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1. Introduction and results. For an integer n, denote by U(n) the
multiplicative group of residue classes modulo n. The structure of U(n) is
well known:

(i) If n =
∏k
i=1 p

ai
i , then

U(n) ∼= U(pa1
1 )× U(pa2

2 )× · · · × U(pakk ).

(ii) If p is an odd prime, then U(pa) ∼= Cpa−1(p−1).
(iii) U(2) is trivial, U(4) ∼= C2, and U(2a) ∼= C2 × C2a−2 for a ≥ 3.

The exponent of U(n), that is, the least positive integer ν such that
aν ≡ 1 (modn) for all integers a, is denoted by λ(n). This function was
introduced around 1910 by Carmichael; cf. [2] and [3]. By a primitive λ-root
of n, we mean any element of maximal order λ(n) in U(n). This concept,
which was introduced by Carmichael in [2], is a natural generalization of
primitive roots. Let r(n) be the number of primitive λ-roots of n. It is not
difficult to see that

r(n) = ϕ(n)
∏

p|ϕ(n)

(1− p−m(p)),(1)

where ϕ(n) is Euler’s totient function, and m(p) is the number of elementary
divisors of U(n) whose p-part is maximal. We see that r(n) ≥ ϕ(ϕ(n)) with
equality if and only if m(p) = 1 for all prime numbers p.

In [1], Cameron and Preece raise the problem to determine the density
of the set

R = {n : r(n) = ϕ(ϕ(n))}.(2)

They note that a computer search reveals almost 60% of all numbers below
105 to have this property and wonder whether the set R might have pos-
itive density. Integers n ∈ R have another interesting property. Define an
equivalence relation ∼ on the set of primitive λ-roots by a ∼ b if and only
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if 〈a〉 = 〈b〉. Then the number of equivalence classes is at least ϕ(n)/λ(n),
with equality occurring in the latter inequality if and only if n ∈ R.

For a positive integer n, define f(n) to be the number of primes p such
that m(p) ≥ 2, where m(p) is defined as in (1). Our main results are as
follows.

Theorem 1. The function f(n) has a normal distribution with mean
log2 n/log3 n and variance log2 n/(2 log3 n).

Theorem 2. For any constant A > 0, we have
∑

n∈R
n≤x

1� x

(log2 x)A
;

in particular , R has density 0.

Here, logk x denotes the k-fold iterated logarithm.

2. Proof of Theorem 1. We will repeatedly use the following result.

Lemma 1. Let q ≥ 3 be an integer. Then we have uniformly in x > eq

the estimate ∑

p≤x
p≡1 (mod q)

1
p
∼ log2 x

ϕ(q)
.

Proof. Let ε > 0 be given, and set y = exp((log x)ε). Using the Siegel–
Walfisz Theorem (see [7]), we find that

∑

y≤p≤x
p≡1 (mod q)

1
p

=
log2 x− log2 y

ϕ(q)
+O(1),

whereas the Brun–Titchmarsh-inequality (cf. [5, Theorem 3.8] or [6]) implies
∑

q2≤p<y
p≡1 (mod q)

1
p
≤ (4 + o(1)) log2 y

ϕ(q)
.

Together with the trivial estimate
∑

q≤p<q2

p≡1 (mod q)

1
p
≤

∑

q≤p<q2

1
p
� 1

our claim follows.

We now focus on the proof of Theorem 1. Note that m(q) can also be
described as the number of prime power block factors pa of n such that the
q-part of ϕ(pa) is maximal among all such p; that is, f(n) is the number of
prime powers qa satisfying the following two conditions:
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(i) there exist distinct prime divisors p1, p2 of n such that p1, p2 ≡ 1
(mod qa);

(ii) there exists no prime divisor p of n such that p ≡ 1 (mod qa+1).

Fix a parameter 0 < δ < 1, and define the auxiliary function fδ(n) to be
the number of primes q ∈ [δ log2 n, δ

−1 log2 n] satisfying conditions (i) and
(ii). Our first aim is to show the estimate

∑

n≤x
(f(n)− fδ(n))� δx

log2 x

log3 x
.(3)

First note that we may replace the interval [δ log2 n, δ
−1 log2 n] by [δ log2 x,

δ−1 log2 x] by increasing the value of δ. Let qa be a prime power. We bound
the number of integers n ≤ x such that qa contributes to f(n) by neglecting
condition (ii). This quantity equals

∑

p1<p2
p1,p2≡1 (mod qa)

⌊
x

p1p2

⌋
≤

∑

p1p2≤x
p1,p2≡1 (mod qa)

x

p1p2
(4)

≤ x
( ∑

p≤x
p≡1 (mod qa)

1
p

)2

∼ x
(

log2 x

qa

)2

,

where we have used Lemma 1 for the last step. Summing (4) over prime
power values qa > δ−1 log2 x, we find that the contribution of such prime
powers to the left-hand side of (3) is of acceptable magnitude. Since there
are less than log1/2

2 x proper prime powers below log2 x, we see that the
contribution of proper prime powers is altogether negligible. Finally, there
are O(δ(log2 x)/log3 x) prime numbers below δ log2 x, which is again of ac-
ceptable order, and (3) is proved.

Define f̃δ to be the number of primes q ∈ [δ log2 x, δ
−1 log2 x] satisfying

condition (i). Then, using Lemma 1, we have
∑

n≤x
(f̃δ(n)− fδ(n)) ≤

∑

δ log2 x≤q≤δ−1log2 x

∑

p≡1 (mod q2)

⌊
x

p

⌋

≤ x
∑

δ log2 x≤q≤δ−1log2 x

log2 x

q2 � x

log3 x+ log δ
.

Now we use the method of moments (see, for instance, [4]) to compute the
distribution of f̃δ. For an integer n, denote by m̃(q) the number of primes pi
satisfying condition (i). We claim that, for fixed q ∈ [δ log2 x, δ

−1 log2 x] and
n ∈ [1, x] chosen at random, the distribution of m̃(q) converges to a Poisson
distribution with mean (log2 x)/q, and that for different primes q1, . . . , qk
the random variables are asymptotically independent. It follows that the
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random variables

ξq =
{

1 if m̃(q) ≥ 2,

0 otherwise,

are asymptotically independent, have means

1− e−(log2 x)/q − log2 x

q
e−(log2 x)/q

and variance
(

1− e−(log2 x)/q − log2 x

q
e−(log2 x)/q

)(
e−(log2 x)/q +

log2 x

q
e−(log2 x)/q

)
.

From this, Theorem 1 follows in view of the facts that
∞�

0

(
1− e−1/t − 1

t
e−1/t

)
dt = 1,

∞�

0

(
1− e−1/t − 1

t
e−1/t

)(
e−1/t +

1
t
e−1/t

)
dt =

1
2
.

Hence, it remains to study the higher moments of the variables m̃(q) and
their correlations. To do so, we compute the expected value of

( m̃(q)
k

)
for

fixed k ≥ 1. We find that

E
(
m̃(q)
k

)
=
∑

n≤x
|{p1 < · · · < pk : pi ≡ 1 (mod q), pi |n}|

=
∑

p1<···<pk
pi≡1 (mod q)

⌊
x

p1 · · · pk

⌋
=

∑

p1<···<pk
pi≡1 (mod q)
p1···pk≤x

x

p1 · · · pk
+O

(
x logk2 x

log x

)

=
x

k!

( ∑

p≤x
p≡1 (mod q)

1
p

+O

(
1
q

))k
+O

(
x

log2 x

)

=
x

k!

(
log2 x

q

)k
+O

(
x

log2 x

)
.

On the other hand, the kth moment of a Poisson distribution with mean
(log2 x)/q is

E(ξk) =
k∑

κ=0

Sκ,k

(
log2 x

q

)κ
,

where the Sκ,k are Stirling numbers of the second kind. By the Stirling
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inversion formula, the last assertion is equivalent to
k∑

κ=0

sκ,k

(
log2 x

q

)κ
=
(

log2 x

q

)k
,

where the sκ,k are Stirling numbers of the first kind. Since
k∑

κ=0

sκ,kx
κ = x(x− 1) · · · (x− k + 1),

the variables m̃(q) converge to a Poisson distribution with mean (log2 x)/q.
To show that the variables m̃(q) are asymptotically independent, it suf-

fices to show that for fixed integers k1, . . . , kl, we have

E
(
m̃(q1)
k1

)
· · ·
(
m̃(ql)
kl

)
∼
(

E
(
m̃(q1)
k1

))
· · ·
(

E
(
m̃(ql)
kl

))
.(5)

The left-hand side quantity can be written as
∑

n≤x
|{p11 < · · · < p1k1 , . . . , pl1 < · · · < plkl : ∀i, j : pij ≡ 1 (mod qi), pij |n}|.

If all primes pij are different, this can be computed as above and is easily
seen to be asymptotically equal to the right-hand side of (5). It suffices
to compare the contribution of tuples satisfying p11 = p21, say, with all
tuples. Note that restricting pij by x1/(2k) does not change the expectations
significantly, hence, writing M for the least common multiple of all pij ,
(i, j) 6= (1, 1), (1, 2), we have M ≤ √x. Then we obtain

∑

n≤x
M |n

∑

p|n
p≡1 (mod q1q2)

1� x log2 x

Mq1q2
+m

x

M
,

where m denotes the number of primes among pij , (i, j) 6= (1, 1), (1, 2),
which are congruent to 1 modulo q1q2. Since
∑

n≤x
M |n

|{p1 ≡ 1 (mod q1), p2 ≡ 1 (mod q2), p1, p2 |n}| �
x log2

2 x

Mq1q2
+m

x

M
,

we see that tuples with repetitions are indeed negligible, proving that the
random variables m̃(q) are asymptotically independent.

3. Proof of Theorem 2. Define fδ as in the proof of Theorem 1. Since
f(n) ≥ fδ(n), it suffices to consider the set

Rδ := {n : fδ(n) = 0}.
Moreover, from the computation of the moments of f̃δ we know that the
number of integers n ≤ x satisfying f̃δ(n) ≤ 1

2 log2 x is bounded above
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by O(x/logA2 x) for every constant A, provided that δ is sufficiently small.
Hence, it suffices to consider the set

Sδ :=
{
n : f̃δ(n)− fδ(n) ≥ 1

2 log2 x
}
.

For an integer k ≥ 1, we have

(6)
∑

n≤x

(
f̃δ(n)− fδ(n)

k

)

≤
∑

δ log2 x≤q1<···<qk≤δ−1 log2 x

|{(n, p1, . . . , pk) : pi |n , pi ≡ 1 (mod q2
i )}|.

Restricting the range for pi, 1 ≤ i ≤ k, to [1, x1/(2k)] introduces an error
term of order

∑

δ log2 x≤q1<···<qk≤δ−1 log2 x

1
q2

1 · · · q2
k

� δ−k log−k2 x.

Now fix q1, . . . , qk as above, and assume that p1 = p2, say. Fix p3, . . . , pk,
and let M be the least common multiple of p3, . . . , pk. Then the contribution
of all possible choices for p1 and p2 is

|{(n, p) : pM |n, p ≡ 1 (mod q2
1q

2
2)}| ≤ (1 + o(1))

x log2 x

Mq2
1q

2
2
,

whereas the number of all triples (n, p1, p2) is (1 + o(1))(x log2
2 x)/(Mq2

1q
2
2).

Hence, the contribution of tuples (n, p1, . . . , pk) with repetitions to the right-
hand side of (6) is of lesser order than the contribution of tuples without
repetitions. We obtain

(7)
∑

n≤x

(
f̃δ(n)− fδ(n)

k

)

≤ (1 + o(1))x
∑

δ log2 x≤q1<···<qk≤δ−1 log2 x

k∏

i=1

( ∑

p≤x
p≡1 (mod q2

i )

1
p

)

≤ (1 + o(1))x
∑

δ log2 x≤q1<···<qk≤δ−1 log2 x

logk2 x
q2

1 · · · q2
k

≤ (1 + o(1))x(π(δ−1 log2 x))k

δ2k logk2 x
≤ (1 + o(1))x

δ3k logk3 x
.

Since integers n with f̃δ(n)−fδ(n) ≥ 1
2 log2 x contribute at least (logk2 x)/3kk!

to the left-hand side of (7), Theorem 2 follows.
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