On the number of primitive λ -roots

by

THOMAS W. MÜLLER (London) and JAN-CHRISTOPH SCHLAGE-PUCHTA (Freiburg)

1. Introduction and results. For an integer n, denote by U(n) the multiplicative group of residue classes modulo n. The structure of U(n) is well known:

(i) If
$$n = \prod_{i=1}^{k} p_i^{a_i}$$
, then

$$U(n) \cong U(p_1^{a_1}) \times U(p_2^{a_2}) \times \dots \times U(p_k^{a_k}).$$

- (ii) If p is an odd prime, then $U(p^a) \cong C_{p^{a-1}(p-1)}$.
- (iii) U(2) is trivial, $U(4) \cong C_2$, and $U(2^a) \cong \tilde{C}_2 \times C_{2^{a-2}}$ for $a \ge 3$.

The exponent of U(n), that is, the least positive integer ν such that $a^{\nu} \equiv 1 \pmod{n}$ for all integers a, is denoted by $\lambda(n)$. This function was introduced around 1910 by Carmichael; cf. [2] and [3]. By a *primitive* λ -root of n, we mean any element of maximal order $\lambda(n)$ in U(n). This concept, which was introduced by Carmichael in [2], is a natural generalization of primitive roots. Let r(n) be the number of primitive λ -roots of n. It is not difficult to see that

(1)
$$r(n) = \varphi(n) \prod_{p \mid \varphi(n)} (1 - p^{-m(p)}),$$

where $\varphi(n)$ is Euler's totient function, and m(p) is the number of elementary divisors of U(n) whose p-part is maximal. We see that $r(n) \ge \varphi(\varphi(n))$ with equality if and only if m(p) = 1 for all prime numbers p.

In [1], Cameron and Preece raise the problem to determine the density of the set

(2)
$$\mathcal{R} = \{n : r(n) = \varphi(\varphi(n))\}.$$

They note that a computer search reveals almost 60% of all numbers below 10^5 to have this property and wonder whether the set \mathcal{R} might have positive density. Integers $n \in \mathcal{R}$ have another interesting property. Define an equivalence relation \sim on the set of primitive λ -roots by $a \sim b$ if and only

²⁰⁰⁰ Mathematics Subject Classification: 11N45, 11N64, 11A07.

if $\langle a \rangle = \langle b \rangle$. Then the number of equivalence classes is at least $\varphi(n)/\lambda(n)$, with equality occurring in the latter inequality if and only if $n \in \mathcal{R}$.

For a positive integer n, define f(n) to be the number of primes p such that $m(p) \ge 2$, where m(p) is defined as in (1). Our main results are as follows.

THEOREM 1. The function f(n) has a normal distribution with mean $\log_2 n/\log_3 n$ and variance $\log_2 n/(2\log_3 n)$.

THEOREM 2. For any constant A > 0, we have

$$\sum_{\substack{n\in\mathcal{R}\\n\leq x}} 1 \ll \frac{x}{(\log_2 x)^A};$$

in particular, \mathcal{R} has density 0.

Here, $\log_k x$ denotes the k-fold iterated logarithm.

2. Proof of Theorem 1. We will repeatedly use the following result.

LEMMA 1. Let $q \ge 3$ be an integer. Then we have uniformly in $x > e^q$ the estimate

$$\sum_{\substack{p \le x \\ p \equiv 1 \pmod{q}}} \frac{1}{p} \sim \frac{\log_2 x}{\varphi(q)}.$$

Proof. Let $\varepsilon > 0$ be given, and set $y = \exp((\log x)^{\varepsilon})$. Using the Siegel-Walfisz Theorem (see [7]), we find that

$$\sum_{\substack{y \le p \le x \\ p \equiv 1 \pmod{q}}} \frac{1}{p} = \frac{\log_2 x - \log_2 y}{\varphi(q)} + O(1),$$

whereas the Brun–Titchmarsh-inequality (cf. [5, Theorem 3.8] or [6]) implies

$$\sum_{\substack{q^2 \le p < y \\ p \equiv 1 \pmod{q}}} \frac{1}{p} \le \frac{(4+o(1))\log_2 y}{\varphi(q)}.$$

Together with the trivial estimate

$$\sum_{\substack{q \le p < q^2 \\ p \equiv 1 \pmod{q}}} \frac{1}{p} \le \sum_{q \le p < q^2} \frac{1}{p} \ll 1$$

our claim follows.

We now focus on the proof of Theorem 1. Note that m(q) can also be described as the number of prime power block factors p^a of n such that the q-part of $\varphi(p^a)$ is maximal among all such p; that is, f(n) is the number of prime powers q^a satisfying the following two conditions:

- (i) there exist distinct prime divisors p_1, p_2 of n such that $p_1, p_2 \equiv 1 \pmod{q^a}$;
- (ii) there exists no prime divisor p of n such that $p \equiv 1 \pmod{q^{a+1}}$.

Fix a parameter $0 < \delta < 1$, and define the auxiliary function $f_{\delta}(n)$ to be the number of primes $q \in [\delta \log_2 n, \delta^{-1} \log_2 n]$ satisfying conditions (i) and (ii). Our first aim is to show the estimate

(3)
$$\sum_{n \le x} (f(n) - f_{\delta}(n)) \ll \delta x \frac{\log_2 x}{\log_3 x}$$

First note that we may replace the interval $[\delta \log_2 n, \delta^{-1} \log_2 n]$ by $[\delta \log_2 x, \delta^{-1} \log_2 x]$ by increasing the value of δ . Let q^a be a prime power. We bound the number of integers $n \leq x$ such that q^a contributes to f(n) by neglecting condition (ii). This quantity equals

(4)
$$\sum_{\substack{p_1 < p_2 \\ p_1, p_2 \equiv 1 \pmod{q^a}}} \left\lfloor \frac{x}{p_1 p_2} \right\rfloor \leq \sum_{\substack{p_1 p_2 \leq x \\ p_1, p_2 \equiv 1 \pmod{q^a}}} \frac{x}{p_1 p_2}$$
$$\leq x \left(\sum_{\substack{p \leq x \\ p \equiv 1 \pmod{q^a}}} \frac{1}{p}\right)^2 \sim x \left(\frac{\log_2 x}{q^a}\right)^2,$$

where we have used Lemma 1 for the last step. Summing (4) over prime power values $q^a > \delta^{-1} \log_2 x$, we find that the contribution of such prime powers to the left-hand side of (3) is of acceptable magnitude. Since there are less than $\log_2^{1/2} x$ proper prime powers below $\log_2 x$, we see that the contribution of proper prime powers is altogether negligible. Finally, there are $O(\delta(\log_2 x)/\log_3 x)$ prime numbers below $\delta \log_2 x$, which is again of acceptable order, and (3) is proved.

Define f_{δ} to be the number of primes $q \in [\delta \log_2 x, \delta^{-1} \log_2 x]$ satisfying condition (i). Then, using Lemma 1, we have

$$\sum_{n \le x} (\widetilde{f}_{\delta}(n) - f_{\delta}(n)) \le \sum_{\delta \log_2 x \le q \le \delta^{-1} \log_2 x} \sum_{p \equiv 1 \pmod{q^2}} \left\lfloor \frac{x}{p} \right\rfloor$$
$$\le x \sum_{\delta \log_2 x \le q \le \delta^{-1} \log_2 x} \frac{\log_2 x}{q^2} \ll \frac{x}{\log_3 x + \log \delta}.$$

Now we use the method of moments (see, for instance, [4]) to compute the distribution of \tilde{f}_{δ} . For an integer n, denote by $\tilde{m}(q)$ the number of primes p_i satisfying condition (i). We claim that, for fixed $q \in [\delta \log_2 x, \delta^{-1} \log_2 x]$ and $n \in [1, x]$ chosen at random, the distribution of $\tilde{m}(q)$ converges to a Poisson distribution with mean $(\log_2 x)/q$, and that for different primes q_1, \ldots, q_k the random variables are asymptotically independent. It follows that the

random variables

$$\xi_q = \begin{cases} 1 & \text{if } \widetilde{m}(q) \ge 2, \\ 0 & \text{otherwise,} \end{cases}$$

are asymptotically independent, have means

$$1 - e^{-(\log_2 x)/q} - \frac{\log_2 x}{q} e^{-(\log_2 x)/q}$$

and variance

$$\left(1 - e^{-(\log_2 x)/q} - \frac{\log_2 x}{q} e^{-(\log_2 x)/q}\right) \left(e^{-(\log_2 x)/q} + \frac{\log_2 x}{q} e^{-(\log_2 x)/q}\right)$$

From this, Theorem 1 follows in view of the facts that

$$\int_{0}^{\infty} \left(1 - e^{-1/t} - \frac{1}{t} e^{-1/t}\right) dt = 1,$$
$$\int_{0}^{\infty} \left(1 - e^{-1/t} - \frac{1}{t} e^{-1/t}\right) \left(e^{-1/t} + \frac{1}{t} e^{-1/t}\right) dt = \frac{1}{2}.$$

Hence, it remains to study the higher moments of the variables $\widetilde{m}(q)$ and their correlations. To do so, we compute the expected value of $\binom{\widetilde{m}(q)}{k}$ for fixed $k \geq 1$. We find that

$$\begin{split} \mathbf{E}\binom{\widetilde{m}(q)}{k} &= \sum_{n \leq x} |\{p_1 < \dots < p_k : p_i \equiv 1 \pmod{q}, p_i \mid n\}| \\ &= \sum_{\substack{p_1 < \dots < p_k \\ p_i \equiv 1 \pmod{q}}} \left\lfloor \frac{x}{p_1 \dots p_k} \right\rfloor = \sum_{\substack{p_1 < \dots < p_k \\ p_i \equiv 1 \pmod{q}}} \frac{x}{p_1 \dots p_k} + O\left(\frac{x \log^k x}{\log x}\right) \\ &= \frac{x}{k!} \left(\sum_{\substack{p \leq x \\ p \equiv 1 \pmod{q}}} \frac{1}{p} + O\left(\frac{1}{q}\right)\right)^k + O\left(\frac{x}{\log_2 x}\right) \\ &= \frac{x}{k!} \left(\frac{\log_2 x}{q}\right)^k + O\left(\frac{x}{\log_2 x}\right). \end{split}$$

On the other hand, the kth moment of a Poisson distribution with mean $(\log_2 x)/q$ is

$$\mathbf{E}(\xi^k) = \sum_{\kappa=0}^k S_{\kappa,k} \left(\frac{\log_2 x}{q}\right)^{\kappa},$$

where the $S_{\kappa,k}$ are Stirling numbers of the second kind. By the Stirling

220

inversion formula, the last assertion is equivalent to

$$\sum_{\kappa=0}^{k} s_{\kappa,k} \left(\frac{\log_2 x}{q}\right)^{\kappa} = \left(\frac{\log_2 x}{q}\right)^{k},$$

where the $s_{\kappa,k}$ are Stirling numbers of the first kind. Since

$$\sum_{\kappa=0}^{k} s_{\kappa,k} x^{\kappa} = x(x-1)\cdots(x-k+1),$$

the variables $\widetilde{m}(q)$ converge to a Poisson distribution with mean $(\log_2 x)/q$.

To show that the variables $\widetilde{m}(q)$ are asymptotically independent, it suffices to show that for fixed integers k_1, \ldots, k_l , we have

(5)
$$\mathbf{E}\begin{pmatrix} \widetilde{m}(q_1)\\ k_1 \end{pmatrix} \cdots \begin{pmatrix} \widetilde{m}(q_l)\\ k_l \end{pmatrix} \sim \left(\mathbf{E}\begin{pmatrix} \widetilde{m}(q_1)\\ k_1 \end{pmatrix}\right) \cdots \left(\mathbf{E}\begin{pmatrix} \widetilde{m}(q_l)\\ k_l \end{pmatrix}\right).$$

The left-hand side quantity can be written as

$$\sum_{n \le x} |\{p_{11} < \dots < p_{1k_1}, \dots, p_{l1} < \dots < p_{lk_l} : \forall i, j : p_{ij} \equiv 1 \pmod{q_i}, p_{ij} \mid n\}|.$$

If all primes p_{ij} are different, this can be computed as above and is easily seen to be asymptotically equal to the right-hand side of (5). It suffices to compare the contribution of tuples satisfying $p_{11} = p_{21}$, say, with all tuples. Note that restricting p_{ij} by $x^{1/(2k)}$ does not change the expectations significantly, hence, writing M for the least common multiple of all p_{ij} , $(i,j) \neq (1,1), (1,2)$, we have $M \leq \sqrt{x}$. Then we obtain

$$\sum_{\substack{n \le x \\ M|n}} \sum_{\substack{p|n \\ p \equiv 1 \pmod{q_1 q_2}}} 1 \ll \frac{x \log_2 x}{M q_1 q_2} + m \frac{x}{M},$$

where *m* denotes the number of primes among p_{ij} , $(i, j) \neq (1, 1), (1, 2)$, which are congruent to 1 modulo q_1q_2 . Since

$$\sum_{\substack{n \le x \\ M|n}} |\{p_1 \equiv 1 \pmod{q_1}, p_2 \equiv 1 \pmod{q_2}, p_1, p_2 \mid n\}| \gg \frac{x \log^2 x}{Mq_1 q_2} + m \frac{x}{M},$$

we see that tuples with repetitions are indeed negligible, proving that the random variables $\widetilde{m}(q)$ are asymptotically independent.

3. Proof of Theorem 2. Define f_{δ} as in the proof of Theorem 1. Since $f(n) \geq f_{\delta}(n)$, it suffices to consider the set

$$\mathcal{R}_{\delta} := \{ n : f_{\delta}(n) = 0 \}.$$

Moreover, from the computation of the moments of \tilde{f}_{δ} we know that the number of integers $n \leq x$ satisfying $\tilde{f}_{\delta}(n) \leq \frac{1}{2} \log_2 x$ is bounded above

by $O(x/\log_2^A x)$ for every constant A, provided that δ is sufficiently small. Hence, it suffices to consider the set

$$\mathcal{S}_{\delta} := \left\{ n : \widetilde{f}_{\delta}(n) - f_{\delta}(n) \ge \frac{1}{2} \log_2 x \right\}.$$

For an integer $k \geq 1$, we have

(6)
$$\sum_{n \le x} \binom{f_{\delta}(n) - f_{\delta}(n)}{k} \\ \le \sum_{\delta \log_2 x \le q_1 < \dots < q_k \le \delta^{-1} \log_2 x} |\{(n, p_1, \dots, p_k) : p_i \,|\, n \,, p_i \equiv 1 \pmod{q_i^2}\}|.$$

Restricting the range for p_i , $1 \leq i \leq k$, to $[1, x^{1/(2k)}]$ introduces an error term of order

$$\sum_{\delta \log_2 x \le q_1 < \dots < q_k \le \delta^{-1} \log_2 x} \frac{1}{q_1^2 \cdots q_k^2} \ll \delta^{-k} \log_2^{-k} x$$

Now fix q_1, \ldots, q_k as above, and assume that $p_1 = p_2$, say. Fix p_3, \ldots, p_k , and let M be the least common multiple of p_3, \ldots, p_k . Then the contribution of all possible choices for p_1 and p_2 is

$$|\{(n,p): pM \mid n, \ p \equiv 1 \ (\text{mod} \ q_1^2 q_2^2)\}| \le (1+o(1)) \ \frac{x \log_2 x}{M q_1^2 q_2^2},$$

whereas the number of all triples (n, p_1, p_2) is $(1 + o(1))(x \log_2^2 x)/(Mq_1^2q_2^2)$. Hence, the contribution of tuples (n, p_1, \ldots, p_k) with repetitions to the righthand side of (6) is of lesser order than the contribution of tuples without repetitions. We obtain

$$(7) \qquad \sum_{n \le x} \binom{f_{\delta}(n) - f_{\delta}(n)}{k} \\ \le (1 + o(1))x \sum_{\delta \log_2 x \le q_1 < \dots < q_k \le \delta^{-1} \log_2 x} \prod_{i=1}^k \left(\sum_{\substack{p \le x \\ p \equiv 1 \pmod{q_i^2}}} \frac{1}{p}\right) \\ \le (1 + o(1))x \sum_{\delta \log_2 x \le q_1 < \dots < q_k \le \delta^{-1} \log_2 x} \frac{\log_2^k x}{q_1^2 \cdots q_k^2} \\ \le \frac{(1 + o(1))x(\pi(\delta^{-1} \log_2 x))^k}{\delta^{2k} \log_2^k x} \le \frac{(1 + o(1))x}{\delta^{3k} \log_3^k x}.$$

Since integers n with $\tilde{f}_{\delta}(n) - f_{\delta}(n) \ge \frac{1}{2} \log_2 x$ contribute at least $(\log_2^k x)/3^k k!$ to the left-hand side of (7), Theorem 2 follows.

222

References

- [1] P. J. Cameron and D. A. Preece, *Notes on primitive lambda-roots*, manuscript, available as http://www.maths.qmul.ac.uk/~pjc/csgnotes/lambda.pdf.
- R. D. Carmichael, Note on a new number theory function, Bull. Amer. Math. Soc. 16 (1909–1910), 232–238.
- [3] —, Generalizations of Euler's ϕ -function, with applications to Abelian groups, Quart. J. Math. 44 (1913), 94–104.
- [4] P. D. T. A. Elliott, Probabilistic Number Theory II. Central Limit Theorems, Grundlehren Math. Wiss. 240, Springer, Berlin, 1980.
- [5] H. Halberstam and H.-E. Richert, Sieve Methods, Academic Press, London, 1974.
- H. L. Montgomery and R. C. Vaughan, On the large sieve, Mathematika 20 (1973), 119–134.
- [7] C. L. Siegel, Über die Classenzahl quadratischer Zahlkörper, Acta Arith. 1 (1936), 83–86.

School of Mathematical Sciences Queen Mary University of London Mile End Road E1 4NS London, UK E-mail: T.W.Muller@qmul.ac.uk Mathematisches Institut Albert-Ludwigs-Universität Eckerstr. 1 79104 Freiburg, Germany E-mail: jcp@math.uni-freiburg.de

Received on 22.9.2003 and in revised form on 19.12.2003

(4626)