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On higher-power moments of E(t)

by

Wenguang Zhai (Jinan)

1. Main result. Let ζ(s) denote the Riemann zeta-function. For t > 2,
define

E(t) :=
t�

0

|ζ(1/2 + iu)|2 du− t log(t/2π)− (2γ − 1)t.(1.1)

It is an important problem to study the upper bound of E(t). The latest
result is

E(t) = O(t72/227 log629/227 t),(1.2)

due to Huxley [3]. We have the conjecture

E(t) = O(t1/4+ε),(1.3)

which is supported by the mean square formula
T�

2

E2(t) dt =
2ζ4(3/2)

3ζ(3)
√

2π
T 3/2 +O(T log5 T )(1.4)

proved by Meurman [8].
Tsang [9] studied the third- and fourth-power moments of E(t). He

proved that the asymptotic formulas
T�

2

E3(t) dt =
6
7

(2π)−3/4c1T
7/4 +O(T 7/4−δ1+ε),(1.5)

T�

2

E4(t) dt =
3

8π
c2T

2 +O(T 2−δ2+ε)(1.6)

hold with δ1 > 0 and δ2 > 0, where

c1 =
∑

√
n1+
√
n2=
√
n3

d(n1)d(n2)d(n3)
(n1n2n3)3/4

,
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c2 =
∑

√
n1+
√
n2=
√
n3+
√
n4

d(n1)d(n2)d(n3)d(n4)
(n1n2n3n4)3/4

.

Tsang [9] proved that (1.5) holds for δ1 = 1/36, but did not specify the
permissible value of δ2 in (1.6). Ivić [4] proved that (1.5) holds with δ1 = 1/14
and (1.6) holds with δ2 = 1/23. Recently following Ivić’s approach, the
author [10] proved that (1.5) holds with δ1 = 1/12 and (1.6) holds with
δ2 = 2/41.

Tsang [9] began with Atkinson’s formula [1] and used the averaging
technique over a short interval. Ivić’s argument was different from Tsang’s.
He used a theorem of Jutila [6] (see also Theorem 15.6 of Ivić [5]) to trans-
form the problem into the higher-power moments of ∆∗(x), the error term of
1
2

∑
n≤4x(−1)nd(n), where d(n) is the Dirichlet divisor function. The higher-

power moments of ∆∗(x) are easier to handle than those of E(t), since ∆∗(x)
has the Voronöı formula.

Heath-Brown [2] proved that for any 3 ≤ k ≤ 9 (k ∈ N), the limit

lim
T→∞

T−1−k/4
T�

2

Ek(t) dt

exists. The author [11] got an asymptotic formula for � T2 Ek(t) dt for any
5 ≤ k ≤ 9, where Jutila’s theorem [6] and power moment results for E(t)
and ∆(x), the error term of the Dirichlet divisor problem, were used.

However, the exponent 1/12 in the third-power moment of E(t) is the
limit of Jutila’s theorem. In order to reduce this exponent, we have to go
back to Atkinson’s formula and not use Jutila’s theorem. In this paper, we
shall use a different approach, which is a generalization of that in [11], to
study the higher-power moments of E(t). In this approach, we use Atkinson’s
formula for E(t) only. Since for k ≥ 4 the results obtained by this approach
are the same as the previous results (see Zhai [11] for details), we only
consider the case k = 3.

Theorem. We have
T�

2

E3(t) dt =
6
7

(2π)−3/4c1T
7/4 +O(T 7/4−83/393+ε).(1.7)

Remark. It is well known that many properties of E(t) are similar to
those of ∆(x). We also have a similar conjecture

∆(x)� x1/4+ε,(1.8)

which seems easier than the conjecture (1.3) by a result of Jutila [7], who
proved that if (1.8) is true, then E(t) = O(t3/10+ε).
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Theorem 1 of [11] shows that if (1.8) is true, then for any k ≥ 3 we have
T�

2

∆k(t) dt = CkT
1+k/4 +O(T ηk),(1.9)

where Ck and ηk < 1 + k/4 are explicit constants. This means that (1.8) is
equivalent to the following conjecture: (1.9) is true for any k ≥ 3.

Theorem 5 of [11] shows that if both (1.3) and (1.8) are true, then for
any k ≥ 3 we can get the asymptotic formula

T�

2

Ek(t) dt = C ′kT
1+k/4 +O(T η

′
k),(1.10)

where C ′k and η′k < 1+k/4 are explicit constants. Combining the approaches
of this paper and [11], we know that the conjecture (1.8) can be removed in
the above conclusion. Thus we deduce that the conjecture (1.3) is equivalent
to the following conjecture: (1.10) is true for any k ≥ 3.

Acknowledgements. The author deeply thanks the referee for his
valuable suggestions and comments.

Notations. Throughout this paper, {x} denotes the fractional part of
x, ‖x‖ denotes the distance from x to the integer nearest to x, n ∼ N means
N < n ≤ 2N, ε always denotes a small positive constant which may be
different at different places.

2. Some preliminary lemmas

Lemma 2.1. We have

E(t) = Σ1(t) +Σ2(t) +O(log2 t)
with

Σ1(t) :=
1√
2

∑

n≤N
h(t, n) cos(f(t, n)),(2.1)

Σ2(t) := −2
∑

n≤N ′
d(n)n−1/2

(
log

t

2πn

)−1

cos
(
t log

t

2πn
− t+

π

4

)
,(2.2)

h(t, n) := (−1)nd(n)n−1/2
(

t

2πn
+

1
4

)−1/4

(g(t, n))−1,(2.3)

g(t, n) := arsinh
((

πn

2t

)1/2)
,(2.4)

f(t, n) := 2tg(t, n) + (2πnt+ π2n2)1/2 − π/4,(2.5)

At ≤ N ≤ A′t, N ′ := t/2π +N/2− (N2/4 +Nt/2π)1/2,(2.6)

where 0 < A < A′ are any fixed constants.

Proof. This is the famous Atkinson formula; see Ivić [5, Theorem 15.1].
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Lemma 2.2. Suppose Y > 1. Define

c∗1 :=
∑

√
n1+
√
n2=
√
n3

(−1)n1+n2+n3d(n1)d(n2)d(n3)
(n1n2n3)3/4

,

c∗1(Y ) :=
∑

√
n1+
√
n2=
√
n3

n1,n2,n3≤Y

(−1)n1+n2+n3d(n1)d(n2)d(n3)
(n1n2n3)3/4

,

c1(Y ) :=
∑

√
n1+
√
n2=
√
n3

n1,n2,n3≤Y

d(n1)d(n2)d(n3)
(n1n2n3)3/4

.

Then
c1 = c∗1, c1(Y ) = c∗1(Y ), |c1 − c1(Y )| � Y −1+ε.

Proof. The estimate |c1− c1(Y )| � Y −1+ε appears on page 70 of Tsang
[9]. The equalities c1 = c∗1 and c1(Y ) = c∗1(Y ) follow from the fact that if√
n1 +

√
n2 =

√
n3, then n1 + n2 + n3 must be an even number.

Lemma 2.3. Suppose Y > 1. Then

H1(Y ) :=
∑

√
n1+
√
n2=
√
n3

n1,n2,n3≤Y

d(n1)d(n2)d(n3)n3/4
3

(n1n2)3/4
� Y 1/2+ε.

Proof. By a classical result of Besicovitch, if
√
n1 +

√
n2 =

√
n3, then

nj = m2
jh, m1 +m2 = m3, µ(h) 6= 0. Thus we get

H1(Y )�
∑

(m1+m2)2h≤Y

d(m2
1h)d(m2

2h)d((m1 +m2)2h)(m1 +m2)3/2

h3/4(m1m2)3/2

�
∑

h<Y

h−3/4+ε
∑

m2≤m1�(Y/h)1/2

mε
1m
−3/2+ε
2 � Y 1/2+ε

if we notice d(n)� nε.

Lemma 2.4. Let N,M,K ≥ 10, D = max(N,M,K), 0 < |∆| � D1/2.
Let

A(N,M,K;∆) :=
∑

n∼N,m∼M,k∼K
|√n+

√
m−
√
k|≤∆

1.

Then

D−εA(N,M,K;∆)� ∆D−1/2NMK +D−1/2(NMK)1/2.

Proof. This is Lemma 2.5 of [10].
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Lemma 2.5. If
√
n+
√
m−

√
k 6= 0, then

|√n+
√
m−

√
k| � 1√

nmk
,

where the implied constant is absolute.

Proof. If n is not a square, then

‖√n‖ � 1/
√
n.(2.7)

We omit the proof of (2.7) since it is elementary and easy. Let α =
√
n +√

m−
√
k. We suppose |α| < 1/10, otherwise the lemma is trivial. Squaring

α+
√
k =
√
n+
√
m we get

α2 + 2
√
k α = n+m+

√
4nm− k.(2.8)

If nm is a square, then the right-hand side of (2.8) is a non-zero integer and
then |α2 + 2

√
k α| ≥ 1, which implies |α| � 1/

√
k. If nm is not a square,

then from (2.8) we have |α2 + 2
√
k α| � ‖

√
4nm‖, which combined with

(2.7) implies |α| � 1/
√
nmk.

Lemma 2.6. Suppose (i1, i2) ∈ {0, 1}2 and Y ≥ 10 is a real number. For
(n1, n2, n3) ∈ N3, define

α3 :=
√
n1 + (−1)i1

√
n2 + (−1)i2

√
n3,

H(Y ; i1, i2) :=
∑

nj≤Y, 1≤j≤3
α3 6=0

d(n1)d(n2)d(n3)
(n1n2n3)3/4|α3|

.

Then
H(Y ; i1, i2)� Y 1/4+ε.

Proof. By a splitting argument and d(n) � nε we get, for some 1 �
Nj � Y (1 ≤ j ≤ 3),

Y −εH(Y ; i1, i2)�
∑

nj∼Nj , 1≤j≤3
α3 6=0

1
(n1n2n3)3/4|α3|

� (N1N2N3)−3/4
∑

nj∼Nj , 1≤j≤3
α3 6=0

1
|α3|

.

If (i1, i2) = (0, 0), then trivially

Y −εH(Y ; 0, 0)� (N1N2N3)1/4

max(N1, N2, N3)1/2
� min(N1, N2, N3)1/4 � Y 1/4.

Now suppose (i1,i2) 6=(0, 0). By Lemma 2.5 we have |α3|�1/(N1N2N3)1/2.
By a splitting argument again we infer for some 1/(N1N2N3)1/2 � ∆ �
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max(N1, N2, N3)1/2 that

Y −εH(Y ; i1, i2)� (N1N2N3)−3/4

∆

∑

nj∼Nj , 1≤j≤3
∆<|α3|≤2∆

1.

By Lemmas 2.4 and 2.5 we get

Y −εH(Y ; i1, i2)� (N1N2N3)−3/4

∆

∆N1N2N3 + (N1N2N3)1/2

max(N1, N2, N3)1/2

� (N1N2N3)1/4

max(N1, N2, N3)1/2
+

(N1N2N3)−1/4

∆max(N1, N2, N3)1/2

� (N1N2N3)1/4

max(N1, N2, N3)1/2
� min(N1, N2, N3)1/4 � Y 1/4.

Lemma 2.7. Suppose fj(t) (1 ≤ j ≤ k) and g(t) are continuous, mono-
tonic real-valued functions on [a, b] and let g(t) have a continuous, mono-
tonic derivative on [a, b]. If |fj(t)| ≤ Aj (1 ≤ j ≤ k), |g′(t)| � ∆ for any
t ∈ [a, b], then

b�

a

f1(t) · · · fk(t)e(g(t)) dt� A1 · · ·Ak∆−1.

Proof. This is Lemma 15.3 of Ivić [5].

Lemma 2.8. Suppose (i1, i2) ∈ {0, 1}2, T ≥ 100 is a large real number ,
1 ≤ Zj < Yj ≤ T 1/2 (1 ≤ j ≤ 3) are three real numbers such that there are
at least two Zj satisfying Zj ≥ T 1/3−ε, Y = max(Y1, Y2, Y3). Define

F (t;n1, n2, n3; i1, i2) := f(t, n1) + (−1)i1f(t, n2) + (−1)i2f(t, n3),

Si1,i2(t) :=
∑

Zj<nj≤Yj , 1≤j≤3
α3 6=0

h(t, n1)h(t, n2)h(t, n3) cos(F (t;n1, n2, n3; i1, i2)).

Then
2T�

T

Si1,i2(t) dt� T 1+εY + T 17/12+ε.(2.9)

Proof. It is easy to check that for any n ≤ T/π, the function h(t, n) is a
product of monotonic functions and

h(t, n) =
23/4

π1/4

(−1)nd(n)
n3/4

t1/4
(

1 +O

(
n

t

))
.(2.10)

For any n ≤ T 1/2 it is easy to check that

f(t, n) = 23/2(πnt)1/2 − π

4
+
π3/2

3
√

2

n3/2

t1/2
+ f1(t, n),(2.11)
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where

(2.12) f1(t, n) =O

(
n5/2

t3/2

)
, f ′1(t, n) =O

(
n5/2

t5/2

)
, f ′′1 (t, n) =O

(
n5/2

t7/2

)
.

So we have

(2.13) F ′(t;n1, n2, n3; i1, i2)

=
(2π)1/2α3

t1/2
− π3/2

3 · 23/2

β3

t3/2
+O

(
max(n1, n2, n3)5/2

t5/2

)
,

where β3 := n
3/2
1 + (−1)i1n3/2

2 + (−1)i2n3/2
3 .

If (i1, i2) = (0, 0), then from (2.10) and Lemma 2.7 we get
2T�

T

S0,0(t) dt� T 5/4
∑

Zj<nj≤Yj

d(n1)d(n2)d(n3)
(n1n2n3)3/4(

√
n1 +

√
n2 +

√
n3)

(2.14)

� T 5/4Y 1/4 log3 Y � T 11/8+ε.

Now suppose (i1, i2) 6= (0, 0). Without loss of generality, suppose (i1, i2)
= (0, 1). By a splitting argument there exist Zj ≤ Mj < M ′j ≤ 2Mj ≤ Yj
(1 ≤ j ≤ 3) such that

log−3 T

2T�

T

S0,1(t) dt� |I|,(2.15)

where

I :=
∑

Mj<nj≤M ′j , 1≤j≤3
α3 6=0

2T�

T

h(t, n1)h(t, n2)h(t, n3) cos(F (t;n1, n2, n3; 0, 1)) dt.

Write I = I1 + I2, with

I1 :=
∑

Mj<nj≤M ′j , 1≤j≤3
|α3|≥1/10

2T�

T

h(t, n1)h(t, n2)h(t, n3) cos(F (t;n1, n2, n3; 0, 1)) dt,

I2 :=
∑

Mj<nj≤M ′j , 1≤j≤3
0<|α3|<1/10

2T�

T

h(t, n1)h(t, n2)h(t, n3) cos(F (t;n1, n2, n3; 0, 1)) dt.

If |α3| ≥ 1/10, then it is easily seen that F ′(t;n1, n2, n3; 0, 1) � |α3|T−1/2

via (2.13). By (2.10) and Lemmas 2.7 and 2.6 we get

I1 � T 5/4
∑

Mj<nj≤M ′j , 1≤j≤3
α3 6=0

d(n1)d(n2)d(n3)
(n1n2n3)3/4|α3|

(2.16)

� T 5/4+εY 1/4 � T 11/8+ε.
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Now we estimate I2. Suppose n1, n2, n3 are three integers which satisfy
Mj < nj ≤ M ′j (1 ≤ j ≤ 3), |√n1 +

√
n2 −

√
n3 | < 1/10. We first estimate

the integral

�
(n1, n2, n3) =

2T�

T

h(t, n1)h(t, n2)h(t, n3) cos(F (t;n1, n2, n3; 0, 1)) dt.

Suppose H ≥ 100 is a parameter to be determined later and divide the
interval [T, 2T ] into two disjoint parts J1 and J2, where

J1 = {t ∈ [T, 2T ] : |F ′(t;n1, n2, n3; 0, 1)| ≤ |α3|/HT 1/2},
J2 = {t ∈ [T, 2T ] : |F ′(t;n1, n2, n3; 0, 1)| > |α3|/HT 1/2}.

Correspondingly, let
�

J1

=
�

J1

h(t, n1)h(t, n2)h(t, n3) cos(F (t;n1, n2, n3; 0, 1)) dt,

�

J2

=
�

J2

h(t, n1)h(t, n2)h(t, n3) cos(F (t;n1, n2, n3; 0, 1)) dt.

If J1 is empty, then J2 = [T, 2T ]. By (2.10) and Lemma 2.7 we get
�

J1

= 0,(2.17)

�

J2

� HT 5/4d(n1)d(n2)d(n3)
(n1n2n3)3/4|α3|

.(2.18)

We suppose now that J1 is not empty. Let

G(t) = t1/2F ′(t;n1, n2, n3; 0, 1), T1 = inf J1, T2 = supJ1.

From n
1/2
3 = n

1/2
1 + n

1/2
2 − α3 we get

β3 = n
3/2
1 + n

3/2
2 − n3/2

3

= −3(n1n2)1/2(n1/2
1 + n

1/2
2 ) + 3(n1/2

1 + n
1/2
2 )2α3 − 3(n1/2

1 + n
1/2
2 )α2

3 + α3
3,

which implies
|β3| � (n1n2n3)1/2(2.19)

if we notice |α3| < 1/10.
From (2.12), (2.13) and (2.19), we get

G′(t) � β3/T
2, α3/β3 � 1/T.

Thus from the relation G(T2) − G(T1) = O(|α3|H−1) and the mean value
theorem we get |J1| = T2 − T1 � T/H, which combined with (2.10) implies

�

J1

� T 7/4d(n1)d(n2)d(n3)
H(n1n2n3)3/4

.(2.20)
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Since J2 = [T, T1) ∪ (T2, 2T ], by (2.10) and Lemma 2.7 we get (2.18) again.
From (2.18) and (2.20) we have

I2 � Σ3 +Σ4,(2.21)

where

Σ3 =
T 7/4

H

∑

Mj<nj≤M ′j , 1≤j≤3
α3/β3�1/T

d(n1)d(n2)d(n3)
(n1n2n3)3/4

,

Σ4 = HT 5/4
∑

Mj<nj≤M ′j , 1≤j≤3
α3 6=0

d(n1)d(n2)d(n3)
(n1n2n3)3/4|α3|

.

Let M = max(M1,M2,M3); then T 1/3−ε �M � Y. By Lemma 2.4 we get

Σ3 �
T 7/4+ε

H(M1M2M3)3/4
A(M1,M2,M3; (M1M2M3)1/2T−1)

� T 7/4+ε

H(M1M2M3)3/4
((M1M2M3)3/2T−1M−1/2+(M1M2M3)1/2M−1/2)

� T 3/4+εH−1(M1M2M3)3/4M−1/2+T 7/4+εH−1(M1M2M3)−1/4M−1/2

� T 3/4+εY 7/4H−1 + T 7/4−1/6+εM−1/2

� T 3/4+εY 7/4H−1 + T 17/12+ε.

By Lemma 2.6 we have

Σ4 � HT 5/4+εY 1/4.

Take H = max(Y 3/4T−1/4, 100); we get

I2 � Y T 1+ε + T 17/12+ε,

which combined with (2.15) and (2.16) gives

2T�

T

S0,1(t) dt� Y T 1+ε + T 17/12+ε.(2.22)

For (i1, i2) = (1, 0), (1, 1), we can get the same estimates. This completes
the proof of Lemma 2.8.

3. Beginning of proof. Suppose T > 100 is a large real number. We
shall evaluate the integral � 2T

T E3(t) dt. Let y := T 1/2 . For any T ≤ t ≤ 2T,
define

R1(t) :=
1√
2

∑

n≤y
h(t, n) cos(f(t, n)), R2(t) := E(t)−R1(t).
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Define the following integrals:

I1(T ) :=
2T�

T

R3
1(t) dt,(3.1)

I2(T ) :=
2T�

T

R2
1(t)R2(t) dt,(3.2)

I3(T ) :=
2T�

T

R1(t)R2
2(t) dt,(3.3)

I4(T ) :=
2T�

T

R3
2(t) dt.(3.4)

We shall evaluate I1(T ) in Section 5 and estimate I2(T ), I3(T ), I4(T ) in
Section 4 and Section 6.

4. Estimates of I3(T ) and I4(T )

4.1. Higher-power moments of R1(t). In this subsection we study the
higher-power moments of R1(t). Since the proof is very similar to those of
Theorems 13.8 and 13.9 of Ivić [5], we only mention the important points.
From Huxley [3], we have

R1(t)� T 72/227+ε.(4.1)

Suppose T < t1 < · · · < tN ≤ 2T are points which satisfy |tr − ts| ≥ V
(r 6= s ≤ N), T 1/4 � V � T 72/227+ε, and |R1(tr)| � V for r = 1, . . . , N.
We shall give an upper bound of N.

Suppose M ≤ y/2. Take ξ = {ξn}∞n=1 with ξn = (−1)nd(n)n−3/4 for
M < n ≤ 2M and zero otherwise, and let ϕr = {ϕr,n}∞n=1 with

ϕr,n = n1/4t−1/4(t/2πn+ 1/4)−1/4g−1(t, n)e(f(t, n))

for M < n ≤ 2M and zero otherwise. Divide [T, 2T ] into subintervals of
length not exceeding T0 ≥ V. Let N0 denote the number of tr’s lying in an
interval of length not exceeding T0. Then

N � N0(1 + T/T0).(4.2)

By (A.40) of Ivić [5] we get

N0V
2 � T 1/2 log T max

M≤y/2

∑

r≤N0

∣∣∣
∑

M<n≤2M

h(t, n)t−1/4e(f(t, n))
∣∣∣
2

(4.3)

� T 1/2 log T max
M≤y/2

max
r≤N0

‖ξ‖2
∑

s≤N0

|(ϕr, ϕs)|,



Higher-power moments of E(t) 339

where

‖ξ‖2 :=
∑

M<n≤2M

d2(n)n−3/2 �M−1/2 log3M,

(ϕr, ϕs) :=
∑

M<n≤2M

n2/4
(

tr
2πn

+
1
4

)−1/4( ts
2πn

+
1
4

)−1/4

g−1(tr, n)

× g−1(ts, n)(trts)−1/4e(f(tr, n)− f(ts, n))

=
∑

M<n≤2M

G(n; r, s)e(F (n; r, s)),

say.
It is easily seen that for any r, s ≤ N0, G(n; r, s) is a product of monotonic

functions of n and G(n; r, s)� 1. The contribution of the terms with r = s
is

� T 1/2 log T max
M≤y/2

M1/2 log3M � (Ty)1/2 log4 T.(4.4)

By partial summation, the contribution of the terms with r 6= s is

�T 1/2 log T max
M≤y/2

max
r≤N0

log3M

M1/2

∑

s≤N0, s6=r

∣∣∣
∑

M<n≤2M

G(n; r, s)e(F (n; r, s))
∣∣∣(4.5)

�T 1/2 log T max
M≤y/2

max
r≤N0

log3M

M1/2

∑

s≤N0, s6=r

∣∣∣
∑

n∈I(r,s)
e(F (n; r, s))

∣∣∣,

where I(r, s) is a subinterval of [M, 2M ]. It is easy to check that

|F (j)(x; r, s)| � |t1/2r − t1/2s |M1/2−j, j = 0, 1, . . . , 6.

So the exponential sum S =
∑

n∈I(r,s) e(F (n; r, s)) can be estimated by the
theory of exponent pairs. Using the first derivative test to estimate S for
|F (j)(x; r, s)| ≤ 1/2 and the exponent pair (4/18, 11/18) to estimate S for
|F (j)(x; r, s)| > 1/2, we get

T 1/2 log T max
M≤y/2

max
r≤N0

log3M

M1/2

∑

s≤N0, s6=r

∣∣∣
∑

n∈I(r,s)
e(F (n; r, s))

∣∣∣

� TV −1 log5 T +N0T
4/18
0 T 7/18 log4 T,

which combined with (4.3)–(4.5) gives

N0V
2 log−5 T � (Ty)1/2 + TV −1 +N0T

4/18
0 T 7/18.(4.6)

Choose T0 = V 9T−7/4 log−30 T ; then T0 � V and (4.6) reduces to

N0 � (Ty)1/2V −2 log5 T + TV −3 log5 T,

which combined with (4.2) gives

N log−35 T � (Ty)1/2V −2 + TV −3 + T 13/4y1/2V −11 + T 15/4V −12.(4.7)
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Now we estimate the integral � 2T
T |R1(t)|A dt, where A > 2 is a fixed real

number. Similarly to (13.70) of Ivić [5] we may write
2T�

T

|R1(t)|A dt� T (4+A)/4 log T +
∑

V

V
∑

r≤NV
|R1(tr)|A,(4.8)

where T 1/4 ≤ V = 2m ≤ T 72/227+ε, V < |R1(tr)| ≤ 2V (r = 1, . . . , NV ) and
|tr−ts| ≥ V for r 6= s ≤ N = NV . If A < 10, then by (4.1) and (4.7) we have

V
∑

r≤NV
|R1(tr)|A � NV V

A+1(4.9)

� (Ty)1/2T 72(A−1)/227+ε + T 1+72(A−2)/227+ε

+ T (3+A)/4y1/2 log40 T + T 1+A/4 log40 T

� T 1+A/4+ε

for any 2 ≤ A ≤ A0 := 515/61.
Thus for 2 ≤ A ≤ A0 we have

2T�

T

|R1(t)|A dt� T 1+A/4+ε.(4.10)

4.2. Higher-power moments of R2(t). We first consider the mean square
of R2(t). By Lemma 2.1 (take N = T/π) we have

(4.11)
R2(t) = R∗2(t) +Σ2(t) +O(log2 t),

R∗2(t) :=
1√
2

∑

y<n≤T/π
h(t, n) cos(f(t, n)).

Hence we get
2T�

T

R2
2(t) dt�

2T�

T

|R∗2(t)|2 dt+
2T�

T

|Σ2(t)|2 dt+ T log4 T.(4.12)

We have the estimate
2T�

T

|Σ2(t)|2 dt� T log4 T,(4.13)

which is (15.61) of Ivić [5].
For m 6= n, it is easy to check that |f ′(t,m)−f ′(t, n)| � |√n−√m|/T 1/2.

Thus from (2.10) and Lemma 2.7 we have

(4.14)
2T�

T

|R∗2(t)|2 dt�
∑

y<n≤T/π

2T�

T

h(t, n)2 dt

+
∑

y<m<n≤T/π

∣∣∣
2T�

T

h(t, n)h(t,m)e(f(t, n)− f(t,m)) dt
∣∣∣
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+
∑

y<m,n≤T/π

∣∣∣
2T�

T

h(t, n)h(t,m)e(f(t, n) + f(t,m)) dt
∣∣∣

� T 3/2
∑

y<n≤T/π

d2(n)
n3/2

+ T
∑

m<n≤T/π

d(n)d(m)
(nm)3/4(

√
n−√m)

� T 3/2y−1/2 log3 T,

which combined with (4.12) and (4.13) gives
2T�

T

R2
2(t) dt� T 3/2y−1/2 log3 T.(4.15)

Ivić [5, Theorem 15.7] proved that
T�

1

|E(t)|A dt� T 1+A/4+ε(4.16)

for 0 < A < 35/4. From (4.10) and (4.16) we deduce that for any 2 ≤ A ≤
A0 = 515/61,

T�

1

|R2(t)|A dt�
T�

1

|E(t)|A dt+
T�

1

|R1(t)|A dt� T 1+A/4+ε.(4.17)

For any 2 < A < A0, from (4.15), (4.17) and Hölder’s inequality we get
2T�

T

|R2(t)|A dt=
2T�

T

|R2(t)|2(A0−A)/(A0−2)+A0(A−2)/(A0−2) dt(4.18)

�
( 2T�

T

R2
2(t) dt

)(A0−A)/(A0−2)( 2T�

T

|R2(t)|A0 dt
)(A−2)/(A0−2)

� T 1+A/4+εy−(A0−A)/2(A0−2),

which implies
I4(T )� T 7/4+εy−(A0−3)/2(A0−2).(4.19)

From (4.10), (4.18) and Hölder’s inequality we get

I3(T )�
2T�

T

|R1(t)R2
2(t)| dt(4.20)

�
( 2T�

T

|R1(t)|A0 dt
)1/A0

( 2T�

T

|R2(t)|2A0/(A0−1) dt
)(A0−1)/A0

� T 7/4+εy−(A0−3)/2(A0−2).
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5. The evaluation of I1(T ). Let y0 := T 1/3−ε. We write R1(t) =
R11(t) +R12(t), where

R11(t) :=
1√
2

∑

n≤y0

h(t, n) cos(f(t, n)),

R12(t) :=
1√
2

∑

y0<n≤y
h(t, n) cos(f(t, n)).

5.1. On the integral � 2T
T R3

11(t) dt. By the elementary formula

cos a cos b cos c =
1
4

∑

(i1,i2)∈{0,1}2
cos(a+ (−1)i1b+ (−1)i2c),(5.1)

we can write

R3
11(t) =

1
23/2

∑

n1≤y0

∑

n2≤y0

∑

n3≤y0

h(t, n1)h(t, n2)h(t, n3)
3∏

j=1

cos(f(t, nj))

=
1

27/2

∑

(i1,i2)∈{0,1}2

∑

n1≤y0

∑

n2≤y0

∑

n3≤y0

h(t, n1)h(t, n2)h(t, n3)

× cos(F (t;n1, n2, n3; i1, i2))

=
1

27/2
(S1(t) + S2(t)),

where
S1(t) :=

∑

(i1,i2)∈{0,1}2

∑

nj≤y0, 1≤j≤3
α3=0

h(t, n1)h(t, n2)h(t, n3)

× cos(F (t;n1, n2, n3; i1, i2)),

S2(t) :=
∑

(i1,i2)∈{0,1}2

∑

nj≤y0, 1≤j≤3
α3 6=0

h(t, n1)h(t, n2)h(t, n3)

× cos(F (t;n1, n2, n3; i1, i2)).

We first consider the contribution of S1(t). It is easy to see that α3 = 0
implies (i1, i2) = (0, 1) or (1, 0) or (1, 1). Let

S1(t; i1, i2) :=
∑

nj≤y0, 1≤j≤3
α3=0

h(t, n1)h(t, n2)h(t, n3) cos(F (t;n1, n2, n3; i1, i2)).

We consider the case (i1, i2) = (0, 1). Suppose nj ≤ y0 (j = 1, 2, 3) is such
that α3 = 0 for (i1, i2) = (0, 1), namely,

√
n1 +

√
n2 =

√
n3. From (2.11) we

have

(5.2) cos(F (t;n1, n2, n3; 0, 1))

= cos
(
−π

4
+O

(
n

3/2
3

t1/2

))
= 2−1/2 +O

(
n

3/2
3

t1/2

)
.
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From (2.10), (5.2) and Lemmas 2.2 and 2.3 we get

(5.3)
2T�

T

S1(t; 0, 1) dt

=
∑

n1,n2,n3≤y0√
n1+
√
n2=
√
n3

2T�

T

h(t, n1)h(t, n2)h(t, n3) cos(F (t;n1, n2, n3; 0, 1)) dt

=
29/4

π3/4

∑

n1,n2,n3≤y0√
n1+
√
n2=
√
n3

(−1)n1+n2+n3d(n1)d(n2)d(n3)
(n1n2n3)3/4

×
2T�

T

t3/4
(

1 +O

(
n3

T

))(
2−1/2+O

(
n

3/2
3

T 1/2

))
dt

=
27/4

π3/4

∑

n1,n2,n3≤y0√
n1+
√
n2=
√
n3

(−1)n1+n2+n3d(n1)d(n2)d(n3)
(n1n2n3)3/4

2T�

T

t3/4
(

1+O
(
n

3/2
3

T 1/2

))
dt

=
27/4

π3/4

∑

n1,n2,n3≤y0√
n1+
√
n2=
√
n3

(−1)n1+n2+n3d(n1)d(n2)d(n3)
(n1n2n3)3/4

2T�

T

t3/4 dt+O(T 5/4H1(y0))

=
27/4c1

π3/4

2T�

T

t3/4 dt+O(T 7/4+εy−1
0 + T 5/4+εy

1/2
0 )

=
27/4c1

π3/4

2T�

T

t3/4 dt+O(T 17/12+ε).

We can get the same result for S1(t; 1, 0), S1(t; 1, 1). Thus
2T�

T

S1(t) dt =
3 · 27/4c1

π3/4

2T�

T

t3/4 dt+O(T 17/12+ε).(5.4)

Now we consider the contribution of S2(t). From Lemma 2.5 and (2.13)
we get |F ′(t;n1, n2, n3; i1, i2)| � |α3|/T 1/2 if we notice y0 = T 1/3−ε. By
Lemmas 2.7 and 2.6 we have

2T�

T

S2(t) dt� T 5/4
∑

(i1,i2)∈{0,1}2

∑

n1,n2,n3≤y0
α3 6=0

d(n1)d(n2)d(n3)
(n1n2n3)3/4|α3|

(5.5)

= T 5/4
∑

(i1,i2)∈{0,1}2
H(y0; i1, i2)� T 5/4+εy

1/4
0 � T 4/3+ε.
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From (5.4) and (5.5) we get

2T�

T

R3
11(t) dt =

3c1

27/4π3/4

2T�

T

t3/4 dt+O(T 17/12+ε).(5.6)

5.2. On the integral � 2T
T R2

11(t)R12(t) dt. By (5.1) we can write

R2
11(t)R12(t) =

1
27/2

(S3(t) + S4(t) + S5(t)),

S3(t) :=
∑

(i1,i2)∈{0,1}2

∑

y0<n1≤y

∑

n2,n3≤y0
α3=0

h(t, n1)h(t, n2)h(t, n3)

× cos(F (t;n1, n2, n3; i1, i2)),

S4(t) :=
∑

(i1,i2)∈{0,1}2

∑

y0<n1≤50y0

∑

n2,n3≤y0
α3 6=0

h(t, n1)h(t, n2)h(t, n3)

× cos(F (t;n1, n2, n3; i1, i2)),

S5(t) :=
∑

(i1,i2)∈{0,1}2

∑

50y0<n1≤y

∑

n2,n3≤y0
α3 6=0

h(t, n1)h(t, n2)h(t, n3)

× cos(F (t;n1, n2, n3; i1, i2)).

We first consider the contribution of S3(t). Since n2, n3 ≤ y0 < n1 ≤ y,
the condition α3 = 0 implies (i1, i2) = (1, 1) and n1 ≤ 4y0. So by (2.10) and
Lemma 2.2 we get

2T�

T

S3(t) dt�
∑

√
n2+
√
n3=
√
n1

n1>y0

d(n1)d(n2)d(n3)
(n1n2n3)3/4

2T�

T

t3/4 dt(5.7)

� T 7/4|c1 − c1(y0)| � T 7/4+εy−1
0 � T 17/12+ε.

Concerning the contribution of S4(t), similarly to (5.5), by Lemmas 2.7
and 2.6 we get

2T�

T

S4(t) dt� T 5/4
∑

(i1,i2)∈{0,1}2

∑

y0<n1≤50y0

∑

n2,n3≤y0
α3 6=0

d(n1)d(n2)d(n3)
(n1n2n3)3/4|α3|

(5.8)

� T 5/4
∑

(i1,i2)∈{0,1}2
H(50y0; i1, i2)� T 5/4+εy

1/4
0 � T 4/3+ε.

Now we consider the contribution of S5(t). Since n1 > 50y0, n2, n3 ≤ y0, we
have |F ′(t;n1, n2, n3; i1, i2)| � n

1/2
1 T−1/2. Thus from (2.10) and Lemma 2.7
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we get
2T�

T

S5(t) dt� T 5/4
∑

n1>50y0

∑

n2,n3≤y0

d(n1)d(n2)d(n3)

(n1n2n3)3/4n
1/2
1

(5.9)

� T 5/4+εy
1/4
0 � T 4/3+ε.

From (5.7)–(5.9) we deduce
2T�

T

R2
11(t)R12(t) dt� T 17/12+ε.(5.10)

5.3. On the integrals � 2T
T R11(t)R2

12(t) dt and � 2T
T R3

12(t) dt. By (5.1) we
can write

R11(t)R2
12(t) =

1
27/2

(S6(t) + S7(t)),

S6(t) :=
∑

(i1,i2)∈{0,1}2

∑

n1≤y0

∑

y0<n2,n3≤y
α3=0

h(t, n1)h(t, n2)h(t, n3)

× cos(F (t;n1, n2, n3; i1, i2)),

S7(t) :=
∑

(i1,i2)∈{0,1}2

∑

n1≤y0

∑

y0<n2,n3≤y
α3 6=0

h(t, n1)h(t, n2)h(t, n3)

× cos(F (t;n1, n2, n3; i1, i2)).

By (2.10) and Lemma 2.2 we have
2T�

T

S6(t) dt� T 7/4
∑

√
n1+
√
n2=
√
n3

n3>y0

d(n1)d(n2)d(n3)
(n1n2n3)3/4

� T 7/4|c1 − c1(y0)| � T 17/12+ε.

By Lemma 2.8 we get
2T�

T

S7(t) dt� T 1+εy + T 17/12+ε.

Thus
2T�

T

R11(t)R2
12(t) dt� T 1+εy + T 17/12+ε.(5.11)

Similarly,
2T�

T

R3
12(t) dt� T 1+εy + T 17/12+ε.(5.12)
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5.4. The asymptotic formula for I1(T ). From (5.6) and (5.10)–(5.12)
and by writing

R3
1(t) = R3

11(t) + 3R2
11(t)R12(t) + 3R11(t)R2

12(t) +R3
12(t)

we get

2T�

T

R3
1(t) dt =

3c1

27/4π3/4

2T�

T

t3/4 dt+O(T 1+εy + T 17/12+ε).(5.13)

6. Estimate of I2(T ). We first estimate the integral � 2T
T R2

1(t)R∗2(t) dt.
By (5.1) again we can write

R2
1(t)R∗2(t) =

1
27/2

(S8(t) + S9(t) + S10(t)),

S8(t) :=
∑

(i1,i2)∈{0,1}2

∑

y<n1≤T/π

∑

n2,n3≤y
α3=0

h(t, n1)h(t, n2)h(t, n3)

× cos(F (t;n1, n2, n3; i1, i2)),

S9(t) :=
∑

(i1,i2)∈{0,1}2

∑

y<n1≤50y

∑

y0<max(n2,n3)≤y
α3 6=0

h(t, n1)h(t, n2)h(t, n3)

× cos(F (t;n1, n2, n3; i1, i2)),

S10(t) :=
∑

(i1,i2)∈{0,1}2

( ∑

y<n1≤50y

∑

max(n2,n3)≤y0
α3 6=0

+
∑

50y<n1≤T/π

∑

n2,n3≤y
α3 6=0

)
h(t, n1)

× h(t, n2)h(t, n3) cos(F (t;n1, n2, n3; i1, i2)).

We first consider the contribution of S8(t). Since n2, n3 ≤ y < n1 ≤ T/π,
the condition α3 = 0 implies (i1, i2) = (1, 1) and n1 ≤ 4y. By (2.10) and
Lemma 2.2 we get

2T�

T

S8(t) dt� T 7/4
∑

y<n1≤4y, n2,n3≤y√
n1=
√
n2+
√
n3

d(n1)d(n2)d(n3)
(n1n2n3)3/4

(6.1)

� T 7/4|c1 − c1(y)| � T 7/4+εy−1 � T 4/3+ε.

By Lemma 2.8 we have

2T�

T

S9(t) dt� T 1+εy + T 17/12+ε.(6.2)
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Similarly to (5.9), from (2.10) and Lemma 2.7 we have
2T�

T

S10(t) dt� T 5/4
∑

n1>50y

∑

n2,n3≤y

d(n1)d(n2)d(n3)

(n1n2n3)3/4n
1/2
1

(6.3)

� T 5/4+εy1/4 � T 11/8+ε.

From (6.1)–(6.3) we have
2T�

T

R2
1(t)R∗2(t) dt� T 1+εy + T 17/12+ε.(6.4)

From (4.10), (4.13) and Cauchy’s inequality we get
2T�

T

|R1(t)|2|Σ2(t)| dt�
( 2T�

T

|R1(t)|4 dt
)1/2( 2T�

T

|Σ2(t)|2 dt
)1/2

(6.5)

� T 3/2+ε,

which combined with (4.11) and (6.4) yields

I2(T )�
2T�

T

R2
1(t)R2(t) dt� T 1+εy + T 3/2+ε.(6.6)

7. Completion of proof. We write

E3(t) = R3
1(t) + 3R2

1(t)R2(t) + 3R1(t)R2
2(t) +R3

2(t).

So from (4.19), (4.20), (5.13), (6.6) we get
2T�

T

E3(t) dt = I1(T ) + 3I2(T ) + 3I3(T ) + I4(T )(7.1)

=
3c1

27/4π3/4

2T�

T

t3/4 dt

+O(T 7/4+εy−(A0−3)/2(A0−2) + T 1+εy + T 3/2+ε)

=
3c1

27/4π3/4

2T�

T

t3/4 dt+O(T 7/4−83/393+ε).

Applying (7.1) repeatedly to the intervals [T/2j+1, T/2j ] (j ≥ 0) and sum-
ming we get (1.7).
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