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Pingzhi Yuan (Guangdong)

1. Introduction. In this paper, we investigate positive integer solutions
(x, y, z) of some special forms of the simultaneous Diophantine equations

{
ax2 − bz2 = δ1,

cy2 − dz2 = δ2,
(1)

where a, b, c and d are positive integers, δ1 and δ2 are integers such that
gcd(ab, δ1) = gcd(cd, δ2) = 1. By work of Thue [10] and Siegel [8], (1) has at
most finitely many solutions if (b, δ1) 6= k(d, δ2), where k is an integer. Con-
sidering (1) as an elliptic equation ac(xy)2 = (bz2 + δ1)(dz2 + δ2), one may
apply the theory of linear forms in logarithms to effectively bound all solu-
tions (x, y, z) of (1) and we can study the solutions of (1) via the arithmetic
elliptic curves. The usual way to solve (1) completely is to combine lower
bounds for the linear forms in logarithms of algebraic numbers with tech-
niques from computational Diophantine approximations. Anglin [2] devotes
Section 4.6 of his textbook to the description of an algorithm for solving
some special forms of (1). For elementary arguments in certain cases of (1),
see Walsh [11, 12], Bennett and Walsh [5] and the author’s [14].

For the special Diophantine equations

x2 − az2 = y2 − bz2 = 1(2)

where a and b are distinct positive integers, Anglin [1] showed that (2) has
at most one positive solution (x, y, z) whenever max(a, b) ≤ 200. Bennett
[4], sharpening work of Masser and Rickert [6], proved that (2) has at most
3 positive solutions. The author [13], by using a different gap principle (to
ensure that solutions do not lie too close together), showed that (2) has at
most 2 positive solutions (x, y, z) provided that max(a, b) > 1.4 · 1057.
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In the present paper, we will study the more general simultaneous Pell
equations (1). In Section 2, some general information on (1) with δi ∈
{±1,±2,±4}, i = 1, 2, is obtained. On the other hand, in Theorems 2.1 and
2.2 we precisely say when (1) has infinitely many integer solutions (x, y, z).
Section 3 is devoted to the simultaneous Pell equations

ax2 − bz2 = cy2 − dz2 = 1(3)

where a, b, c and d are positive integers with b 6= d. In Section 4 we obtain
some similar results to those in Section 3, but on the simultaneous Pell
equations

x2 − ay2 = y2 − bz2 = 1(4)

where a and b are positive integers.
In Section 5, by using the same idea as in [13], we apply a result of Baker

and Wüstholz [3], namely a lower bound for linear forms in logarithms of
three algebraic numbers, to prove the following main theorems of this paper.
Denote by N(a, b, c, d) and N(a, b) the number of positive integer solutions
of (3) and (4), respectively. We have:

Theorem 1.1. Let a, b, c and d be positive integers with b 6= d and
max(a, b, c, d) ≥ 1.16 · 1059. Then N(a, b, c, d) ≤ 2.

Theorem 1.1 is a generalization of Theorem 1.4 of [13]. For equations
(4), we have similar results which slightly improve Theorem 7.1 of [4]:

Theorem 1.2. Let a and b be positive integers with a > 3.31 ·1035. Then
N(a, b) ≤ 2.

Theorem 1.3. Let a and b be positive integers and let x1 + y1
√
a be the

fundamental solution of x2−ay2 = 1 (i.e. x1 and y1 are the smallest positive
integers satisfying x2

1 − ay2
1 = 1). If y1 > a0.005 and a > 6.4 · 102326, then

N(a, b) ≤ 1.

Of course, we can obtain similar results for other forms of equation (1).
Since the method is essentially similar, we omit them here.

For positive integers l > 1, m > 1 and a > 1, let n(l,m) and c(l, a) be
integers with

n(l,m) =
(m+

√
m2 − 1)2l − (m−

√
m2 − 1)2l

4
√
m2 − 1

and

4c(l, a)− 1 =
(
√
a+
√
a− 1)l − (

√
a−
√
a− 1)l

2
√
a− 1

, l ≡ 3 (mod 4).

Then the simultaneous Pell equations

x2 − (m2 − 1)z2 = y2 − (n(l,m)2 − 1)z2 = 1, x, y, z ∈ Z
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and

ax2 − (a− 1)z2 = c(l, a)y2 − (c(l, a)− 1)z2 = 1, x, y, z ∈ Z
have two positive solutions

(x, y, z) = (m,n(l,m), 1),

(x, y, z) =
(

(m+
√
m2 − 1)2l + (m−

√
m2 − 1)2l

2
, 2n(l,m)2 − 1, 2n(l,m)

)

and

(x, y, z) = (1, 1, 1),

(x, y, z) =
(

(
√
a+
√
a− 1)l + (

√
a−
√
a− 1)l

2
√
a

, 4c(l, a)− 3, 4c(l, a)− 1
)
,

respectively. We call (a1, b1, c1, d1) an equivalent form of (a, b, c, d) if
(a1, b1, c1, d1) = (a/a2

0, b/b
2
0, c/c

2
0, d/d

2
0), where a0, b0, c0, d0 are positive in-

tegers. We think a more general result is true.

Conjecture 1.1. Apart from

(a, b, c, d) = (1,m2 − 1, 1, n2(l,m)− 1), (a, a− 1, c(l, a), c(l, a)− 1)

and their equivalent forms, N(a, b, c, d) ≤ 1.

Acknowledgments. The work was done at Leiden University when the
author was a visiting scholar. He is pleased to thank the staff of the Math-
ematical Institute for their hospitality. He thanks the referee for providing
him with many valuable suggestions.

2. General results. Let δi ∈ {±1,±2,±4}, i = 1, 2, a, b, c, and d
be positive integers such that neither ab nor cd is a perfect square and
gcd(ab, δ1) = gcd(cd, δ2) = 1. In this section, we investigate the following
more general simultaneous Pell equations

{
ax2 − bz2 = δ1,

cy2 − dz2 = δ2.
(5)

To discuss solutions (x, y, z) of (5), without loss of generality, we may assume
that both ax2−bz2 = δ1 and cy2−dz2 = δ2 are solvable in positive integers.

Definition 2.1. If ax2 − by2 = δ, δ ∈ {±1,±2,±4}, is solvable in
positive integers, let x0

√
a+ y0

√
b be the smallest value of x

√
a+ y

√
b such

that (x, y) is a positive solution of ax2− by2 = δ. Then x0
√
a+ y0

√
b is said

to be the smallest solution of this equation.
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Let x0
√
a+z0

√
b and y0

√
c+z?0

√
d be the smallest solutions of ax2− bz2

= δ1 and cy2 − dz2 = δ2, respectively. Put

α =
x0
√
a+ z0

√
b√

|δ1|
, β =

y0
√
c+ z?0

√
d√

|δ2|
,

α =
x0
√
a− z0

√
b√

|δ1|
, β =

y0
√
c− z?0

√
d√

|δ2|
.

Define

Ul =





αl − αl√
4b/|δ1|

if 2 - l or (b, δ1) 6= (1,−1), (1,−4),

αl + αl√
4/|δ1|

if 2 | l and (b, δ1) = (1,−1) or (1,−4).

Similarly, define U ′k to be (βk − βk)/
√

4d/|δ2| or (βk + β
k
)/
√

4/|δ2|. First
we have:

Lemma 2.1 ([9]). Let x1
√
a+y1

√
b be the smallest solution of ax2−by2 =

δ, δ ∈ {1, 2, 4}. Then every positive solution (x, y) of this equation can be
given by

x
√
a+ y

√
b√

|δ|
=
(
x1
√
a+ y1

√
b√

|δ|

)n
, n > 0,

with 2 -n if min(a, b) > 1 or (a, δ) 6= (1, 1), (1, 4).

Recall that if (b, δ1) 6= k(d, δ2), then (1) has only finitely many solutions.
If (b, δ1) = k(d, δ2) and (1) has infinitely many solutions, then ax2 = kcy2.
Therefore, without loss of generality we may assume that k = 1. We have:

Theorem 2.1. Let a, b and c be positive integers, δ ∈ {±1,±2,±4}
such that neither ab nor bc is a perfect square and gcd(abc, δ) = 1. Then the
simultaneous Pell equations

{
ax2 − bz2 = δ,

cy2 − bz2 = δ
(6)

have a positive integer solution (x, y, z) if and only if each equation in (6)
is solvable in positive integers and ac is a perfect square. Moreover , if the
system has a positive integer solution, then it has infinitely many integer
solutions (x, y, z).

Proof. It suffices to prove that if each equation in (6) is solvable and
ac is a perfect square, then (6) have infinitely many integer solutions. Let
a = a0a

2
1 with a0 square-free. Since ac is a perfect square, a0 is moreover

the square-free part of c, say, c = a0c
2
1. Let x′0

√
a0 + z′0

√
b be the smallest
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solution of a0x
2 − bz2 = δ. From Lemma 2.1 we have

x0
√
a+z0

√
b√

|δ|
=
(
x′0
√
a0 +z′0

√
b√

|δ|

)m
,

y0
√
c+z?0

√
b√

|δ|
=
(
x′0
√
a0 +z′0

√
b√

|δ|

)n

for some positive integers m and n. Put

xt
√
a0 + zt

√
b√

|δ|
=
(
x′0
√
a0 + z′0

√
b√

|δ|

)mnt
, t = 1, 2, . . . .

Then a1 |xt and c1 |xt. Hence (xt/a1, xt/c1, zt) is a positive integer solution
of (6) for every t = 1, 2, . . . .

More generally we have:

Theorem 2.2. Let a, b and c be positive integers, δ a nonzero integer
such that neither ab nor bc is a perfect square and gcd(abc, δ) = 1. Then the
simultaneous Pell equations

{
ax2 − bz2 = δ,

cy2 − bz2 = δ
(7)

have a positive integer solution (x, y, z) only if each equation in (7) is solvable
in positive integers and ac is a perfect square. Moreover , if they have a
positive integer solution, then they have infinitely many integer solutions
(x, y, z).

Proof. It suffices to prove the last assertion. Let a = a0a
2
1, c = a0c

2
1

with a0 square-free, and let (x, y, z) be a positive solution of (7). Then
x
√
a+ z

√
b = y

√
c+ z

√
b. Let x0 + y0

√
a0ba2

1c
2
1 be the fundamental solution

of x2 − a0ba
2
1c

2
1y

2 = 1. Put

xt
√
a0 + zt

√
b = (x

√
a+ z

√
b)(x0 + y0

√
a0ba

2
1c

2
1)t, t = 1, 2, . . . .

It is easy to see that a1 |xt, c1 |xt and (xt/a1, xt/c1, zt) is a positive integer
solution of (7) for every t = 1, 2, . . . .

By Theorems 2.1 and 2.2, we may assume that (b, δ1) 6= (d, δ2) through-
out the paper. We have the following lemmas:

Lemma 2.2 ([7]). If (b, δ1) 6= (1,−1), (1,−4) and m |n, or n/m is an
odd integer , then Um |Un.

Lemma 2.3. Let k0, k1, k2 and q be positive integers with k2 = 2qk1±k0,
0 ≤ k0 ≤ k1. Then Uk2 ≡ ±Uk0 (modUk1).

Proof. Note that k0 and k2 have the same parities. We divide the proof
into two cases.
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Case I: 2 - k2 or (b, δ1) 6= (1,−1) or (1,−4). We have

α2qk1+k0 − α2qk1+k0

√
4b/|δ1|

−(αα)qk1
αk0 − αk0

√
4b/|δ1|

=
(αqk1+k0 + αqk1+k0)(αqk1 − αqk1)√

4b/|δ1|
and

α2qk1−k0 − α2qk1−k0

√
4b/|δ1|

+ (αα)qk1−k0
αk0 − αk0

√
4b/|δ1|

=
(αqk1−k0 + αqk1−k0)(αqk1 − αqk1)√

4b/|δ1|
.

Thus Uk2 ≡ ±Uk0 (modUk1).

Case II: 2 | k2 and (b, δ1) = (1,−1) or (1,−4). If 2 | q or 2 - k1, then

α2qk1±k0 +α2qk1±k0

√
4/|δ1|

−(αα)qk1
αk0 + αk0

√
4/|δ1|

=
(αqk1±k0 − αqk1±k0)(αqk1 − αqk1)√

4/|δ1|
.

If 2 - q and 2 | k1, then

α2qk1±k0 +α2qk1±k0

√
4/|δ1|

+(αα)qk1
αk0 + αk0

√
4b/|δ1|

=
(αqk1±k0 +αqk1±k0)(αqk1 +αqk1)√

4/|δ1|
.

Thus again Uk2 ≡ ±Uk0 (modUk1).

Lemma 2.4. Let the notations be as above and (b, δ1) 6= (d, δ2). Let z1
be the smallest positive integer z of the solutions (x, y, z) of (5). Then z1 | z
for any solution (x, y, z) of (5).

Proof. Let (x1, y1, z1) be the positive solution of (5) with smallest posi-
tive integer z, and (x, y, z) be any solution of (5). Then from the definitions
of Ul and U ′k, we have

z1 = Ul1 = U ′k1
, z = Ul = U ′k

for some positive integers l, k, l1 and k1. If l1 | l and l/l1 is odd, then z1 | z,
whence k1 | k and k/k1 is odd. If k1 | k and k/k1 is odd, then z1 | z, whence
l1 | l and l/l1 is odd.

Suppose that z1 - z. By the above discussion there are positive integers
q1, q, l0 and l such that

l = 2q1l1 ± l0, 0 ≤ l0 < l1, k = 2qk1 ± k0, 0 ≤ k0 < k1.

By Lemma 2.3 we have z ≡ Ul ≡ ±Ul0 (modUl1) and z ≡ ±U ′k0
(modU ′k1

).
Hence

Ul0 ≡ ±U ′k0
(mod z1).(8)

If 2 | ll1, then (b,±δ1) = (1,−1) or (1,−4), and α = (u+ v
√
a)/2 ≥

(3 +
√

5)/2, where u and v are positive integers with u2 − v2a = 4. If 2 - ll1,
then k0 is odd, and k0 ≤ k1 − 2, and α = (u

√
a+ v

√
b)/|δ1| ≥ (

√
5 + 1)/2,

where u and v are positive integers with u2a − v2b = δ1. Hence in both
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cases we have Ul0 <
1
2Ul1 . Similarly, U ′k0

< 1
2U
′
k1

. Hence max(Ul0 , U
′
k0

) <
1
2 max(Ul1 , U

′
k1

) = 1
2z1, and so (8) holds if and only if Ul0 = U ′k0

. Therefore
equations (5) have a solution (x0, y0, z0) with z0 = Ul0 = U ′k0

< z1. This
contradicts our assumption that z1 is the smallest such solution, so z1 | z,
which proves our lemma.

Thanks to Lemma 2.4, when considering the number of solutions (x, y, z)
of (5), without loss of generality, we may assume that (a, c, b, d, δ1, δ2) =
(1, 1,m2 − δ1, n

2 − δ2, δ1, δ2) or (m2 + δ1, n
2 + δ2, 1, 1,−δ1,−δ2), δi ∈ {1, 4},

i = 1, 2, or (a, c, a − δ1, c − δ2, δ1, δ2), δi ∈ {±1,±2,±4}, i = 1, 2. We will
keep this assumption hereafter, whereby (5) has a trivial solution.

3. Lemmas for ax2− bz2 = cy2−dz2 = 1. Throughout this section we
assume that c > a > 1, α =

√
a +
√
a− 1 and β =

√
c +
√
c− 1. Suppose

that (x, y, z) is a positive integer solution of (3); then

z =
αl − α−l
2
√
a− 1

=
βk − β−k
2
√
c− 1

(9)

for some positive odd integers l and k. Since c > a, from (9) it is clear that
√
c− 1
a− 1

αl > βk > αl,

(
β

α

)2

>

√
c− 1
a− 1

,

so if k > 1 and l > 1, then l > k.
Let

Λ =
1
2

log
c− 1
a− 1

+ l logα− k log β.(10)

Then (9) implies that

0 < Λ = log(1− β−2k)− log(1− α−2l) < − log(1− α−2l) <
α2

α2 − 1
α−2l.

It follows that

logΛ < −2l logα+ log
α2

α2 − 1
.(11)

Suppose that N(a, c) ≥ 3. Let (xi, yi, zi) (i = 1, 2, 3) be the first three
positive solutions of (3), say,

zi =
αli − α−li
2
√
a− 1

=
βki − β−ki
2
√
c− 1

for some positive integers li and ki (i = 1, 2, 3) with 1 = k1 < k2 < k3 and
1 = l1 < l2 < l3. By the same discussions as in the proof of Lemma 2.4, we
have:

Lemma 3.1. With the above notations, either l2 | l3 and k2 | k3, or l3 =
2ql2 ± 1 and k3 = 2q1k2 ± 1 for some positive integers q and q1.
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Proof. If l2 | l3, then z2 | z3, whence k2 | k3. Conversely, if k2 | k3, then
l2 | l3. Now if l2 - l3, then k2 - k3, and let

l3 = 2ql2 ± l0, 0 < l0 < l2, k3 = 2q1k2 ± k0, 0 < k0 < k2,

for some positive integers q, q1, k0 and l0. By the same argument as in the
proof of Lemma 2.4, we have l0 = k0 = 1, and the same plus or minus sign
occurs by Lemma 2.3 (Case I).

Lemma 3.2. If k2 6= 3, then l3 > 3.5 · l2β.

Proof. We assume first that l2 | l3. By Lemma 3.1 we have l3 = ql2,
k3 = q1k2 for odd positive integers q and q1. Therefore

z3

z2
=
Uql2
Ul2

=
U ′q1k2

U ′k2

,

which implies that q > q1. Considering these equations modulo z2
2, we have

q(ax2
2)(q−1)/2 ≡ q1(cy2

2)(q1−1)/2 (mod z2
2).(12)

Since ax2
2 ≡ cy2

2 ≡ 1 (mod z2
2), we get q ≡ q1 (mod z2

2). Hence q > z2
2 > β8

and
l3 > l2β

8.

Next assume that l2 - l3. By Lemma 3.1 we have l3 = 2ql2 ± 1 and k3 =
2q1k2 ± 1 for some positive integers q and q1. From z3 = U ′k3

= Ul3 we have
q > q1. Note that β2k2 = 2z2

2(c− 1) + 1 + 2y2z2
√
c(c− 1), so

z3 = U ′k3
≡ 2cq1y2z2 ± 1 (mod 2z2

2(c− 1)).(13)

Similarly,

z3 = Ul3 ≡ 2aqx2z2 ± 1 (mod 2z2
2(a− 1)).(14)

From (13) and (14) we get

aqx2 ≡ cq1y2 (mod z2).(15)

Since ax2
2 ≡ cy2

2 ≡ 1 (mod z2
2), we have

cq2
1 ≡ aq2 (mod z2).

If aq2 6= cq2
1, then cq2 > max(cq2

1, aq
2) > z2 > β4+β2+1 and l3 = 2ql2±1 ≥

3.5 · l2β.
If aq2 = cq2

1, then a = a2
1u, c = c2

1u, q = c1t, q1 = a1t, where a1, c1, u, t
are positive integers with gcd(a1, c1) = 1 and a1 < c1. Since u(a2

1x
2
2−c2

1y
2
2) =

ax2
2−cy2

2 = (a−c)z2
2 = u(a2

1−c2
1)z2

2 and gcd(z2, a1c1ux2y2) = 1, we see that

a1x2 + c1y2 = rξ2, c1y2 − a1x2 = sη2, gcd(ξ, sη) | 2,(16)

where r, s, ξ, η are positive integers such that z2 = ξη or 2ξη and rs =
c2

1 − a2
1 or 4(c2

1 − a2
1). Now, by (15), a1c1u(a1x2 − c1y2)t ≡ 0 (mod z2), and
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so (c1y2 − a1x2)t ≡ 0 (mod z2), hence 2t ≡ 0 (mod ξ). Therefore

cq2 = c4
1ut

2 ≥ c4
1u

4
ξ2 ≥ c4

1u

16(c2
1 − a2

1)
(a1x2 + c1y2) > z2

and l3 ≥ 3.5 · l2β. The lemma is proved.

If k2 = 3, then z2 = U ′3 = 4c− 1. However:

Lemma 3.3. If k2 = 3 and β > 1000, then l3 > 1.8 · l2β2/3.

Proof. The proof is similar to that of Lemma 3.2. If 3 | k2, let k3 = 2q1
and l3 = l2q for some positive integers q and q1, so that

q(ax2
2)(q−1)/2 ≡ q1(cy2

2)(q1−1)/2 (mod z2
2).

Note that z2 = 4c − 1, and ax2
2 ≡ cy2

2 ≡ 1 (mod z2
2), so q > z2

2 = (4c − 1)2

> β4, and l3 = ql2 > l2β
4. If 3 - k3, let k3 = 6q1 ± 1 and l3 = 2ql2 ± 1 for

some positive integers q and q1. We have

z3 ≡ 2cq1y2z2 ± 1 ≡ 2aqx2z2 ± 1 (mod z2
2),

and so
cq1y2 ≡ aqx2 (mod z2).(17)

Since z2 = 4c− 1, we get l ≥ 7 and ax2
2 ≡ cy2

2 ≡ 1 (mod z2
2). We thus have

q2
1 ≡ 4cq2

1 ≡ 4aq2 (mod z2),

whereby it follows that q2 ≥ c/a > 0.9β2/3 (β > 1000) and l3 = 2l2q ± 1 >
1.8 · l2β2/3. The lemma is proved.

4. Some lemmas for x2 − ay2 = y2 − bz2 = 1. In this section we give
some lemmas related to the simultaneous equations{

x2 − ay2 = 1,

y2 − bz2 = 1.
(18)

By Lemma 2.4 we may assume that α = x1 + y1
√
a and β = y1 +

√
y2

1 − 1,
where b = y2

1 − 1. Suppose that (x, y, z) is a positive integer solution of (4).
Then

y =
αl − α−l

2
√
a

=
βk + β−k

2
(19)

for some positive odd integers l and k. From (19) we have
√

1
a
αl > βk.(20)

Hence if k > 1 and l > 1, then k > l.
Let

Λ = l logα− k log β − 1
2

log a.(21)



128 P. Z. Yuan

Then (19) implies that

0 < Λ = log(1 + β−2k) + log(1− α−2l) < β2k +
α2

α2 − 1
α−2l < 1.5 · β2k.

Hence

logΛ < −2k log β + log 1.5.(22)

Suppose that N1(a, b) ≥ 3. Let (xi, yi, zi) (i = 1, 2, 3) be the first three
positive solutions of (4), say,

zi =
αli − α−li

2
√
a

=
βki + β−ki

2

for some positive integers li and ki (i = 1, 2, 3) with 1 = l1 < l2 < l3 and
1 = k1 < k2 < k3. By the same arguments as in Section 3, we have:

Lemma 4.1. With the above notations, either l2 | l3 and k2 | k3, or l3 =
2ql2 ± 1 and k3 = 2q1k2 ± 1 for some positive integers q and q1.

Lemma 4.2. Suppose that (x, y, z) is a positive integer solution of (18)
and y = Ul = V ′k. Then l ≡ 1 (mod 4) and k > 2y2

1.

Proof. Note that from α2 = 2ay2
1 + 1 + 2x1y1

√
a, we get Ul/y1 ≡ l

(mod 4y2
1). Similarly, since β2 = 2y2

1 − 1 + 2y1
√
y2

1 − 1 we have V ′k/y1 ≡
(−1)(k−1)/2k (mod 4y2

1). Therefore l ≡ (−1)(k−1)/2k (mod 4y2
1), whence k >

2y2
1. The lemma is proved.

Lemma 4.3. k3 > 5.5 · k2α.

Proof. We assume first that l2 | l3. By Lemma 4.1 we have l3 = ql2,
k3 = q1k2 for odd positive integers q and q1. Therefore

z3

z2
=
Uql2
Ul2

=
U ′q1k2

U ′k2

,(23)

which implies that q1 > q. By the same argument as in the proof of Lem-
ma 4.2 we have

q ≡ q1(−1)(q1−1)/2 (mod 4y2
2).(24)

Hence q > 2y2
2 > 2α8, so k3 > 2k2α

8.
Next assume that l2 - l3. By Lemma 4.1 we have l3 = 2ql2 ± 1 and k3 =

2q1k2 ± 1 for some positive integers q and q1. Similarly we have

y = Vk3 ≡ (−1)q1(y1 ∓ 2q1y2z2(y2
1 − 1)) (mod 2y2

2),(25)

z3 = Ul3 ≡ ±y1 + 2x1x2y2q (mod 2y2
2).(26)

Since y1 ≤ y2/2, we get

∓ (−1)q1q1z2(y2
1 − 1) ≡ x1x2q (mod y2).(27)
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Note that l 6= 3 by Lemma 4.2. Since x2
2 ≡ 1 (mod y2

2), z2
2(y2

1 − 1) ≡ −1
(mod y2

2), we have
q2

1(y2
1 − 1) ≡ x2

1q
2 (mod y2).

Since y2
1 − 1 is never a square of an integer when y1 > 1, it follows that

(q1y1)2 or (qx1)2 > y2 > y1(α4 + α2 + 1). Hence q1 > q > 2.8 · α, k3 =
2q1k2 ± 1 > 5.5 · k2α.

5. Proofs of the main results. First we recall the following famous
result of Baker and Wüstholz [3]. Let α1, . . . , αn (with n ≥ 2) denote al-
gebraic numbers different from 0 and 1. Let K = Q(α1, . . . , αn) and set
d = [K : Q]. Define a modified height by the formula

hm(α) = max{h(α), |logα|/d, 1/d},
where h(α) denotes the standard logarithmic Weil height of an algebraic
number α.

Theorem 5.1 (Baker–Wüstholz [3]). Let b1, . . . , bn be integers such that

Λ = b1 logα1 + · · ·+ bn logαn 6= 0.

Then if B = max{|b1|, . . . , |bn|} ≥ 3, we have the inequality

log |Λ| > −C1hm(α1) · · ·hm(αn) logB

with
C1 = 18(n+ 1)!nn+1(32d)n+2 log(2nd).

Proof of Theorem 1.1. We apply Theorem 5.1 with

α1 = (c− 1)/(a− 1), α2 = α2, α3 = β2,

b1 = 1, b2 = l3, b3 = −k3,

where α =
√
a+
√
a− 1 and β =

√
c+
√
c− 1. Then

Λ = log
c− 1
a− 1

+ l3 logα2 − k3 log β2.

We may take d = 4, and

hm(α1) = log(c− 1) < 2 log β, hm(α2) = logα,

hm(α3) = log β, B = l3.

Therefore by Theorem 5.1 we have

log |Λ| > −7.6420496 · 1015 logα log2 β log l3.(28)

If k2 6= 3, by Lemma 3.2, (11) and (28),

l3 < 3.8210248 · 1015 log3 l3.

It follows that l3 < 4.101 · 1020. Hence by Lemma 3.2 and l2 ≥ 7, we get

c < 7.1 · 1038.
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If k3 = 3, similarly, by Lemma 3.3, we obtain

c < 1.16 · 1059.

Proof of Theorem 1.2. We apply Theorem 5.1 with

α1 =
√
a, α2 = α, α3 = β,

b1 = −1, b2 = −l3, b3 = k3, n = 3,

where α = x1 + y1
√
a and β = y1 +

√
y2

1 − 1. Then

Λ = −1
2 log a− l3 logα+ k3 log β.

Take d = 4, and

hm(α1) = 1
2 log a < logα, hm(α2) = 1

2 logα,

hm(α3) = 1
2 log β, B = k3.

By Theorem 5.1 we have

log |Λ| > −9.56 · 1014 log2 α log β log k3.(29)

On the other hand, by (22),

log |Λ| < −2k3 log β + log 1.5.(30)

By Lemma 4.3, (29) and (30) we get

k3 < 4.78 · 1014 log3 k3.

It follows that k3 < 4.43 · 1019. Hence by Lemma 4.3 and k2 ≥ 7, we obtain

ay2
1 < 3.31 · 1035.

Proof of Theorem 1.3. Similarly, by Lemma 4.2, (29) and (30) and the
assumptions we have

k2 < 4.78 · 1018 log3 k2.

It follows that k2 < 8 · 1013. Hence by Lemma 4.2,

a1 < 6.34 · 102326.

This completes the proof.
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