polynomials
thus obtained will have the same Newton polygon, consisting of one side
with slope m, length e and height h, and with the same associated (linear)
polynomial mod p (Statement 2).

Since Kp(θ) = T̂ (θ) and Kp(β) = T̂ (β) for every root β of ψ, without
loss of generality we may assume that Kp = T̂ . Then Kp(θ) is a totally (and
tamely) ramified extension of Kp of degree e = deg(ϕ). A similar statement
holds for Kp(β) and any root β of ψ. The polynomial g being linear (with
g(0) 6= 0) the factors of ϕ and ψ for the side Σ are pure polynomials

Xe − πhu, Xe − πhû,
respectively, where u and û are units in Kp satisfying u ≡ û (mod p). Thus
|u− û| < 1. Clearly we may assume that e > 1 (m 6= 0).

Suppose ψ = Xe + c1X
e−1 + · · · + ce−1X + ce. Then ce = −πhû and

vp(ci) > im for all i = 1, . . . , e− 1. Hence if β is a root of ψ then

|ciβe−i| = |ci| · |π|(h/e)·(e−i) < |π|h

for i = 1, . . . , e− 1. It follows that

|βe − πhû| = |c1βe−1 + · · ·+ ce−1β| < |π|h.
Thus |uβ − û| < 1 for each root β of ψ. By considering ϕ in place of ψ we
get |uθ − u| < 1 analogously. We infer that

|uθ − û| ≤ max{|uθ − u|, |u− û|, |û− uβ |} < 1.
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This yields |θe − πhû| = |π|h|uθ − û| < |π|h and so

|ψ(θ)| = |(θe − πhû) + (c1θe−1 + · · ·+ ce−1θ)|
≤ max{|θe − πhû|, max

1≤k≤e−1
|ckθe−k|} < |π|h.

Suppose β1, . . . , βe are the roots of ψ. We have shown that
e∏

j=1

|θ − βj | = |ψ(θ)| < |π|h.

Since |θ − βj | ≤ max{|θ|, |βj|} = |π|h/e for all j, there must be some root,
say β = β1, such that |θ − β| < |π|h/e. We assert that Kp(β) = Kp(θ) for
this choice of β.

We consider the derivative of ψ at β. Since p does not divide e by hy-
pothesis, we have |e| = 1. We obtain

|ψ′(β)| = 1
|β| · |eβ

e + (e− 1)c1βe−1 + · · ·+ ce−1β| = |β|e−1 = |π|(e−1)·h/e.

On the other hand, |ψ′(β)| = ∏e
j=2 |β− βj | and |β− βj | ≤ |π|h/e for each j.

Consequently, |β − βj | = |π|h/e for all j = 2, . . . , e. But this implies that
|θ − β| < |β − βj | for all j 6= 1. By the lemma of Krasner ([9, p. 159]) this
gives Kp(β) ⊆ Kp(θ). We must have equality since ϕ and ψ are irreducible
over Kp of the same degree.

6. The Galois group for a regular side. We are going to prove
the Theorem stated in the introduction. Suppose Sm is regular. Without
assuming that Sm is tame (p - e) we can describe the constituent IZf,mP and

the quotient GZf,mP /I
Zf,m
P as follows.

Proposition 4. Suppose fS = fS mod p is separable. Then I
Zf,m
P has

exactly d orbits, each of size e, and is the stabilizer in G
Zf,m
P of these orbits.

This implies that GZf,mP /I
Zf,m
P

∼= Galkp
(fS) as permutation groups.

Proof. By Propositions 1 and 2 both fm and f̂m are separable of degree
de, and fS = f̂S mod p. From Statement 1 it follows that Zf,m is a block
for GP and that

G
Zf,m
P = GalKp

(f̂m).

Now let L̂ be the splitting field of f̂m over Kp (with L̂ ⊆ LP), and let
T̂ |Kp be the maximal unramified subextension. Observe that IP maps onto
Gal(L̂|T̂ ) under the restriction map. The residue class field of T̂ is “the”
splitting field of fS by Statement 3.



Galois groups 81

By Proposition 2 and Statement 4 the Gp-orbits of Zf,m have length die,
where di denotes the degree of a prime factor of fS (

∑
i di = d). Each such

orbit decomposes under IP into di (conjugate) orbits of length e. We infer
that IZf,mP is the kernel of the action of GZf,mP onto these IP-orbits. This
yields the proposition.

Proof of the Theorem. Suppose Sm is regular and p does not divide e.
Then Proposition 3 applies. This gives assertion (i). It is now obvious that L̂
(notation as above) is also a splitting field for fm. Furthermore GalKp

(fm) ∼=
GalKp

(f̂m) as permutation groups, because both agree with Gal(L̂|Kp) as
groups and have the same degree and the same point stabilizers as permu-
tation groups. This is (ii).

Recall that the compositum of tamely ramified extensions is tamely rami-
fied ([9, II.7.9]). Thus from Proposition 2 we may deduce that L̂|Kp is tamely
ramified (p - e). It follows that L̂|T̂ is cyclic ([9, II.9.15]). Now statements
(iii), (iv) of the Theorem are immediate consequences of Proposition 4.

7. g-adic Newton polygons. Suppose Sm is not regular. Then there
is a normalized p-integral polynomial g ∈ K[X] whose reduction mod p is
irreducible and a multiple divisor of fS mod p (g - f). Then, as a rule, we
proceed by investigating the g-adic Newton polygon of f with respect to p.
This is defined via the g-adic expansion f =

∑ñ
i=0 αig

ñ−i, ñ = [n/deg(g)],
by letting vp(αi) be the minimum of the vp-values of the coefficients of the
polynomial αi = αi(X) ∈ K[X] (deg(αi) < deg(g)).

There is a parallel theory for g-adic polygons (cf. [10] and [7]). However,
after passage to the unramified extension of Kp of degree deg(g) we are
led to expansions with regard to linear polynomials. Of course, this is most
convenient (also for computations) in case g itself is linear, that is, g = X−u
for some p-unit u ∈ K. Then we just have to examine the standard polygon
of f̃(X) = f(X + u). Note that GalK(f̃) ∼= GalK(f). We give some typical
examples.

Example 1. Let f be the pth cyclotomic polynomial over K = Q and
p = pZ (n = p− 1). The standard Newton polygon of f with respect to p is
a side with slope 0. Here f ≡ (X − 1)n (mod p) so that we should consider
the standard polygon of f̃(X) = f(X + 1). It consists of one side S = Sm
with slope m = 1/n. So f̃S is linear and f̃m = Xn+p. From the Theorem we
deduce the (known) result that Qp(ζp) = Qp( p−1

√−p) is the pth cyclotomic
field over the p-adics.

Example 2. Let p be an odd prime and let h ∈ Z[X] be a normalized
polynomial of degree p which is Eisenstein with respect to p. Then h is
irreducible over Qp. Let π be a root of h and K = Q(π). Then Kp|Qp is
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totally and wildly ramified and vp(π) = 1, p being the unique prime of K
above p. Now suppose that p2 does not divide a = h′(0) (like h(0)).

Let f(X) = h(X)/(X−π), and let f̃(X) = f(X+π). This f̃ is normalized
of degree n = p − 1 with f̃(0) = h′(π) = au for some principal unit u
of Kp. Use the fact that p divides

(
p
k

)
for 1 ≤ k < p. This also implies that

the (standard) Newton polygon of f̃ is a side of length p − 1 and height
p = vp(f̃(0)). Hence the Theorem applies (Corollary 2). In this case the
Newton polygon of f itself would not give any useful information. Since u
is a (p − 1)th power in Kp we infer that L̂ = Kp( p−1

√−a) is a root field for
f̃ and f and has degree p − 1 over Kp. In particular [L̂ : Qp] = p(p − 1).
Since GalQp(h) is a solvable subgroup of the symmetric group of degree p, a
theorem of Galois now ensures that it must be the full affine group AGL1(p)
(Corollary 3.5B in [3]). It follows that L̂ = Qp(π, p−1

√−a) is the splitting
field of h over Qp.

It follows from the classification of the finite simple groups that, for
p ≥ 5, the affine group AGL1(p) is a maximal subgroup of the symmetric
group Sym(p) (see [3, p. 99 and Sect. 7.7]). Hence GalQ(h) is either the affine
group or the symmetric group.

Example 3. Let n ≥ 5 be a rational prime and b a rational integer not
divisible by n. Let f = Xn + aX + a over K = Q where a = bn. This
Eisenstein trinomial has been studied by several authors. From Example 2
we know that G = GalQ(f) is either the affine group or the symmetric group.
By examining the discriminant of a root field defined by f (computed in [5])
the Wegener–Hasse theorem [4] shows that G = AGL1(p) if and only if the
splitting field L of f contains the nth roots of unity (see also Movahhedi [8]
for an alternative approach). Let p be a prime dividing

D = nn−1 + b(n− 1)n−1.

This D is a divisor of the discriminant of f , but we do not use that. Note
that D ≡ b (modn) and that p does not divide 2bn(n − 1). The standard
polygon of f with respect to p = pZ is a side with slope 0.

We have f ′ = nXn−1+a and so nf(X)−Xf ′(X) = a(n−1)X+na. Hence
the greatest common divisor of f and f ′ mod p is either 1 or X − u mod p,
where u = −n/(n − 1) is a rational p-adic unit. We check that vp(f(u)) =
vp(f ′(u)) = vp(D) (> 0) and vp(f ′′(u)) = 0. This implies (directly) that
f mod p is inseparable. We have all the necessary information about the
standard Newton polygon of f̃(X) = f(X + u) with respect to p (Taylor).
It consists of a side with slope 0 and length n− 2, and a side Sm with slope
m = vp(D)/2 and length 2. For the side Sm we get f̃m = X2 − c where

c = 4uD/(n(n−1)/2(n− 1))2.
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Note that vp(c) = vp(D). The associated polynomial (picking π = p) is
either f̃S = X − c/pvp(D) or f̃S = X2 − c/pvp(D), depending on whether
vp(D) is odd or even. In any case, f̃S is separable mod p, and the Theorem
applies. The polynomial associated to the side with slope 0, which agrees
with its factor, must be separable mod p as well.

If vp(D) is odd, c is not a square in Qp. We conclude that IP is generated
by a transposition on Zf̃ . Since G ∼= GalQ(f̃) is a primitive permutation
group (of prime degree), G = Sym(n) is the symmetric group by a theorem
of Jordan ([3, Theorem 3.3A]).

So let vp(D) be even. Then IP = 1 and GP has either two fixed points or
an orbit of length 2 on Zf̃ , depending on whether c, that is, uD, is a square
in Qp or not. Assume G is the affine group (so that Q(ζn) ⊆ L). In the first
case we then must have GP = 1, because G is a Frobenius group. In this
case p splits completely in Q(ζn) ⊆ L and so p ≡ 1 (modn). In the second
case GP is generated by a product of (n−1)/2 disjoint transpositions on Zf̃ ,
hence has order 2 even when restricted to Q(ζn). This implies that p ≡ −1
(modn).

Remark. It is conjectured that G = GalQ(Xn + aX + a) is always the
full symmetric group (n ≥ 5 a prime dividing the integer a exactly to the
first power). We have just shown that this is true if |D| is not a rational
square or if D has a prime divisor p 6≡ ±1 (modn). Such a prime divisor
is, for instance, p = 3 if n ≡ 2 (mod 3) and a ≡ 1 (mod 3). We also have
G = Sym(n) if a is odd or if a ≡ 2 (mod 3). To see this use the fact that
Xn + aX + a mod 2 is separable and has no root in F2 if a is odd, and
that the analogous statement holds mod 3 in the other case. Thus from
G = AGL1(n) it would follow that the polynomial is even irreducible mod
2 resp. 3. This would imply that GP, for P over p = 2 resp. 3, is the
(cyclic) normal subgroup of order n in G and that 2 or 3 split completely
in Q(ζn) ⊆ L, which is impossible.

One also knows that G = Sym(n) if D < 0 or, more generally, if a < n2.
No example is known so far where G 6= Sym(n).
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