## On higher-power moments of $E(t)$

by

## Wenguang Zhai (Jinan)

1. Main result. Let $\zeta(s)$ denote the Riemann zeta-function. For $t>2$, define

$$
\begin{equation*}
E(t):=\int_{0}^{t}|\zeta(1 / 2+i u)|^{2} d u-t \log (t / 2 \pi)-(2 \gamma-1) t \tag{1.1}
\end{equation*}
$$

It is an important problem to study the upper bound of $E(t)$. The latest result is

$$
\begin{equation*}
E(t)=O\left(t^{72 / 227} \log ^{629 / 227} t\right) \tag{1.2}
\end{equation*}
$$

due to Huxley [3]. We have the conjecture

$$
\begin{equation*}
E(t)=O\left(t^{1 / 4+\varepsilon}\right) \tag{1.3}
\end{equation*}
$$

which is supported by the mean square formula

$$
\begin{equation*}
\int_{2}^{T} E^{2}(t) d t=\frac{2 \zeta^{4}(3 / 2)}{3 \zeta(3) \sqrt{2 \pi}} T^{3 / 2}+O\left(T \log ^{5} T\right) \tag{1.4}
\end{equation*}
$$

proved by Meurman [8].
Tsang [9] studied the third- and fourth-power moments of $E(t)$. He proved that the asymptotic formulas

$$
\begin{align*}
& \int_{2}^{T} E^{3}(t) d t=\frac{6}{7}(2 \pi)^{-3 / 4} c_{1} T^{7 / 4}+O\left(T^{7 / 4-\delta_{1}+\varepsilon}\right)  \tag{1.5}\\
& \int_{2}^{T} E^{4}(t) d t=\frac{3}{8 \pi} c_{2} T^{2}+O\left(T^{2-\delta_{2}+\varepsilon}\right) \tag{1.6}
\end{align*}
$$

hold with $\delta_{1}>0$ and $\delta_{2}>0$, where

$$
c_{1}=\sum_{\sqrt{n_{1}}+\sqrt{n_{2}}=\sqrt{n_{3}}} \frac{d\left(n_{1}\right) d\left(n_{2}\right) d\left(n_{3}\right)}{\left(n_{1} n_{2} n_{3}\right)^{3 / 4}}
$$

2000 Mathematics Subject Classification: 11N37, 11M06.
Key words and phrases: higher-power moment, Atkinson's formula.
This work is supported by National Natural Science Foundation of China (10301018).

$$
c_{2}=\sum_{\sqrt{n_{1}}+\sqrt{n_{2}}=\sqrt{n_{3}}+\sqrt{n_{4}}} \frac{d\left(n_{1}\right) d\left(n_{2}\right) d\left(n_{3}\right) d\left(n_{4}\right)}{\left(n_{1} n_{2} n_{3} n_{4}\right)^{3 / 4}}
$$

Tsang [9] proved that (1.5) holds for $\delta_{1}=1 / 36$, but did not specify the permissible value of $\delta_{2}$ in (1.6). Ivić [4] proved that (1.5) holds with $\delta_{1}=1 / 14$ and (1.6) holds with $\delta_{2}=1 / 23$. Recently following Ivić's approach, the author [10] proved that (1.5) holds with $\delta_{1}=1 / 12$ and (1.6) holds with $\delta_{2}=2 / 41$.

Tsang [9] began with Atkinson's formula [1] and used the averaging technique over a short interval. Ivić's argument was different from Tsang's. He used a theorem of Jutila [6] (see also Theorem 15.6 of Ivić [5]) to transform the problem into the higher-power moments of $\Delta^{*}(x)$, the error term of $\frac{1}{2} \sum_{n \leq 4 x}(-1)^{n} d(n)$, where $d(n)$ is the Dirichlet divisor function. The higherpower moments of $\Delta^{*}(x)$ are easier to handle than those of $E(t)$, since $\Delta^{*}(x)$ has the Voronoï formula.

Heath-Brown [2] proved that for any $3 \leq k \leq 9(k \in \mathbb{N})$, the limit

$$
\lim _{T \rightarrow \infty} T^{-1-k / 4} \int_{2}^{T} E^{k}(t) d t
$$

exists. The author [11] got an asymptotic formula for $\int_{2}^{T} E^{k}(t) d t$ for any $5 \leq k \leq 9$, where Jutila's theorem [6] and power moment results for $E(t)$ and $\Delta(x)$, the error term of the Dirichlet divisor problem, were used.

However, the exponent $1 / 12$ in the third-power moment of $E(t)$ is the limit of Jutila's theorem. In order to reduce this exponent, we have to go back to Atkinson's formula and not use Jutila's theorem. In this paper, we shall use a different approach, which is a generalization of that in [11], to study the higher-power moments of $E(t)$. In this approach, we use Atkinson's formula for $E(t)$ only. Since for $k \geq 4$ the results obtained by this approach are the same as the previous results (see Zhai [11] for details), we only consider the case $k=3$.

Theorem. We have

$$
\begin{equation*}
\int_{2}^{T} E^{3}(t) d t=\frac{6}{7}(2 \pi)^{-3 / 4} c_{1} T^{7 / 4}+O\left(T^{7 / 4-83 / 393+\varepsilon}\right) \tag{1.7}
\end{equation*}
$$

Remark. It is well known that many properties of $E(t)$ are similar to those of $\Delta(x)$. We also have a similar conjecture

$$
\begin{equation*}
\Delta(x) \ll x^{1 / 4+\varepsilon} \tag{1.8}
\end{equation*}
$$

which seems easier than the conjecture (1.3) by a result of Jutila [7], who proved that if (1.8) is true, then $E(t)=O\left(t^{3 / 10+\varepsilon}\right)$.

Theorem 1 of [11] shows that if (1.8) is true, then for any $k \geq 3$ we have

$$
\begin{equation*}
\int_{2}^{T} \Delta^{k}(t) d t=C_{k} T^{1+k / 4}+O\left(T^{\eta_{k}}\right) \tag{1.9}
\end{equation*}
$$

where $C_{k}$ and $\eta_{k}<1+k / 4$ are explicit constants. This means that (1.8) is equivalent to the following conjecture: (1.9) is true for any $k \geq 3$.

Theorem 5 of [11] shows that if both (1.3) and (1.8) are true, then for any $k \geq 3$ we can get the asymptotic formula

$$
\begin{equation*}
\int_{2}^{T} E^{k}(t) d t=C_{k}^{\prime} T^{1+k / 4}+O\left(T^{\eta_{k}^{\prime}}\right) \tag{1.10}
\end{equation*}
$$

where $C_{k}^{\prime}$ and $\eta_{k}^{\prime}<1+k / 4$ are explicit constants. Combining the approaches of this paper and [11], we know that the conjecture (1.8) can be removed in the above conclusion. Thus we deduce that the conjecture (1.3) is equivalent to the following conjecture: (1.10) is true for any $k \geq 3$.

Acknowledgements. The author deeply thanks the referee for his valuable suggestions and comments.

Notations. Throughout this paper, $\{x\}$ denotes the fractional part of $x,\|x\|$ denotes the distance from $x$ to the integer nearest to $x, n \sim N$ means $N<n \leq 2 N, \varepsilon$ always denotes a small positive constant which may be different at different places.

## 2. Some preliminary lemmas

Lemma 2.1. We have
with

$$
E(t)=\Sigma_{1}(t)+\Sigma_{2}(t)+O\left(\log ^{2} t\right)
$$

$$
\begin{align*}
& \Sigma_{1}(t):=\frac{1}{\sqrt{2}} \sum_{n \leq N} h(t, n) \cos (f(t, n))  \tag{2.1}\\
& \Sigma_{2}(t):=-2 \sum_{n \leq N^{\prime}} d(n) n^{-1 / 2}\left(\log \frac{t}{2 \pi n}\right)^{-1} \cos \left(t \log \frac{t}{2 \pi n}-t+\frac{\pi}{4}\right) \tag{2.2}
\end{align*}
$$

$$
\begin{equation*}
h(t, n):=(-1)^{n} d(n) n^{-1 / 2}\left(\frac{t}{2 \pi n}+\frac{1}{4}\right)^{-1 / 4}(g(t, n))^{-1} \tag{2.3}
\end{equation*}
$$

$$
\begin{align*}
& g(t, n):=\operatorname{arsinh}\left(\left(\frac{\pi n}{2 t}\right)^{1 / 2}\right)  \tag{2.4}\\
& f(t, n):=2 t g(t, n)+\left(2 \pi n t+\pi^{2} n^{2}\right)^{1 / 2}-\pi / 4  \tag{2.5}\\
& A t \leq N \leq A^{\prime} t, \quad N^{\prime}:=t / 2 \pi+N / 2-\left(N^{2} / 4+N t / 2 \pi\right)^{1 / 2} \tag{2.6}
\end{align*}
$$ where $0<A<A^{\prime}$ are any fixed constants.

Proof. This is the famous Atkinson formula; see Ivić [5, Theorem 15.1].

Lemma 2.2. Suppose $Y>1$. Define

$$
\begin{aligned}
& c_{1}^{*}:=\sum_{\sqrt{n_{1}}+\sqrt{n_{2}}=\sqrt{n_{3}}} \frac{(-1)^{n_{1}+n_{2}+n_{3}} d\left(n_{1}\right) d\left(n_{2}\right) d\left(n_{3}\right)}{\left(n_{1} n_{2} n_{3}\right)^{3 / 4}}, \\
& c_{1}^{*}(Y):=\sum_{\substack{\sqrt{n_{1}}+\sqrt{n_{2}}=\sqrt{n_{3}} \\
n_{1}, n_{2}, n_{3} \leq Y}} \frac{(-1)^{n_{1}+n_{2}+n_{3} d\left(n_{1}\right) d\left(n_{2}\right) d\left(n_{3}\right)}}{\left(n_{1} n_{2} n_{3}\right)^{3 / 4}}, \\
& c_{1}(Y):=\sum_{\substack{\sqrt{n_{1}}+\sqrt{n_{2}}=\sqrt{n_{3}} \\
n_{1}, n_{2}, n_{3} \leq Y}} \frac{d\left(n_{1}\right) d\left(n_{2}\right) d\left(n_{3}\right)}{\left(n_{1} n_{2} n_{3}\right)^{3 / 4}} .
\end{aligned}
$$

Then

$$
c_{1}=c_{1}^{*}, \quad c_{1}(Y)=c_{1}^{*}(Y), \quad\left|c_{1}-c_{1}(Y)\right| \ll Y^{-1+\varepsilon} .
$$

Proof. The estimate $\left|c_{1}-c_{1}(Y)\right| \ll Y^{-1+\varepsilon}$ appears on page 70 of Tsang [9]. The equalities $c_{1}=c_{1}^{*}$ and $c_{1}(Y)=c_{1}^{*}(Y)$ follow from the fact that if $\sqrt{n_{1}}+\sqrt{n_{2}}=\sqrt{n_{3}}$, then $n_{1}+n_{2}+n_{3}$ must be an even number.

Lemma 2.3. Suppose $Y>1$. Then

$$
H_{1}(Y):=\sum_{\substack{\sqrt{n_{1}}+\sqrt{n_{2}}=\sqrt{n_{3}} \\ n_{1}, n_{2}, n_{3} \leq Y}} \frac{d\left(n_{1}\right) d\left(n_{2}\right) d\left(n_{3}\right) n_{3}^{3 / 4}}{\left(n_{1} n_{2}\right)^{3 / 4}} \ll Y^{1 / 2+\varepsilon} .
$$

Proof. By a classical result of Besicovitch, if $\sqrt{n_{1}}+\sqrt{n_{2}}=\sqrt{n_{3}}$, then $n_{j}=m_{j}^{2} h, m_{1}+m_{2}=m_{3}, \mu(h) \neq 0$. Thus we get

$$
\begin{aligned}
H_{1}(Y) & \ll \sum_{\left(m_{1}+m_{2}\right)^{2} h \leq Y} \frac{d\left(m_{1}^{2} h\right) d\left(m_{2}^{2} h\right) d\left(\left(m_{1}+m_{2}\right)^{2} h\right)\left(m_{1}+m_{2}\right)^{3 / 2}}{h^{3 / 4}\left(m_{1} m_{2}\right)^{3 / 2}} \\
& \ll \sum_{h<Y} h^{-3 / 4+\varepsilon} \sum_{m_{2} \leq m_{1} \ll(Y / h)^{1 / 2}} m_{1}^{\varepsilon} m_{2}^{-3 / 2+\varepsilon} \ll Y^{1 / 2+\varepsilon}
\end{aligned}
$$

if we notice $d(n) \ll n^{\varepsilon}$. ■
Lemma 2.4. Let $N, M, K \geq 10, D=\max (N, M, K), 0<|\Delta| \ll D^{1 / 2}$. Let

$$
\mathcal{A}(N, M, K ; \Delta):=\sum_{\substack{n \sim N, m \sim M, k \sim K \\|\sqrt{n}+\sqrt{m}-\sqrt{k}| \leq \Delta}} 1 .
$$

Then

$$
D^{-\varepsilon} \mathcal{A}(N, M, K ; \Delta) \ll \Delta D^{-1 / 2} N M K+D^{-1 / 2}(N M K)^{1 / 2}
$$

Proof. This is Lemma 2.5 of [10].

Lemma 2.5. If $\sqrt{n}+\sqrt{m}-\sqrt{k} \neq 0$, then

$$
|\sqrt{n}+\sqrt{m}-\sqrt{k}| \gg \frac{1}{\sqrt{n m k}}
$$

where the implied constant is absolute.
Proof. If $n$ is not a square, then

$$
\begin{equation*}
\|\sqrt{n}\| \gg 1 / \sqrt{n} \tag{2.7}
\end{equation*}
$$

We omit the proof of (2.7) since it is elementary and easy. Let $\alpha=\sqrt{n}+$ $\sqrt{m}-\sqrt{k}$. We suppose $|\alpha|<1 / 10$, otherwise the lemma is trivial. Squaring $\alpha+\sqrt{k}=\sqrt{n}+\sqrt{m}$ we get

$$
\begin{equation*}
\alpha^{2}+2 \sqrt{k} \alpha=n+m+\sqrt{4 n m}-k . \tag{2.8}
\end{equation*}
$$

If $n m$ is a square, then the right-hand side of (2.8) is a non-zero integer and then $\left|\alpha^{2}+2 \sqrt{k} \alpha\right| \geq 1$, which implies $|\alpha| \gg 1 / \sqrt{k}$. If $n m$ is not a square, then from (2.8) we have $\left|\alpha^{2}+2 \sqrt{k} \alpha\right| \gg\|\sqrt{4 n m}\|$, which combined with (2.7) implies $|\alpha| \gg 1 / \sqrt{n m k}$.

Lemma 2.6. Suppose $\left(i_{1}, i_{2}\right) \in\{0,1\}^{2}$ and $Y \geq 10$ is a real number. For $\left(n_{1}, n_{2}, n_{3}\right) \in \mathbb{N}^{3}$, define

$$
\begin{aligned}
& \alpha_{3}:=\sqrt{n_{1}}+(-1)^{i_{1}} \sqrt{n_{2}}+(-1)^{i_{2}} \sqrt{n_{3}} \\
& H\left(Y ; i_{1}, i_{2}\right):=\sum_{\substack{n_{j} \leq Y, 1 \leq j \leq 3 \\
\alpha_{3} \neq 0}} \frac{d\left(n_{1}\right) d\left(n_{2}\right) d\left(n_{3}\right)}{\left(n_{1} n_{2} n_{3}\right)^{3 / 4}\left|\alpha_{3}\right|}
\end{aligned}
$$

Then

$$
H\left(Y ; i_{1}, i_{2}\right) \ll Y^{1 / 4+\varepsilon} .
$$

Proof. By a splitting argument and $d(n) \ll n^{\varepsilon}$ we get, for some $1 \ll$ $N_{j} \ll Y(1 \leq j \leq 3)$,

$$
\begin{aligned}
Y^{-\varepsilon} H\left(Y ; i_{1}, i_{2}\right) & \ll \sum_{\substack{n_{j} \sim N_{j}, 1 \leq j \leq 3 \\
\alpha_{3} \neq 0}} \frac{1}{\left(n_{1} n_{2} n_{3}\right)^{3 / 4}\left|\alpha_{3}\right|} \\
& \ll\left(N_{1} N_{2} N_{3}\right)^{-3 / 4} \sum_{\substack{n_{j} \sim N_{j}, 1 \leq j \leq 3 \\
\alpha_{3} \neq 0}} \frac{1}{\left|\alpha_{3}\right|} .
\end{aligned}
$$

If $\left(i_{1}, i_{2}\right)=(0,0)$, then trivially

$$
Y^{-\varepsilon} H(Y ; 0,0) \ll \frac{\left(N_{1} N_{2} N_{3}\right)^{1 / 4}}{\max \left(N_{1}, N_{2}, N_{3}\right)^{1 / 2}} \ll \min \left(N_{1}, N_{2}, N_{3}\right)^{1 / 4} \ll Y^{1 / 4}
$$

Now suppose $\left(i_{1}, i_{2}\right) \neq(0,0)$. By Lemma 2.5 we have $\left|\alpha_{3}\right| \gg 1 /\left(N_{1} N_{2} N_{3}\right)^{1 / 2}$. By a splitting argument again we infer for some $1 /\left(N_{1} N_{2} N_{3}\right)^{1 / 2} \ll \Delta \ll$
$\max \left(N_{1}, N_{2}, N_{3}\right)^{1 / 2}$ that

$$
Y^{-\varepsilon} H\left(Y ; i_{1}, i_{2}\right) \ll \frac{\left(N_{1} N_{2} N_{3}\right)^{-3 / 4}}{\Delta} \sum_{\substack{n_{j} \sim N_{j}, 1 \leq j \leq 3 \\ \Delta<\left|\alpha_{3}\right| \leq 2 \Delta}} 1 .
$$

By Lemmas 2.4 and 2.5 we get

$$
\begin{aligned}
Y^{-\varepsilon} H\left(Y ; i_{1}, i_{2}\right) & \ll \frac{\left(N_{1} N_{2} N_{3}\right)^{-3 / 4}}{\Delta} \frac{\Delta N_{1} N_{2} N_{3}+\left(N_{1} N_{2} N_{3}\right)^{1 / 2}}{\max \left(N_{1}, N_{2}, N_{3}\right)^{1 / 2}} \\
& \ll \frac{\left(N_{1} N_{2} N_{3}\right)^{1 / 4}}{\max \left(N_{1}, N_{2}, N_{3}\right)^{1 / 2}}+\frac{\left(N_{1} N_{2} N_{3}\right)^{-1 / 4}}{\Delta \max \left(N_{1}, N_{2}, N_{3}\right)^{1 / 2}} \\
& \ll \frac{\left(N_{1} N_{2} N_{3}\right)^{1 / 4}}{\max \left(N_{1}, N_{2}, N_{3}\right)^{1 / 2}} \ll \min \left(N_{1}, N_{2}, N_{3}\right)^{1 / 4} \ll Y^{1 / 4}
\end{aligned}
$$

Lemma 2.7. Suppose $f_{j}(t)(1 \leq j \leq k)$ and $g(t)$ are continuous, monotonic real-valued functions on $[a, b]$ and let $g(t)$ have a continuous, monotonic derivative on $[a, b]$. If $\left|f_{j}(t)\right| \leq A_{j}(1 \leq j \leq k),\left|g^{\prime}(t)\right| \gg \Delta$ for any $t \in[a, b]$, then

$$
\int_{a}^{b} f_{1}(t) \cdots f_{k}(t) e(g(t)) d t \ll A_{1} \cdots A_{k} \Delta^{-1}
$$

Proof. This is Lemma 15.3 of Ivić [5].
Lemma 2.8. Suppose $\left(i_{1}, i_{2}\right) \in\{0,1\}^{2}, T \geq 100$ is a large real number, $1 \leq Z_{j}<Y_{j} \leq T^{1 / 2}(1 \leq j \leq 3)$ are three real numbers such that there are at least two $Z_{j}$ satisfying $Z_{j} \geq T^{1 / 3-\varepsilon}, Y=\max \left(Y_{1}, Y_{2}, Y_{3}\right)$. Define
$F\left(t ; n_{1}, n_{2}, n_{3} ; i_{1}, i_{2}\right):=f\left(t, n_{1}\right)+(-1)^{i_{1}} f\left(t, n_{2}\right)+(-1)^{i_{2}} f\left(t, n_{3}\right)$,
$S_{i_{1}, i_{2}}(t):=\sum_{\substack{Z_{j}<n_{j} \leq Y_{j}, 1 \leq j \leq 3 \\ \alpha_{3} \neq 0}} h\left(t, n_{1}\right) h\left(t, n_{2}\right) h\left(t, n_{3}\right) \cos \left(F\left(t ; n_{1}, n_{2}, n_{3} ; i_{1}, i_{2}\right)\right)$.
Then

$$
\begin{equation*}
\int_{T}^{2 T} S_{i_{1}, i_{2}}(t) d t \ll T^{1+\varepsilon} Y+T^{17 / 12+\varepsilon} \tag{2.9}
\end{equation*}
$$

Proof. It is easy to check that for any $n \leq T / \pi$, the function $h(t, n)$ is a product of monotonic functions and

$$
\begin{equation*}
h(t, n)=\frac{2^{3 / 4}}{\pi^{1 / 4}} \frac{(-1)^{n} d(n)}{n^{3 / 4}} t^{1 / 4}\left(1+O\left(\frac{n}{t}\right)\right) \tag{2.10}
\end{equation*}
$$

For any $n \leq T^{1 / 2}$ it is easy to check that

$$
\begin{equation*}
f(t, n)=2^{3 / 2}(\pi n t)^{1 / 2}-\frac{\pi}{4}+\frac{\pi^{3 / 2}}{3 \sqrt{2}} \frac{n^{3 / 2}}{t^{1 / 2}}+f_{1}(t, n) \tag{2.11}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{1}(t, n)=O\left(\frac{n^{5 / 2}}{t^{3 / 2}}\right), \quad f_{1}^{\prime}(t, n)=O\left(\frac{n^{5 / 2}}{t^{5 / 2}}\right), \quad f_{1}^{\prime \prime}(t, n)=O\left(\frac{n^{5 / 2}}{t^{7 / 2}}\right) \tag{2.12}
\end{equation*}
$$

So we have

$$
\begin{align*}
& F^{\prime}\left(t ; n_{1}, n_{2}, n_{3} ; i_{1}, i_{2}\right)  \tag{2.13}\\
& \quad=\frac{(2 \pi)^{1 / 2} \alpha_{3}}{t^{1 / 2}}-\frac{\pi^{3 / 2}}{3 \cdot 2^{3 / 2}} \frac{\beta_{3}}{t^{3 / 2}}+O\left(\frac{\max \left(n_{1}, n_{2}, n_{3}\right)^{5 / 2}}{t^{5 / 2}}\right)
\end{align*}
$$

where $\beta_{3}:=n_{1}^{3 / 2}+(-1)^{i_{1}} n_{2}^{3 / 2}+(-1)^{i_{2}} n_{3}^{3 / 2}$.
If $\left(i_{1}, i_{2}\right)=(0,0)$, then from (2.10) and Lemma 2.7 we get

$$
\begin{align*}
\int_{T}^{2 T} S_{0,0}(t) d t & \ll T^{5 / 4} \sum_{Z_{j}<n_{j} \leq Y_{j}} \frac{d\left(n_{1}\right) d\left(n_{2}\right) d\left(n_{3}\right)}{\left(n_{1} n_{2} n_{3}\right)^{3 / 4}\left(\sqrt{n_{1}}+\sqrt{n_{2}}+\sqrt{n_{3}}\right)}  \tag{2.14}\\
& \ll T^{5 / 4} Y^{1 / 4} \log ^{3} Y \ll T^{11 / 8+\varepsilon} .
\end{align*}
$$

Now suppose $\left(i_{1}, i_{2}\right) \neq(0,0)$. Without loss of generality, suppose $\left(i_{1}, i_{2}\right)$ $=(0,1)$. By a splitting argument there exist $Z_{j} \leq M_{j}<M_{j}^{\prime} \leq 2 M_{j} \leq Y_{j}$ $(1 \leq j \leq 3)$ such that

$$
\begin{equation*}
\log ^{-3} T \int_{T}^{2 T} S_{0,1}(t) d t \ll|I| \tag{2.15}
\end{equation*}
$$

where

$$
I:=\sum_{\substack{M_{j}<n_{j} \leq M_{j}^{\prime}, 1 \leq j \leq 3 \\ \alpha_{3} \neq 0}} \int_{T}^{2 T} h\left(t, n_{1}\right) h\left(t, n_{2}\right) h\left(t, n_{3}\right) \cos \left(F\left(t ; n_{1}, n_{2}, n_{3} ; 0,1\right)\right) d t .
$$

Write $I=I_{1}+I_{2}$, with

$$
\begin{aligned}
& I_{1}:=\sum_{\substack{M_{j}<n_{j} \leq M_{j}^{\prime}, 1 \leq j \leq 3 \\
\left|\alpha_{3}\right| \geq 1 / 10}} \int_{T}^{2 T} h\left(t, n_{1}\right) h\left(t, n_{2}\right) h\left(t, n_{3}\right) \cos \left(F\left(t ; n_{1}, n_{2}, n_{3} ; 0,1\right)\right) d t \\
& I_{2}:=\sum_{\substack{M_{j}<n_{j} \leq M_{j}^{\prime}, 1 \leq j \leq 3 \\
0<\left|\alpha_{3}\right|<1 / 10}} \int_{T}^{2 T} h\left(t, n_{1}\right) h\left(t, n_{2}\right) h\left(t, n_{3}\right) \cos \left(F\left(t ; n_{1}, n_{2}, n_{3} ; 0,1\right)\right) d t .
\end{aligned}
$$

If $\left|\alpha_{3}\right| \geq 1 / 10$, then it is easily seen that $F^{\prime}\left(t ; n_{1}, n_{2}, n_{3} ; 0,1\right) \gg\left|\alpha_{3}\right| T^{-1 / 2}$ via (2.13). By (2.10) and Lemmas 2.7 and 2.6 we get

$$
\begin{align*}
I_{1} & \ll T^{5 / 4} \sum_{M_{j}<n_{j} \leq M_{j}^{\prime}, 1 \leq j \leq 3}^{\alpha_{3} \neq 0}<  \tag{2.16}\\
& \frac{d\left(n_{1}\right) d\left(n_{2}\right) d\left(n_{3}\right)}{\left(n_{1} n_{2} n_{3}\right)^{3 / 4}\left|\alpha_{3}\right|} \\
& \ll T^{5 / 4+\varepsilon} Y^{1 / 4} \ll T^{11 / 8+\varepsilon} .
\end{align*}
$$

Now we estimate $I_{2}$. Suppose $n_{1}, n_{2}, n_{3}$ are three integers which satisfy $M_{j}<n_{j} \leq M_{j}^{\prime}(1 \leq j \leq 3),\left|\sqrt{n_{1}}+\sqrt{n_{2}}-\sqrt{n_{3}}\right|<1 / 10$. We first estimate the integral

$$
\int\left(n_{1}, n_{2}, n_{3}\right)=\int_{T}^{2 T} h\left(t, n_{1}\right) h\left(t, n_{2}\right) h\left(t, n_{3}\right) \cos \left(F\left(t ; n_{1}, n_{2}, n_{3} ; 0,1\right)\right) d t
$$

Suppose $H \geq 100$ is a parameter to be determined later and divide the interval $[T, 2 T]$ into two disjoint parts $J_{1}$ and $J_{2}$, where

$$
\begin{aligned}
& J_{1}=\left\{t \in[T, 2 T]:\left|F^{\prime}\left(t ; n_{1}, n_{2}, n_{3} ; 0,1\right)\right| \leq\left|\alpha_{3}\right| / H T^{1 / 2}\right\} \\
& J_{2}=\left\{t \in[T, 2 T]:\left|F^{\prime}\left(t ; n_{1}, n_{2}, n_{3} ; 0,1\right)\right|>\left|\alpha_{3}\right| / H T^{1 / 2}\right\}
\end{aligned}
$$

Correspondingly, let

$$
\begin{aligned}
& \int_{J_{1}}=\int_{J_{1}} h\left(t, n_{1}\right) h\left(t, n_{2}\right) h\left(t, n_{3}\right) \cos \left(F\left(t ; n_{1}, n_{2}, n_{3} ; 0,1\right)\right) d t \\
& \int_{J_{2}}=\int_{J_{2}} h\left(t, n_{1}\right) h\left(t, n_{2}\right) h\left(t, n_{3}\right) \cos \left(F\left(t ; n_{1}, n_{2}, n_{3} ; 0,1\right)\right) d t
\end{aligned}
$$

If $J_{1}$ is empty, then $J_{2}=[T, 2 T]$. By (2.10) and Lemma 2.7 we get

$$
\begin{align*}
& \int_{J_{1}}=0  \tag{2.17}\\
& \int_{J_{2}} \ll \frac{H T^{5 / 4} d\left(n_{1}\right) d\left(n_{2}\right) d\left(n_{3}\right)}{\left(n_{1} n_{2} n_{3}\right)^{3 / 4}\left|\alpha_{3}\right|} \tag{2.18}
\end{align*}
$$

We suppose now that $J_{1}$ is not empty. Let

$$
G(t)=t^{1 / 2} F^{\prime}\left(t ; n_{1}, n_{2}, n_{3} ; 0,1\right), \quad T_{1}=\inf J_{1}, \quad T_{2}=\sup J_{1}
$$

From $n_{3}^{1 / 2}=n_{1}^{1 / 2}+n_{2}^{1 / 2}-\alpha_{3}$ we get

$$
\begin{aligned}
\beta_{3} & =n_{1}^{3 / 2}+n_{2}^{3 / 2}-n_{3}^{3 / 2} \\
& =-3\left(n_{1} n_{2}\right)^{1 / 2}\left(n_{1}^{1 / 2}+n_{2}^{1 / 2}\right)+3\left(n_{1}^{1 / 2}+n_{2}^{1 / 2}\right)^{2} \alpha_{3}-3\left(n_{1}^{1 / 2}+n_{2}^{1 / 2}\right) \alpha_{3}^{2}+\alpha_{3}^{3}
\end{aligned}
$$

which implies

$$
\begin{equation*}
\left|\beta_{3}\right| \asymp\left(n_{1} n_{2} n_{3}\right)^{1 / 2} \tag{2.19}
\end{equation*}
$$

if we notice $\left|\alpha_{3}\right|<1 / 10$.
From (2.12), (2.13) and (2.19), we get

$$
G^{\prime}(t) \asymp \beta_{3} / T^{2}, \quad \alpha_{3} / \beta_{3} \asymp 1 / T .
$$

Thus from the relation $G\left(T_{2}\right)-G\left(T_{1}\right)=O\left(\left|\alpha_{3}\right| H^{-1}\right)$ and the mean value theorem we get $\left|J_{1}\right|=T_{2}-T_{1} \ll T / H$, which combined with (2.10) implies

$$
\begin{equation*}
\int_{J_{1}} \ll \frac{T^{7 / 4} d\left(n_{1}\right) d\left(n_{2}\right) d\left(n_{3}\right)}{H\left(n_{1} n_{2} n_{3}\right)^{3 / 4}} \tag{2.20}
\end{equation*}
$$

Since $J_{2}=\left[T, T_{1}\right) \cup\left(T_{2}, 2 T\right]$, by (2.10) and Lemma 2.7 we get (2.18) again. From (2.18) and (2.20) we have

$$
\begin{equation*}
I_{2} \ll \Sigma_{3}+\Sigma_{4} \tag{2.21}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Sigma_{3}=\frac{T^{7 / 4}}{H} \sum_{\substack{M_{j}<n_{j} \leq M_{j}^{\prime}, 1 \leq j \leq 3 \\
\alpha_{3} / \beta_{3} \asymp 1 / T}} \frac{d\left(n_{1}\right) d\left(n_{2}\right) d\left(n_{3}\right)}{\left(n_{1} n_{2} n_{3}\right)^{3 / 4}}, \\
& \Sigma_{4}=H T^{5 / 4} \sum_{\substack{M_{j}<n_{j} \leq M_{j}^{\prime}, 1 \leq j \leq 3 \\
\alpha_{3} \neq 0}} \frac{d\left(n_{1}\right) d\left(n_{2}\right) d\left(n_{3}\right)}{\left(n_{1} n_{2} n_{3}\right)^{3 / 4}\left|\alpha_{3}\right|} .
\end{aligned}
$$

Let $M=\max \left(M_{1}, M_{2}, M_{3}\right)$; then $T^{1 / 3-\varepsilon} \ll M \ll Y$. By Lemma 2.4 we get

$$
\begin{aligned}
\Sigma_{3} & \ll \frac{T^{7 / 4+\varepsilon}}{H\left(M_{1} M_{2} M_{3}\right)^{3 / 4}} \mathcal{A}\left(M_{1}, M_{2}, M_{3} ;\left(M_{1} M_{2} M_{3}\right)^{1 / 2} T^{-1}\right) \\
& \ll \frac{T^{7 / 4+\varepsilon}}{H\left(M_{1} M_{2} M_{3}\right)^{3 / 4}}\left(\left(M_{1} M_{2} M_{3}\right)^{3 / 2} T^{-1} M^{-1 / 2}+\left(M_{1} M_{2} M_{3}\right)^{1 / 2} M^{-1 / 2}\right) \\
& \ll T^{3 / 4+\varepsilon} H^{-1}\left(M_{1} M_{2} M_{3}\right)^{3 / 4} M^{-1 / 2}+T^{7 / 4+\varepsilon} H^{-1}\left(M_{1} M_{2} M_{3}\right)^{-1 / 4} M^{-1 / 2} \\
& \ll T^{3 / 4+\varepsilon} Y^{7 / 4} H^{-1}+T^{7 / 4-1 / 6+\varepsilon} M^{-1 / 2} \\
& \ll T^{3 / 4+\varepsilon} Y^{7 / 4} H^{-1}+T^{17 / 12+\varepsilon} .
\end{aligned}
$$

By Lemma 2.6 we have

$$
\Sigma_{4} \ll H T^{5 / 4+\varepsilon} Y^{1 / 4}
$$

Take $H=\max \left(Y^{3 / 4} T^{-1 / 4}, 100\right)$; we get

$$
I_{2} \ll Y T^{1+\varepsilon}+T^{17 / 12+\varepsilon}
$$

which combined with (2.15) and (2.16) gives

$$
\begin{equation*}
\int_{T}^{2 T} S_{0,1}(t) d t \ll Y T^{1+\varepsilon}+T^{17 / 12+\varepsilon} \tag{2.22}
\end{equation*}
$$

For $\left(i_{1}, i_{2}\right)=(1,0),(1,1)$, we can get the same estimates. This completes the proof of Lemma 2.8.
3. Beginning of proof. Suppose $T>100$ is a large real number. We shall evaluate the integral $\int_{T}^{2 T} E^{3}(t) d t$. Let $y:=T^{1 / 2}$. For any $T \leq t \leq 2 T$, define

$$
\mathcal{R}_{1}(t):=\frac{1}{\sqrt{2}} \sum_{n \leq y} h(t, n) \cos (f(t, n)), \quad \mathcal{R}_{2}(t):=E(t)-\mathcal{R}_{1}(t)
$$

Define the following integrals:

$$
\begin{align*}
& \mathcal{I}_{1}(T):=\int_{T}^{2 T} \mathcal{R}_{1}^{3}(t) d t  \tag{3.1}\\
& \mathcal{I}_{2}(T):=\int_{T}^{2 T} \mathcal{R}_{1}^{2}(t) \mathcal{R}_{2}(t) d t  \tag{3.2}\\
& \mathcal{I}_{3}(T):=\int_{T}^{2 T} \mathcal{R}_{1}(t) \mathcal{R}_{2}^{2}(t) d t  \tag{3.3}\\
& \mathcal{I}_{4}(T):=\int_{T}^{2 T} \mathcal{R}_{2}^{3}(t) d t \tag{3.4}
\end{align*}
$$

We shall evaluate $\mathcal{I}_{1}(T)$ in Section 5 and estimate $\mathcal{I}_{2}(T), \mathcal{I}_{3}(T), \mathcal{I}_{4}(T)$ in Section 4 and Section 6.

## 4. Estimates of $\mathcal{I}_{3}(T)$ and $\mathcal{I}_{4}(T)$

4.1. Higher-power moments of $\mathcal{R}_{1}(t)$. In this subsection we study the higher-power moments of $\mathcal{R}_{1}(t)$. Since the proof is very similar to those of Theorems 13.8 and 13.9 of Ivić [5], we only mention the important points. From Huxley [3], we have

$$
\begin{equation*}
\mathcal{R}_{1}(t) \ll T^{72 / 227+\varepsilon} \tag{4.1}
\end{equation*}
$$

Suppose $T<t_{1}<\cdots<t_{N} \leq 2 T$ are points which satisfy $\left|t_{r}-t_{s}\right| \geq V$ $(r \neq s \leq N), T^{1 / 4} \ll V \ll T^{72 / 227+\varepsilon}$, and $\left|\mathcal{R}_{1}\left(t_{r}\right)\right| \gg V$ for $r=1, \ldots, N$. We shall give an upper bound of $N$.

Suppose $M \leq y / 2$. Take $\xi=\left\{\xi_{n}\right\}_{n=1}^{\infty}$ with $\xi_{n}=(-1)^{n} d(n) n^{-3 / 4}$ for $M<n \leq 2 M$ and zero otherwise, and let $\varphi_{r}=\left\{\varphi_{r, n}\right\}_{n=1}^{\infty}$ with

$$
\varphi_{r, n}=n^{1 / 4} t^{-1 / 4}(t / 2 \pi n+1 / 4)^{-1 / 4} g^{-1}(t, n) e(f(t, n))
$$

for $M<n \leq 2 M$ and zero otherwise. Divide $[T, 2 T]$ into subintervals of length not exceeding $T_{0} \geq V$. Let $N_{0}$ denote the number of $t_{r}$ 's lying in an interval of length not exceeding $T_{0}$. Then

$$
\begin{equation*}
N \ll N_{0}\left(1+T / T_{0}\right) \tag{4.2}
\end{equation*}
$$

By (A.40) of Ivić [5] we get

$$
\begin{align*}
N_{0} V^{2} & \ll T^{1 / 2} \log T \max _{M \leq y / 2} \sum_{r \leq N_{0}}\left|\sum_{M<n \leq 2 M} h(t, n) t^{-1 / 4} e(f(t, n))\right|^{2}  \tag{4.3}\\
& \ll T^{1 / 2} \log T \max _{M \leq y / 2} \max _{r \leq N_{0}}\|\xi\|^{2} \sum_{s \leq N_{0}}\left|\left(\varphi_{r}, \varphi_{s}\right)\right|
\end{align*}
$$

where

$$
\begin{aligned}
\|\xi\|^{2}:= & \sum_{M<n \leq 2 M} d^{2}(n) n^{-3 / 2} \ll M^{-1 / 2} \log ^{3} M \\
\left(\varphi_{r}, \varphi_{s}\right):= & \sum_{M<n \leq 2 M} n^{2 / 4}\left(\frac{t_{r}}{2 \pi n}+\frac{1}{4}\right)^{-1 / 4}\left(\frac{t_{s}}{2 \pi n}+\frac{1}{4}\right)^{-1 / 4} g^{-1}\left(t_{r}, n\right) \\
& \times g^{-1}\left(t_{s}, n\right)\left(t_{r} t_{s}\right)^{-1 / 4} e\left(f\left(t_{r}, n\right)-f\left(t_{s}, n\right)\right) \\
= & \sum_{M<n \leq 2 M} G(n ; r, s) e(F(n ; r, s))
\end{aligned}
$$

say.
It is easily seen that for any $r, s \leq N_{0}, G(n ; r, s)$ is a product of monotonic functions of $n$ and $G(n ; r, s) \ll 1$. The contribution of the terms with $r=s$ is

$$
\begin{equation*}
\ll T^{1 / 2} \log T \max _{M \leq y / 2} M^{1 / 2} \log ^{3} M \ll(T y)^{1 / 2} \log ^{4} T \tag{4.4}
\end{equation*}
$$

By partial summation, the contribution of the terms with $r \neq s$ is

$$
\begin{align*}
& \ll T^{1 / 2} \log T \max _{M \leq y / 2} \max _{r \leq N_{0}} \frac{\log ^{3} M}{M^{1 / 2}} \sum_{s \leq N_{0}, s \neq r}\left|\sum_{M<n \leq 2 M} G(n ; r, s) e(F(n ; r, s))\right|  \tag{4.5}\\
& \ll T^{1 / 2} \log T \max _{M \leq y / 2} \max _{r \leq N_{0}} \frac{\log ^{3} M}{M^{1 / 2}} \sum_{s \leq N_{0}, s \neq r}\left|\sum_{n \in I(r, s)} e(F(n ; r, s))\right|
\end{align*}
$$

where $I(r, s)$ is a subinterval of $[M, 2 M]$. It is easy to check that

$$
\left|F^{(j)}(x ; r, s)\right| \asymp\left|t_{r}^{1 / 2}-t_{s}^{1 / 2}\right| M^{1 / 2-j}, \quad j=0,1, \ldots, 6 .
$$

So the exponential sum $S=\sum_{n \in I(r, s)} e(F(n ; r, s))$ can be estimated by the theory of exponent pairs. Using the first derivative test to estimate $S$ for $\left|F^{(j)}(x ; r, s)\right| \leq 1 / 2$ and the exponent pair $(4 / 18,11 / 18)$ to estimate $S$ for $\left|F^{(j)}(x ; r, s)\right|>1 / 2$, we get

$$
\begin{aligned}
T^{1 / 2} \log T \max _{M \leq y / 2} \max _{r \leq N_{0}} \frac{\log ^{3} M}{M^{1 / 2}} & \sum_{s \leq N_{0}, s \neq r}\left|\sum_{n \in I(r, s)} e(F(n ; r, s))\right| \\
& \ll T V^{-1} \log ^{5} T+N_{0} T_{0}^{4 / 18} T^{7 / 18} \log ^{4} T
\end{aligned}
$$

which combined with (4.3)-(4.5) gives

$$
\begin{equation*}
N_{0} V^{2} \log ^{-5} T \ll(T y)^{1 / 2}+T V^{-1}+N_{0} T_{0}^{4 / 18} T^{7 / 18} \tag{4.6}
\end{equation*}
$$

Choose $T_{0}=V^{9} T^{-7 / 4} \log ^{-30} T$; then $T_{0} \gg V$ and (4.6) reduces to

$$
N_{0} \ll(T y)^{1 / 2} V^{-2} \log ^{5} T+T V^{-3} \log ^{5} T,
$$

which combined with (4.2) gives

$$
\begin{equation*}
N \log ^{-35} T \ll(T y)^{1 / 2} V^{-2}+T V^{-3}+T^{13 / 4} y^{1 / 2} V^{-11}+T^{15 / 4} V^{-12} \tag{4.7}
\end{equation*}
$$

Now we estimate the integral $\int_{T}^{2 T}\left|\mathcal{R}_{1}(t)\right|^{A} d t$, where $A>2$ is a fixed real number. Similarly to (13.70) of Ivić [5] we may write

$$
\begin{equation*}
\int_{T}^{2 T}\left|\mathcal{R}_{1}(t)\right|^{A} d t \ll T^{(4+A) / 4} \log T+\sum_{V} V \sum_{r \leq N_{V}}\left|\mathcal{R}_{1}\left(t_{r}\right)\right|^{A} \tag{4.8}
\end{equation*}
$$

where $T^{1 / 4} \leq V=2^{m} \leq T^{72 / 227+\varepsilon}, V<\left|\mathcal{R}_{1}\left(t_{r}\right)\right| \leq 2 V\left(r=1, \ldots, N_{V}\right)$ and $\left|t_{r}-t_{s}\right| \geq V$ for $r \neq s \leq N=N_{V}$. If $A<10$, then by (4.1) and (4.7) we have

$$
\begin{align*}
V \sum_{r \leq N_{V}}\left|\mathcal{R}_{1}\left(t_{r}\right)\right|^{A} \ll & N_{V} V^{A+1}  \tag{4.9}\\
\ll & (T y)^{1 / 2} T^{72(A-1) / 227+\varepsilon}+T^{1+72(A-2) / 227+\varepsilon} \\
& +T^{(3+A) / 4} y^{1 / 2} \log ^{40} T+T^{1+A / 4} \log ^{40} T \\
\ll & T^{1+A / 4+\varepsilon}
\end{align*}
$$

for any $2 \leq A \leq A_{0}:=515 / 61$.
Thus for $2 \leq A \leq A_{0}$ we have

$$
\begin{equation*}
\int_{T}^{2 T}\left|\mathcal{R}_{1}(t)\right|^{A} d t \ll T^{1+A / 4+\varepsilon} \tag{4.10}
\end{equation*}
$$

4.2. Higher-power moments of $\mathcal{R}_{2}(t)$. We first consider the mean square of $\mathcal{R}_{2}(t)$. By Lemma 2.1 (take $N=T / \pi$ ) we have

$$
\begin{align*}
\mathcal{R}_{2}(t) & =\mathcal{R}_{2}^{*}(t)+\Sigma_{2}(t)+O\left(\log ^{2} t\right) \\
\mathcal{R}_{2}^{*}(t) & :=\frac{1}{\sqrt{2}} \sum_{y<n \leq T / \pi} h(t, n) \cos (f(t, n)) \tag{4.11}
\end{align*}
$$

Hence we get

$$
\begin{equation*}
\int_{T}^{2 T} \mathcal{R}_{2}^{2}(t) d t \ll \int_{T}^{2 T}\left|\mathcal{R}_{2}^{*}(t)\right|^{2} d t+\int_{T}^{2 T}\left|\Sigma_{2}(t)\right|^{2} d t+T \log ^{4} T \tag{4.12}
\end{equation*}
$$

We have the estimate

$$
\begin{equation*}
\int_{T}^{2 T}\left|\Sigma_{2}(t)\right|^{2} d t \ll T \log ^{4} T \tag{4.13}
\end{equation*}
$$

which is (15.61) of Ivić [5].
For $m \neq n$, it is easy to check that $\left|f^{\prime}(t, m)-f^{\prime}(t, n)\right| \gg|\sqrt{n}-\sqrt{m}| / T^{1 / 2}$. Thus from (2.10) and Lemma 2.7 we have

$$
\begin{align*}
\int_{T}^{2 T}\left|\mathcal{R}_{2}^{*}(t)\right|^{2} d t & \ll \sum_{y<n \leq T / \pi} \int_{T}^{2 T} h(t, n)^{2} d t  \tag{4.14}\\
& +\sum_{y<m<n \leq T / \pi}\left|\int_{T}^{2 T} h(t, n) h(t, m) e(f(t, n)-f(t, m)) d t\right|
\end{align*}
$$

$$
\begin{aligned}
& +\sum_{y<m, n \leq T / \pi}\left|\int_{T}^{2 T} h(t, n) h(t, m) e(f(t, n)+f(t, m)) d t\right| \\
\ll & T^{3 / 2} \sum_{y<n \leq T / \pi} \frac{d^{2}(n)}{n^{3 / 2}}+T \sum_{m<n \leq T / \pi} \frac{d(n) d(m)}{(n m)^{3 / 4}(\sqrt{n}-\sqrt{m})} \\
\ll & T^{3 / 2} y^{-1 / 2} \log ^{3} T
\end{aligned}
$$

which combined with (4.12) and (4.13) gives

$$
\begin{equation*}
\int_{T}^{2 T} \mathcal{R}_{2}^{2}(t) d t \ll T^{3 / 2} y^{-1 / 2} \log ^{3} T \tag{4.15}
\end{equation*}
$$

Ivić [5, Theorem 15.7] proved that

$$
\begin{equation*}
\int_{1}^{T}|E(t)|^{A} d t \ll T^{1+A / 4+\varepsilon} \tag{4.16}
\end{equation*}
$$

for $0<A<35 / 4$. From (4.10) and (4.16) we deduce that for any $2 \leq A \leq$ $A_{0}=515 / 61$,

$$
\begin{equation*}
\int_{1}^{T}\left|\mathcal{R}_{2}(t)\right|^{A} d t \ll \int_{1}^{T}|E(t)|^{A} d t+\int_{1}^{T}\left|\mathcal{R}_{1}(t)\right|^{A} d t \ll T^{1+A / 4+\varepsilon} \tag{4.17}
\end{equation*}
$$

For any $2<A<A_{0}$, from (4.15), (4.17) and Hölder's inequality we get

$$
\begin{align*}
\int_{T}^{2 T}\left|\mathcal{R}_{2}(t)\right|^{A} d t & =\int_{T}^{2 T}\left|\mathcal{R}_{2}(t)\right|^{2\left(A_{0}-A\right) /\left(A_{0}-2\right)+A_{0}(A-2) /\left(A_{0}-2\right)} d t \\
& \ll\left(\int_{T}^{2 T} \mathcal{R}_{2}^{2}(t) d t\right)^{\left(A_{0}-A\right) /\left(A_{0}-2\right)}\left(\int_{T}^{2 T}\left|\mathcal{R}_{2}(t)\right|^{A_{0}} d t\right)^{(A-2) /\left(A_{0}-2\right)}  \tag{4.18}\\
& \ll T^{1+A / 4+\varepsilon} y^{-\left(A_{0}-A\right) / 2\left(A_{0}-2\right)}
\end{align*}
$$

which implies

$$
\begin{equation*}
\mathcal{I}_{4}(T) \ll T^{7 / 4+\varepsilon} y^{-\left(A_{0}-3\right) / 2\left(A_{0}-2\right)} \tag{4.19}
\end{equation*}
$$

From (4.10), (4.18) and Hölder's inequality we get
(4.20) $\quad \mathcal{I}_{3}(T) \ll \int_{T}^{2 T}\left|\mathcal{R}_{1}(t) \mathcal{R}_{2}^{2}(t)\right| d t$

$$
\begin{aligned}
& \ll\left(\int_{T}^{2 T}\left|\mathcal{R}_{1}(t)\right|^{A_{0}} d t\right)^{1 / A_{0}}\left(\int_{T}^{2 T}\left|\mathcal{R}_{2}(t)\right|^{2 A_{0} /\left(A_{0}-1\right)} d t\right)^{\left(A_{0}-1\right) / A_{0}} \\
& \ll T^{7 / 4+\varepsilon} y^{-\left(A_{0}-3\right) / 2\left(A_{0}-2\right)}
\end{aligned}
$$

5. The evaluation of $\mathcal{I}_{1}(T)$. Let $y_{0}:=T^{1 / 3-\varepsilon}$. We write $\mathcal{R}_{1}(t)=$ $\mathcal{R}_{11}(t)+\mathcal{R}_{12}(t)$, where

$$
\begin{aligned}
& \mathcal{R}_{11}(t):=\frac{1}{\sqrt{2}} \sum_{n \leq y_{0}} h(t, n) \cos (f(t, n)) \\
& \mathcal{R}_{12}(t):=\frac{1}{\sqrt{2}} \sum_{y_{0}<n \leq y} h(t, n) \cos (f(t, n))
\end{aligned}
$$

5.1. On the integral $\int_{T}^{2 T} \mathcal{R}_{11}^{3}(t) d t$. By the elementary formula

$$
\begin{equation*}
\cos a \cos b \cos c=\frac{1}{4} \sum_{\left(i_{1}, i_{2}\right) \in\{0,1\}^{2}} \cos \left(a+(-1)^{i_{1}} b+(-1)^{i_{2}} c\right), \tag{5.1}
\end{equation*}
$$ we can write

$$
\begin{aligned}
\mathcal{R}_{11}^{3}(t)= & \frac{1}{2^{3 / 2}} \sum_{n_{1} \leq y_{0}} \sum_{n_{2} \leq y_{0}} \sum_{n_{3} \leq y_{0}} h\left(t, n_{1}\right) h\left(t, n_{2}\right) h\left(t, n_{3}\right) \prod_{j=1}^{3} \cos \left(f\left(t, n_{j}\right)\right) \\
= & \frac{1}{2^{7 / 2}} \sum_{\left(i_{1}, i_{2}\right) \in\{0,1\}^{2}} \sum_{n_{1} \leq y_{0}} \sum_{n_{2} \leq y_{0}} \sum_{n_{3} \leq y_{0}} h\left(t, n_{1}\right) h\left(t, n_{2}\right) h\left(t, n_{3}\right) \\
& \times \cos \left(F\left(t ; n_{1}, n_{2}, n_{3} ; i_{1}, i_{2}\right)\right) \\
= & \frac{1}{2^{7 / 2}}\left(S_{1}(t)+S_{2}(t)\right)
\end{aligned}
$$

where

$$
\begin{aligned}
S_{1}(t):= & \sum_{\left(i_{1}, i_{2}\right) \in\{0,1\}^{2}} \sum_{n_{j} \leq y_{0}, 1 \leq j \leq 3}^{\alpha_{3}=0} 1 \\
& \times \cos \left(F\left(t, n_{1}\right) h\left(t, n_{2}\right) h\left(t, n_{3}\right)\right. \\
S_{2}(t):= & \left.\sum_{\substack{\left(i_{1}, i_{2}\right) \in\{0,1\}^{2}}} \sum_{\substack{n_{j} \leq y_{0}, 1 \leq j \leq 3 \\
\alpha_{3} \neq 0}} h\left(t, i_{1}, i_{2}\right)\right) h\left(t, n_{2}\right) h\left(t, n_{3}\right) \\
& \times \cos \left(F\left(t ; n_{1}, n_{2}, n_{3} ; i_{1}, i_{2}\right)\right) .
\end{aligned}
$$

We first consider the contribution of $S_{1}(t)$. It is easy to see that $\alpha_{3}=0$ implies $\left(i_{1}, i_{2}\right)=(0,1)$ or $(1,0)$ or $(1,1)$. Let

$$
S_{1}\left(t ; i_{1}, i_{2}\right):=\sum_{\substack{n_{j} \leq y_{0}, 1 \leq j \leq 3 \\ \alpha_{3}=0}} h\left(t, n_{1}\right) h\left(t, n_{2}\right) h\left(t, n_{3}\right) \cos \left(F\left(t ; n_{1}, n_{2}, n_{3} ; i_{1}, i_{2}\right)\right)
$$

We consider the case $\left(i_{1}, i_{2}\right)=(0,1)$. Suppose $n_{j} \leq y_{0}(j=1,2,3)$ is such that $\alpha_{3}=0$ for $\left(i_{1}, i_{2}\right)=(0,1)$, namely, $\sqrt{n_{1}}+\sqrt{n_{2}}=\sqrt{n_{3}}$. From (2.11) we have

$$
\begin{align*}
& \cos \left(F\left(t ; n_{1}, n_{2}, n_{3} ; 0,1\right)\right)  \tag{5.2}\\
& \quad=\cos \left(-\frac{\pi}{4}+O\left(\frac{n_{3}^{3 / 2}}{t^{1 / 2}}\right)\right)=2^{-1 / 2}+O\left(\frac{n_{3}^{3 / 2}}{t^{1 / 2}}\right)
\end{align*}
$$

From (2.10), (5.2) and Lemmas 2.2 and 2.3 we get

$$
\begin{equation*}
\int_{T}^{2 T} S_{1}(t ; 0,1) d t \tag{5.3}
\end{equation*}
$$

$=\sum_{\substack{n_{1}, n_{2}, n_{3} \leq y_{0} \\ \sqrt{n_{1}}+\sqrt{n_{2}}=\sqrt{n_{3}}}} \int_{T}^{2 T} h\left(t, n_{1}\right) h\left(t, n_{2}\right) h\left(t, n_{3}\right) \cos \left(F\left(t ; n_{1}, n_{2}, n_{3} ; 0,1\right)\right) d t$
$=\frac{2^{9 / 4}}{\pi^{3 / 4}} \sum_{\substack{n_{1}, n_{2}, n_{3} \leq y_{0} \\ \sqrt{n_{1}}+\sqrt{n_{2}}=\sqrt{n_{3}}}} \frac{(-1)^{n_{1}+n_{2}+n_{3}} d\left(n_{1}\right) d\left(n_{2}\right) d\left(n_{3}\right)}{\left(n_{1} n_{2} n_{3}\right)^{3 / 4}}$
$\times \int_{T}^{2 T} t^{3 / 4}\left(1+O\left(\frac{n_{3}}{T}\right)\right)\left(2^{-1 / 2}+O\left(\frac{n_{3}^{3 / 2}}{T^{1 / 2}}\right)\right) d t$
$=\frac{2^{7 / 4}}{\pi^{3 / 4}} \sum_{\substack{n_{1}, n_{2}, n_{3} \leq y_{0} \\ \sqrt{n_{1}}+\sqrt{n_{2}}=\sqrt{n_{3}}}} \frac{(-1)^{n_{1}+n_{2}+n_{3}} d\left(n_{1}\right) d\left(n_{2}\right) d\left(n_{3}\right)}{\left(n_{1} n_{2} n_{3}\right)^{3 / 4}} \int_{T}^{2 T} t^{3 / 4}\left(1+O\left(\frac{n_{3}^{3 / 2}}{T^{1 / 2}}\right)\right) d t$
$=\frac{2^{7 / 4}}{\pi^{3 / 4}} \sum_{\substack{n_{1}, n_{2}, n_{3} \leq y_{0} \\ \sqrt{n_{1}}+\sqrt{n_{2}}=\sqrt{n_{3}}}} \frac{(-1)^{n_{1}+n_{2}+n_{3}} d\left(n_{1}\right) d\left(n_{2}\right) d\left(n_{3}\right)}{\left(n_{1} n_{2} n_{3}\right)^{3 / 4}} \int_{T}^{2 T} t^{3 / 4} d t+O\left(T^{5 / 4} H_{1}\left(y_{0}\right)\right)$
$=\frac{2^{7 / 4} c_{1}}{\pi^{3 / 4}} \int_{T}^{2 T} t^{3 / 4} d t+O\left(T^{7 / 4+\varepsilon} y_{0}^{-1}+T^{5 / 4+\varepsilon} y_{0}^{1 / 2}\right)$
$=\frac{2^{7 / 4} c_{1}}{\pi^{3 / 4}} \int_{T}^{2 T} t^{3 / 4} d t+O\left(T^{17 / 12+\varepsilon}\right)$.
We can get the same result for $S_{1}(t ; 1,0), S_{1}(t ; 1,1)$. Thus

$$
\begin{equation*}
\int_{T}^{2 T} S_{1}(t) d t=\frac{3 \cdot 2^{7 / 4} c_{1}}{\pi^{3 / 4}} \int_{T}^{2 T} t^{3 / 4} d t+O\left(T^{17 / 12+\varepsilon}\right) \tag{5.4}
\end{equation*}
$$

Now we consider the contribution of $S_{2}(t)$. From Lemma 2.5 and (2.13) we get $\left|F^{\prime}\left(t ; n_{1}, n_{2}, n_{3} ; i_{1}, i_{2}\right)\right| \gg\left|\alpha_{3}\right| / T^{1 / 2}$ if we notice $y_{0}=T^{1 / 3-\varepsilon}$. By Lemmas 2.7 and 2.6 we have

$$
\begin{align*}
\int_{T}^{2 T} S_{2}(t) d t & \ll T^{5 / 4} \sum_{\left(i_{1}, i_{2}\right) \in\{0,1\}^{2}} \sum_{\substack{n_{1}, n_{2}, n_{3} \leq y_{0} \\
\alpha_{3} \neq 0}} \frac{d\left(n_{1}\right) d\left(n_{2}\right) d\left(n_{3}\right)}{\left(n_{1} n_{2} n_{3}\right)^{3 / 4}\left|\alpha_{3}\right|}  \tag{5.5}\\
& =T^{5 / 4} \sum_{\left(i_{1}, i_{2}\right) \in\{0,1\}^{2}} H\left(y_{0} ; i_{1}, i_{2}\right) \ll T^{5 / 4+\varepsilon} y_{0}^{1 / 4} \ll T^{4 / 3+\varepsilon}
\end{align*}
$$

From (5.4) and (5.5) we get

$$
\begin{equation*}
\int_{T}^{2 T} \mathcal{R}_{11}^{3}(t) d t=\frac{3 c_{1}}{2^{7 / 4} \pi^{3 / 4}} \int_{T}^{2 T} t^{3 / 4} d t+O\left(T^{17 / 12+\varepsilon}\right) \tag{5.6}
\end{equation*}
$$

5.2. On the integral $\int_{T}^{2 T} \mathcal{R}_{11}^{2}(t) \mathcal{R}_{12}(t) d t$. By (5.1) we can write

$$
\begin{aligned}
S_{3}(t):= & \left.\sum_{11}^{2}(t) \mathcal{R}_{12}(t)=\frac{1}{2^{7 / 2}} \sum_{\left(i_{1}, i_{2}\right) \in\{0,1\}^{2}} \sum_{y_{0}<n_{1} \leq y} \sum_{\substack{n_{2}, n_{3} \leq y_{0} \\
\alpha_{3}=0}} h(t)+S_{4}(t)+S_{5}(t)\right), \\
& \times \cos \left(F\left(t ; n_{1}, n_{2}, n_{3} ; i_{1}, i_{2}\right)\right), \\
S_{4}(t):= & \sum_{\left(i_{1}, i_{2}\right) \in\{0,1\}^{2}} \sum_{y_{0}<n_{1} \leq 50 y_{0}} \sum_{\substack{n_{2}, n_{3} \leq y_{0} \\
\alpha_{3} \neq 0}} h\left(t, n_{1}\right) h\left(t, n_{2}\right) h\left(t, n_{3}\right) \\
& \times \cos \left(F\left(t ; n_{1}, n_{2}, n_{3} ; i_{1}, i_{2}\right)\right), \\
S_{5}(t):= & \sum_{\substack{ \\
\left(i_{1}, i_{2}\right) \in\{0,1\}^{2}}} \sum_{50} \sum_{y_{0}<n_{1} \leq y} h\left(t, n_{1}\right) h\left(t, n_{2}\right) h\left(t, n_{3}\right) \\
& \times \cos \left(F\left(t ; n_{1}, n_{2}, n_{3} ; n_{3} \leq y_{1}, i_{2}\right)\right) .
\end{aligned}
$$

We first consider the contribution of $S_{3}(t)$. Since $n_{2}, n_{3} \leq y_{0}<n_{1} \leq y$, the condition $\alpha_{3}=0$ implies $\left(i_{1}, i_{2}\right)=(1,1)$ and $n_{1} \leq 4 y_{0}$. So by (2.10) and Lemma 2.2 we get

$$
\begin{align*}
\int_{T}^{2 T} S_{3}(t) d t & \ll \sum_{\substack{\sqrt{n_{2}}+\sqrt{n_{3}}=\sqrt{n_{1}} \\
n_{1}>y_{0}}} \frac{d\left(n_{1}\right) d\left(n_{2}\right) d\left(n_{3}\right)}{\left(n_{1} n_{2} n_{3}\right)^{3 / 4}} \int_{T}^{2 T} t^{3 / 4} d t  \tag{5.7}\\
& \ll T^{7 / 4}\left|c_{1}-c_{1}\left(y_{0}\right)\right| \ll T^{7 / 4+\varepsilon} y_{0}^{-1} \ll T^{17 / 12+\varepsilon}
\end{align*}
$$

Concerning the contribution of $S_{4}(t)$, similarly to (5.5), by Lemmas 2.7 and 2.6 we get

$$
\begin{align*}
\int_{T}^{2 T} S_{4}(t) d t & \ll T^{5 / 4} \sum_{\left(i_{1}, i_{2}\right) \in\{0,1\}^{2}} \sum_{y_{0}<n_{1} \leq 50 y_{0}} \sum_{\substack{n_{2}, n_{3} \leq y_{0} \\
\alpha_{3} \neq 0}} \frac{d\left(n_{1}\right) d\left(n_{2}\right) d\left(n_{3}\right)}{\left(n_{1} n_{2} n_{3}\right)^{3 / 4}\left|\alpha_{3}\right|}  \tag{5.8}\\
& \ll T^{5 / 4} \sum_{\left(i_{1}, i_{2}\right) \in\{0,1\}^{2}} H\left(50 y_{0} ; i_{1}, i_{2}\right) \ll T^{5 / 4+\varepsilon} y_{0}^{1 / 4} \ll T^{4 / 3+\varepsilon}
\end{align*}
$$

Now we consider the contribution of $S_{5}(t)$. Since $n_{1}>50 y_{0}, n_{2}, n_{3} \leq y_{0}$, we have $\left|F^{\prime}\left(t ; n_{1}, n_{2}, n_{3} ; i_{1}, i_{2}\right)\right| \gg n_{1}^{1 / 2} T^{-1 / 2}$. Thus from (2.10) and Lemma 2.7
we get

$$
\begin{align*}
\int_{T}^{2 T} S_{5}(t) d t & \ll T^{5 / 4} \sum_{n_{1}>50 y_{0}} \sum_{n_{2}, n_{3} \leq y_{0}} \frac{d\left(n_{1}\right) d\left(n_{2}\right) d\left(n_{3}\right)}{\left(n_{1} n_{2} n_{3}\right)^{3 / 4} n_{1}^{1 / 2}}  \tag{5.9}\\
& \ll T^{5 / 4+\varepsilon} y_{0}^{1 / 4} \ll T^{4 / 3+\varepsilon}
\end{align*}
$$

From (5.7)-(5.9) we deduce

$$
\begin{equation*}
\int_{T}^{2 T} \mathcal{R}_{11}^{2}(t) \mathcal{R}_{12}(t) d t \ll T^{17 / 12+\varepsilon} \tag{5.10}
\end{equation*}
$$

5.3. On the integrals $\int_{T}^{2 T} \mathcal{R}_{11}(t) \mathcal{R}_{12}^{2}(t) d t$ and $\int_{T}^{2 T} \mathcal{R}_{12}^{3}(t) d t$. By (5.1) we can write

$$
\begin{aligned}
S_{6}(t):= & \sum_{\left(i_{1}, i_{2}\right) \in\{0,1\}^{2}} \sum_{n_{1} \leq y_{0}(t) \mathcal{R}_{12}^{2}(t)=\frac{1}{2^{7 / 2}}\left(S_{6}(t)+S_{7}(t)\right),} \sum_{\substack{y_{0}<n_{2}, n_{3} \leq y \\
\alpha_{3}=0}} h\left(t, n_{1}\right) h\left(t, n_{2}\right) h\left(t, n_{3}\right) \\
& \times \cos \left(F\left(t ; n_{1}, n_{2}, n_{3} ; i_{1}, i_{2}\right)\right), \\
S_{7}(t):= & \sum_{\substack{\left(i_{1}, i_{2}\right) \in\{0,1\}^{2}}} \sum_{n_{1} \leq y_{0}} \sum_{\substack{y_{0}<n_{2}, n_{3} \leq y \\
\alpha_{3} \neq 0}} h\left(t, n_{1}\right) h\left(t, n_{2}\right) h\left(t, n_{3}\right) \\
& \times \cos \left(F\left(t ; n_{1}, n_{2}, n_{3} ; i_{1}, i_{2}\right)\right) .
\end{aligned}
$$

By (2.10) and Lemma 2.2 we have

$$
\begin{aligned}
\int_{T}^{2 T} S_{6}(t) d t & \ll T^{7 / 4} \sum_{\substack{\sqrt{n_{1}}+\sqrt{n_{2}}=\sqrt{n_{3}} \\
n_{3}>y_{0}}} \frac{d\left(n_{1}\right) d\left(n_{2}\right) d\left(n_{3}\right)}{\left(n_{1} n_{2} n_{3}\right)^{3 / 4}} \\
& \ll T^{7 / 4}\left|c_{1}-c_{1}\left(y_{0}\right)\right| \ll T^{17 / 12+\varepsilon}
\end{aligned}
$$

By Lemma 2.8 we get

$$
\int_{T}^{2 T} S_{7}(t) d t \ll T^{1+\varepsilon} y+T^{17 / 12+\varepsilon} .
$$

Thus

$$
\begin{equation*}
\int_{T}^{2 T} \mathcal{R}_{11}(t) \mathcal{R}_{12}^{2}(t) d t \ll T^{1+\varepsilon} y+T^{17 / 12+\varepsilon} \tag{5.11}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\int_{T}^{2 T} \mathcal{R}_{12}^{3}(t) d t \ll T^{1+\varepsilon} y+T^{17 / 12+\varepsilon} \tag{5.12}
\end{equation*}
$$

5.4. The asymptotic formula for $\mathcal{I}_{1}(T)$. From (5.6) and (5.10)-(5.12) and by writing

$$
\mathcal{R}_{1}^{3}(t)=\mathcal{R}_{11}^{3}(t)+3 \mathcal{R}_{11}^{2}(t) \mathcal{R}_{12}(t)+3 \mathcal{R}_{11}(t) \mathcal{R}_{12}^{2}(t)+\mathcal{R}_{12}^{3}(t)
$$

we get

$$
\begin{equation*}
\int_{T}^{2 T} \mathcal{R}_{1}^{3}(t) d t=\frac{3 c_{1}}{2^{7 / 4} \pi^{3 / 4}} \int_{T}^{2 T} t^{3 / 4} d t+O\left(T^{1+\varepsilon} y+T^{17 / 12+\varepsilon}\right) \tag{5.13}
\end{equation*}
$$

6. Estimate of $\mathcal{I}_{2}(T)$. We first estimate the integral $\int_{T}^{2 T} \mathcal{R}_{1}^{2}(t) \mathcal{R}_{2}^{*}(t) d t$. By (5.1) again we can write

$$
\begin{aligned}
& \mathcal{R}_{1}^{2}(t) \mathcal{R}_{2}^{*}(t)=\frac{1}{2^{7 / 2}}\left(S_{8}(t)+S_{9}(t)+S_{10}(t)\right) \\
& S_{8} \sum_{\left(i_{1}, i_{2}\right) \in\{0,1\}^{2}} \sum_{y<n_{1} \leq T / \pi} \sum_{\substack{n_{2}, n_{3} \leq y \\
\alpha_{3}=0}} h\left(t, n_{1}\right) h\left(t, n_{2}\right) h\left(t, n_{3}\right) \\
& \times \cos \left(F\left(t ; n_{1}, n_{2}, n_{3} ; i_{1}, i_{2}\right)\right), \\
& S_{9}(t):= \sum_{\left(i_{1}, i_{2}\right) \in\{0,1\}^{2}} \sum_{y<n_{1} \leq 50 y} \sum_{\substack{y_{0}<\max _{\begin{subarray}{c}{ \\
\alpha_{3} \neq 0} }} h\left(n_{2}, n_{3}\right) \leq y}\end{subarray}} h\left(t, n_{1}\right) h\left(t, n_{2}\right) h\left(t, n_{3}\right) \\
& S_{10}(t):= \sum_{\substack{\left(i_{1}, i_{2}\right) \in\{0,1\}^{2}}}\left(\sum_{y<n_{1} \leq 50 y \max \left(n_{2}, n_{3}\right) \leq y_{0}}^{\alpha_{3} \neq 0}<\right. \\
& \times h\left(t, n_{2}\right) h\left(t, n_{3}\right) \cos \left(F\left(t ; n_{1}, n_{2}, n_{3} ; i_{1}, i_{2}\right)\right) .
\end{aligned}
$$

We first consider the contribution of $S_{8}(t)$. Since $n_{2}, n_{3} \leq y<n_{1} \leq T / \pi$, the condition $\alpha_{3}=0$ implies $\left(i_{1}, i_{2}\right)=(1,1)$ and $n_{1} \leq 4 y$. By (2.10) and Lemma 2.2 we get

$$
\begin{align*}
\int_{T}^{2 T} S_{8}(t) d t & \ll T^{7 / 4} \sum_{\substack{y<n_{1} \leq 4 y, n_{2}, n_{3} \leq y \\
\sqrt{n_{1}}=\sqrt{n_{2}}+\sqrt{n_{3}}}} \frac{d\left(n_{1}\right) d\left(n_{2}\right) d\left(n_{3}\right)}{\left(n_{1} n_{2} n_{3}\right)^{3 / 4}}  \tag{6.1}\\
& \ll T^{7 / 4}\left|c_{1}-c_{1}(y)\right| \ll T^{7 / 4+\varepsilon} y^{-1} \ll T^{4 / 3+\varepsilon}
\end{align*}
$$

By Lemma 2.8 we have

$$
\begin{equation*}
\int_{T}^{2 T} S_{9}(t) d t \ll T^{1+\varepsilon} y+T^{17 / 12+\varepsilon} \tag{6.2}
\end{equation*}
$$

Similarly to (5.9), from (2.10) and Lemma 2.7 we have

$$
\begin{align*}
\int_{T}^{2 T} S_{10}(t) d t & \ll T^{5 / 4} \sum_{n_{1}>50 y} \sum_{n_{2}, n_{3} \leq y} \frac{d\left(n_{1}\right) d\left(n_{2}\right) d\left(n_{3}\right)}{\left(n_{1} n_{2} n_{3}\right)^{3 / 4} n_{1}^{1 / 2}}  \tag{6.3}\\
& \ll T^{5 / 4+\varepsilon} y^{1 / 4} \ll T^{11 / 8+\varepsilon} .
\end{align*}
$$

From (6.1)-(6.3) we have

$$
\begin{equation*}
\int_{T}^{2 T} \mathcal{R}_{1}^{2}(t) \mathcal{R}_{2}^{*}(t) d t \ll T^{1+\varepsilon} y+T^{17 / 12+\varepsilon} \tag{6.4}
\end{equation*}
$$

From (4.10), (4.13) and Cauchy's inequality we get

$$
\begin{align*}
\int_{T}^{2 T}\left|\mathcal{R}_{1}(t)\right|^{2}\left|\Sigma_{2}(t)\right| d t & \ll\left(\int_{T}^{2 T}\left|\mathcal{R}_{1}(t)\right|^{4} d t\right)^{1 / 2}\left(\int_{T}^{2 T}\left|\Sigma_{2}(t)\right|^{2} d t\right)^{1 / 2}  \tag{6.5}\\
& \ll T^{3 / 2+\varepsilon}
\end{align*}
$$

which combined with (4.11) and (6.4) yields

$$
\begin{equation*}
\mathcal{I}_{2}(T) \ll \int_{T}^{2 T} \mathcal{R}_{1}^{2}(t) \mathcal{R}_{2}(t) d t \ll T^{1+\varepsilon} y+T^{3 / 2+\varepsilon} \tag{6.6}
\end{equation*}
$$

7. Completion of proof. We write

$$
E^{3}(t)=\mathcal{R}_{1}^{3}(t)+3 \mathcal{R}_{1}^{2}(t) \mathcal{R}_{2}(t)+3 \mathcal{R}_{1}(t) \mathcal{R}_{2}^{2}(t)+\mathcal{R}_{2}^{3}(t)
$$

So from (4.19), (4.20), (5.13), (6.6) we get

$$
\begin{align*}
\int_{T}^{2 T} E^{3}(t) d t= & \mathcal{I}_{1}(T)+3 \mathcal{I}_{2}(T)+3 \mathcal{I}_{3}(T)+\mathcal{I}_{4}(T)  \tag{7.1}\\
= & \frac{3 c_{1}}{2^{7 / 4} \pi^{3 / 4}} \int_{T}^{2 T} t^{3 / 4} d t \\
& +O\left(T^{7 / 4+\varepsilon} y^{-\left(A_{0}-3\right) / 2\left(A_{0}-2\right)}+T^{1+\varepsilon} y+T^{3 / 2+\varepsilon}\right) \\
= & \frac{3 c_{1}}{2^{7 / 4} \pi^{3 / 4}} \int_{T}^{2 T} t^{3 / 4} d t+O\left(T^{7 / 4-83 / 393+\varepsilon}\right)
\end{align*}
$$

Applying (7.1) repeatedly to the intervals $\left[T / 2^{j+1}, T / 2^{j}\right](j \geq 0)$ and summing we get (1.7).

## References

[1] F. V. Atkinson, The mean-value of the Riemann zeta function, Acta Math. 81 (1949), 353-376.
[2] D. R. Heath-Brown, The distribution and moments of the error term in the Dirichlet divisor problem, Acta Arith. 60 (1992), 389-415.
[3] M. N. Huxley, Exponential sums and lattice points II, Proc. London Math. Soc. 66 (1993), 279-301.
[4] A. Ivić, On some problems involving the mean square of $\zeta(1 / 2+i t)$, Bull. Cl. Sci. Math. Nat. Sci. Math. 23 (1998), 71-76.
[5] -, The Riemann Zeta-Function, Wiley, 1985.
[6] M. Jutila, On a formula of Atkinson, in: Topics in Classical Number Theory, Vols. I, II (Budapest, 1981), Colloq. Math. Soc. János Bolyai 34, North-Holland, Amsterdam, 1984, 807-823.
[7] -, Riemann's zeta-function and the divisor problem II, Ark. Mat. 31 (1993), 61-70.
[8] T. Meurman, On the mean square of the Riemann zeta-function, Quart. J. Math. Oxford Ser. 38 (1987), 337-343.
[9] K. M. Tsang, Higher-power moments of $\Delta(x), E(t)$ and $P(x)$, Proc. London Math. Soc. (3) 65 (1992), 65-84.
[10] W. G. Zhai, On higher-power moments of $\Delta(x)$, Acta Arith. 112 (2004), 367-395.
[11] -, On higher-power moments of $\Delta(x)$ (II), ibid. 114 (2004), 35-54.
Department of Mathematics
Shandong Normal University
Jinan 250014, Shandong, P.R. China
E-mail: zhaiwg@hotmail.com

Received on 1.9.2003
and in revised form on 23.2.2004

