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1. Introduction. Dedekind sums with characters were first introduced
by Berndt. He basically considered a primitive character and defined some
kinds of sums. Each sum arose in the transformation formulas of Eisenstein
series with character, and Berndt obtained the reciprocity law for them by
combining those transformation formulas (cf. [2, 3]).

In [4], for coprime positive integers k and h, and Dirichlet characters
χ1 mod k and χ2 mod h, respectively, we defined Dedekind sum sn((χ1, k),
(χ2, h)) by

(1.1) sn((χ1, k), (χ2, h)) = kn−1
k−1∑

a=0

h−1∑

b=0

b

h
χ1(a)χ2(b)Bn

(
a

k
+
b

h

)
,

and obtained the reciprocity law. The proof of the law was given by deform-
ing Barnes’s double zeta function with a character into single zeta functions
(Dirichlet L-functions), where the sums appeared as the difference between
them. When n = 1, our law is the following:

Theorem A. For χ1 and χ2 both non-trivial ,

(1.2) s1((χ1, k), (χ2, h)) + s1((χ2, h), (χ1, k))

=
B2,χ1χ2

2hkχ1(h)χ2(k)
+

B1,χ1χ2

χ1(h)χ2(k)
+B1,χ1B1,χ2 .

This theorem is applied to the calculation of class numbers of imaginary
quadratic fields such as giving another proof of the class number formulae
of Lerch and Mordell (cf. [5]).

When χ2 is the trivial character χ0, our sums s1((χ0, h), (χ1, k)) and
s1((χ1, k), (χ0, h)) almost correspond to Berndt’s sums S1(h, k;χ1) and
S2(k, h;χ1) defined in [3], respectively, and Theorem A becomes essentially
the same as one of the two reciprocity laws between S1 and S2. Therefore
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2 C. Sekine

we can say that our sums and the law are generalized cases of his sums S1

and S2.
In this paper, following Berndt’s method, first we show that our sums

for n = 1 with non-principal primitive characters χ1 and χ2 also appear in
the transformation formulas of Eisenstein series just as S1 and S2 did, and
then give another proof of Theorem A by combining those transformation
formulas. There we need two kinds of Eisenstein series with χ1 and χ2: the
seriesG1(z, s;χ1χ2; r1, r2) used by Berndt (see Section 2) and new Eisenstein
series G(z, s;χ1, χ2; r1, r2) slightly modified from G1 (Definition 3.1). Here
we take χ1χ2 instead of χ1 in G1, and the transformation formula of G1 is
somewhat different from those of Berndt in [3].

In Section 2, we explain notations and give some preliminary results that
we will need to prove Theorem A in Section 3.

2. Notations and preliminary results. We follow Berndt’s notation.
Set H = {z ∈ C | Im(z) > 0} and σ = Re(s). We write e(z) for e2πiz . As
usual, {x} denotes the fractional part of x, and [x] denotes the greatest
integer not exceeding x. Set V (z) = V z = az+b

cz+d , where a, b, c, and d are
integers with c > 0 and ad − bc = 1. Unless otherwise stated, choose the
branch of log z with −π ≤ arg z < π. In this section, let χ denote a primitive
character mod k.

Let

G(z, χ) =
k−1∑

a=1

χ(a)e
(
az

k

)

denote the classical Gauss sum and put G(χ) = G(1, χ).
For z ∈ H and σ > 1, we have the Lipschitz summation formula ([3,

(2.2)])

(2.1)
∞∑

n=−∞
(n+ z)−s =

(−2πi)s

Γ (s)

∞∑

n=1

e(nz)ns−1,

and the character analogue of the Lipschitz summation formula ([3, (2.3)])

(2.2)
∞∑

n=−∞
χ(n)(n+ z)−s =

G(χ)(−2πi/k)s

Γ (s)

∞∑

n=1

χ(n)e(nz/k)ns−1.

The Bernoulli polynomials Bn(x) and the Bernoulli functions Bn(x) are
defined by

text

et − 1
=
∞∑

n=0

Bn(x)
n!
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and

Bn(x) = Bn({x}) if n > 1, B1(x) =
{
B1({x}) if x 6∈ Z,

0 if x ∈ Z,
respectively. Also we define the generalized Bernoulli numbers Bn,χ by

k∑

a=1

χ(a)teat

ekt − 1
=
∞∑

n=0

Bn,χ
tn

n!
,

and then

(2.3) Bn,χ = kn−1
k∑

a=1

χ(a)Bn

(
a

k

)
.

Then Dedekind sums defined by Berndt and the reciprocity law are the
following:

Definition 2.1 ([3, p. 314]). Let χ be an even primitive character of
modulus k, and c and d be coprime positive integers. Set

S1(d, c;χ) =
∑

nmod ck

χ(n)B1

(
n

ck

)
B1

(
dn

c

)
,

S2(d, c;χ) =
∑

nmod ck

B1

(
n

ck

) k−1∑

a=1

χ(a)B1

(
dn/c+ a

k

)
.

Theorem 2.2 ([3, p. 318]). When c ≡ 0 (mod k),

S1(d, c;χ) + S2(c, d;χ) =
(
d

2c
+
χ(d)
2cd

)
B2,χ.

Theorem 2.2 also holds when χ is odd, since Si(d, c;χ) = 0 for i =
1, 2, and B2,χ = 0 (cf. [1]). To prove the above theorem, Berndt used the
transformation formula of the following Eisenstein series.

Definition 2.3 ([3, p. 306]). For a primitive character χ mod k, real
numbers r1 and r2, a complex number s with Re(s) > 2, and z in H , we
define

(2.4) G1(z, s;χ; r1, r2) =
∞∑

m,n=−∞

′ χ(m)
((m+ r1)z + n+ r2)s

,

where
∑′ means that the pair (m,n) = (−r1,−r2) is omitted if r1 and r2

are both integers.

3. Proof of the reciprocity law when χ = χ1χ2. From now on, we
assume that both χ1 and χ2 are primitive and non-trivial. First we introduce
the new Eisenstein series defined below.
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Definition 3.1. Let r1 and r2 be arbitrary real numbers. For σ > 2 and
z ∈H , define

(3.1) G(z, s;χ1, χ2; r1, r2) =
∞∑

m,n=−∞

′ χ1(m)χ2(n)
((m+ r1)z + n+ r2)s

,

where
∑′ has the same meaning as in (2.4). Also for z ∈H and s ∈ C, set

A(z, s;χ1, χ2; r1, r2) =
∑

m>−r1
χ1(m)

∞∑

n=1

χ2(n)e(n((m+ r1)z + r2)/h)ns−1

and

H(z, s;χ1, χ2; r1, r2)

= A(z, s;χ1, χ2; r1, r2) + χ1(−1)χ2(−1)e(s/2)A(z, s;χ1, χ2;−r1,−r2).

We note that Berndt also defined G, A, and H in [3, p. 302]. He assumed
that both χ1 and χ2 are primitive characters mod k.

For σ > 0 and a real, let

L(s, χ2, a) =
∑

n>−a
χ2(n)(n+ a)−s,

which is analytically continued to an entire function of s, and let

L±(s, χ2, a) = L(s, χ2, a) + χ2(−1)e(±s/2)L(s, χ2,−a).

Then the following proposition holds.

Proposition 3.2. For σ > 2 and z ∈H ,

(3.2) G(z, s;χ1, χ2; r1, r2)

=
G(χ2)(−2πi/h)s

Γ (s)
H(z, s;χ1, χ2; r1, r2) + χ1(−r1)L+(s, χ2, r2).

Proof. The proof goes as in [2, pp. 12, 13]. We put

G(z, s;χ1, χ2; r1, r2)

= χ1(−r1)
∞∑

n=−∞

′′ χ2(n)
(n+ r2)s

+
( ∑

m<−r1

∞∑

n=−∞
+
∑

m>−r1

∞∑

n=−∞

) χ1(m)χ2(n)
((m+ r1)z + n+ r2)s

= S1 + S2 + S3,

where
∑′′ means that n = −r2 is omitted if r2 is an integer.
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Firstly,

S1 = χ1(−r1)
( ∑

n>−r2
χ2(n)(n+ r2)−s +

∑

n>r2

χ2(−n)(−n+ r2)−s
)

= χ1(−r1)(L(s, χ2, r2) + χ2(−1)e(s/2)L(s, χ2,−r2)).

Next, by replacing n by −n, m by −m, and using (2.2),

S2 = χ1χ2(−1)e(s/2)
∑

m>r1

χ1(m)
∞∑

n=−∞
χ2(n)((m− r1)z + n− r2)−s

= χ1χ2(−1)e(s/2)
G(χ2)(−2πi/h)s

Γ (s)
A(z, s;χ1, χ2,−r1,−r2).

Lastly, by using (2.2),

S3 =
G(χ2)(−2πi/h)s

Γ (s)
A(z, s;χ1, χ2, r1, r2).

Combining these three, (3.2) is obtained.

Definition 3.3. Let Q = {z = x + iy : x > −d/c, y > 0}, and set
R1 = ar1 + cr2, R2 = br1 + dr2, and % = {R2}c− {R1}d, where a, b, c and
d are integers with c > 0 and ad− bc = 1. For non-negative integers j, µ, ν,
positive integers h and k, and for z ∈ Q, let

f(z, s, r1, r2, j, µ, ν, h, k) =
�

C

us−1 e
− cµ+j−{R1}

ch (cz+d)hu

e−(cz+d)hu − 1
· e

ν+{ %+dj
c
}

k ku

eku − 1
du,

where we choose the branch of us with 0 < arg u < 2π, and C is a loop
beginning at +∞, proceeding in H , encircling the origin in the positive
direction, and then returning to +∞ in the lower half-plane.

When s = −N , where N is a non-negative integer, a simple application
of Cauchy’s residue theorem yields

(3.3) f(z,−N, r1, r2, j, µ, ν, h, k)

= 2πi
∑

m+n=N+2

Bm

(
cµ+ j − {R1}

ch

)
Bn

(
ν + {(dj + %)/c}

k

)

× (−(cz + d)h)m−1kn−1

m!n!
.

Then we have the transformation formulas for H, or equivalently for G.

Theorem 3.4. Suppose that a ≡ 0 (modh) and d ≡ 0 (mod k). Then
for z ∈ Q and s ∈ C,

(3.4) (cz + d)−s(−2πi/h)sG(χ2)H(V z, s;χ1, χ2; r1, r2)

+ χ1(−r1)(cz + d)−sΓ (s)L+(s, χ2, r2)
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= χ1(−c)χ2(−b)
(

(−2πi/k)sG(χ1)H(z, s;χ2, χ1;R1, R2)

+ χ2(−R1)Γ (s)L−(s, χ1, R2)

+ χ1χ2(−1)e(−s/2)

×
c∑

j=1

h−1∑

µ=0

k−1∑

ν=0

χ2(cµ+ j + [R1])χ1(−ν + [R2 + d(j − {R1})/c])

× f(z, s, r1, r2, j, µ, ν, h, k)
)
.

Here V z = az+b
cz+d with integers a, b, c, and d satisfying c > 0 and ad−bc = 1,

and we use the convention that χ(x) = 0 when χ is a character and x is a
non-integer.

Proof. The proof is along the same lines as that of Theorem 2 in [2]. For
z ∈H and σ > 2,

G(V z, s;χ1, χ2; r1, r2) =
∞∑

m,n=−∞

′
χ1(m)χ2(n)

(
(M +R1)z +N +R2

cz + d

)−s
,

where M = ma + nc and N = mb + nd. As the pair (m,n) ranges over all
pairs of integers except possibly (−r1,−r2), it follows that (M,N) ranges
over all pairs of integers except possibly (−R1,−R2). Therefore when a ≡ 0
(modh) and d ≡ 0 (mod k),

G(V z, s;χ1, χ2; r1, r2)

=
∞∑

M,N=−∞

′
χ1(Md−Nc)χ2(Na−Mb)

(
(M +R1)z +N +R2

cz + d

)−s

= χ1(−c)χ2(−b)
∞∑

m,n=−∞

′
χ1(n)χ2(m)

(
(m+R1)z + n+R2

cz + d

)−s
.

Now we use the following lemma.

Lemma 3.5 ([2, p. 13]). Let A, B, C and D be real with A and B not
both zero and C > 0. Then for z ∈H ,

arg((Az +B)/(Cz +D)) = arg(Az +B)− arg(Cz +D) + 2πk,

where k is independent of z ∈ H , and k = 1 if A ≤ 0 and AD − BC > 0,
and 0 otherwise.

We go back to the proof of the theorem. From the above lemma,

(3.5) (cz + d)−sG(V z, s;χ1, χ2; r1, r2)

= χ1(−c)χ2(−b)
(
e(−s)

∑

m+R1≤0
d(m+R1)>c(n+R2)

+
∑

otherwise

′ ) χ2(m)χ1(n)
((m+R1)z + n+R2)s
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= χ1(−c)χ2(−b)
× (G(z, s;χ2, χ1;R1, R2) + (e(−s)− 1)g(z, s;χ2, χ1;R1, R2)),

where

(3.6) g(z, s;χ2, χ1;R1, R2) =
∑

m+R1≤0
d(m+R1)>c(n+R2)

χ2(m)χ1(n)
((m+R1)z + n+R2)s

.

Replacing m by −m and n by −n and separating the terms with m = R1,
we obtain

g(z, s;χ2, χ1;R1, R2)

= e(s/2)χ1χ2(−1)(χ2(R1)L(s, χ1,−R2) + h(z, s;χ2, χ1;R1, R2)),

where

h(z, s;χ2, χ1;R1, R2) =
∑

m>R1

n>R2+ d
c (m−R1)

χ2(m)χ1(n)
((m−R1)z + n−R2)s

.

In the double sum, Re((m−R1)z + n−R2) > 0 if x > −d/c. Using Euler’s
integral representation of Γ (s), we have for z ∈ Q and σ > 2,

Γ (s)h(z, s;χ2, χ1;R1, R2)

=
∑

m>R1

n>R2+ d
c (m−R1)

χ2(m)χ1(n)
∞�

0

us−1 exp(−(m−R1)zu− (n−R2)u) du.

Put m = m′c + j + [R1] + 1, 0 ≤ m′ < ∞, 0 ≤ j ≤ c − 1 and n =
n′ + [R2 + d(m−R1)/c] + 1, 0 ≤ n′ <∞. Since d ≡ 0 (mod k), we have

Γ (s)h(z, s;χ2, χ1;R1, R2)

=
c−1∑

j=0

∞∑

m′=0

∞∑

n′=0

χ2(m′c+ j+ 1 + [R1])χ1(n′+ 1 + [R2 + d(j+ 1−{R1})/c])

×
∞�

0

us−1 exp(−(m′c+ j + 1− {R1})zu)

× exp(−(n′ + 1 + dm′ −R2 + [R2 + d(j + 1− {R1})/c])u) du.

Replacing j+ 1 by j, and putting m′ = mh+µ, 0 ≤ m <∞, 0 ≤ µ ≤ h− 1,
and n′ = nk + ν, 0 ≤ n <∞, 0 ≤ ν ≤ k − 1, we obtain
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(3.7) Γ (s)h(z, s;χ2, χ1;R1, R2)

=
c∑

j=1

h−1∑

µ=0

k−1∑

ν=0

χ2(cµ+ j + [R1])χ1(ν + 1 + [R2 + d(j − {R1})/c])

×
∞�

0

us−1 exp(−(cµ+ j − {R1})zu− (ν + 1 + dµ−R2

+ [R2 + d(j − {R1})/c])u)

×
∞∑

m=0

∞∑

n=0

exp(−mhczu−mdhu− nku) du

=
c∑

j=1

h−1∑

µ=0

k−1∑

ν=0

χ2(cµ+ j + [R1])χ1(ν + 1 + [R2 + d(j − {R1})/c])

×
∞�

0

us−1 exp(−((cµ+ j − {R1})/ch)(cz + d)hu)
1− exp(−(cz + d)hu)

× exp((−ν − 1 + dj/c− {R1}d/c+R2 − [R2 + d(j − {R1})/c])u)
1− exp(−ku)

du

= −
c∑

j=1

h−1∑

µ=0

k−1∑

ν=0

χ2(cµ+ j + [R1])χ1(−ν + [R2 + d(j − {R1})/c])

×
∞�

0

us−1 exp(−((cµ+ j − {R1})/ch)(cz + d)hu)
exp(−(cz + d)hu)− 1

× exp(((ν + {(dj + %)/c})/k)ku)
exp(ku)− 1

du

= −
c∑

j=1

h−1∑

µ=0

k−1∑

ν=0

χ2(cµ+ j + [R1])χ1(−ν + [R2 + d(j − {R1})/c])

× f(z, s, r1, r2, j, µ, ν, h, k)
e(s)− 1

,

where in the next-to-last equality we replaced k − 1 − ν by ν. Combining
(3.5)–(3.7), and using (3.2), we obtain (3.4).

For G1 in (2.4), Berndt derived the following equation:

Proposition 3.6 [3, (4.3)]. For σ > 2 and z ∈H ,

(3.8) G1(z, s;χ; r1, r2) =
(−2πi)s

Γ (s)
H1(z, s;χ; r1, r2) + χ(−r1)Z+(s, r2),
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where

A1(z, s;χ; r1, r2) =
∑

m>−r1
χ(m)

∞∑

n=1

e(n((m+ r1)z + r2))ns−1,

H1(z, s;χ; r1, r2) = A1(z, s;χ; r1, r2) + χ(−1)e(s/2)A1(z, s;χ;−r1,−r2),

Z(s, a) =
∑

n>−a
(n+ a)−s, Z+(s, a) = Z(s, a) + e(s/2)Z(s,−a).

Now we take χ = χ1χ2 in (2.4) and obtain a new transformation formula
for G1(z, s;χ1χ2; r1, r2).

Theorem 3.7. (i) Suppose that c ≡ 0 (modh) and d ≡ 0 (mod k). Then
for z ∈ Q and s ∈ C,

(3.9) (cz + d)−s(−2πi)sH1(V z, s; χ1χ2; r1, r2)

+ χ1χ2(−r1)(cz + d)−sΓ (s)Z+(s, r2)

= χ1(−c)χ2(d)
(
G(χ1)(−2πi/k)sH(z, s;χ2, χ1;R1, R2)

+ χ1(−R1)Γ (s)L−(s, χ1, R2)

+ χ1χ2(−1)e(−s/2)

×
c∑

j=1

h−1∑

µ=0

k−1∑

ν=0

χ2(j + [R1])χ1(−ν + [R2 + d(j − {R1})/c])

× f(z, s, r1, r2, j, µ, ν, h, k)
)
.

(ii) Suppose that c ≡ 0 (mod k) and d ≡ 0 (modh). Then for z ∈ Q and
s ∈ C,

(3.10) (cz + d)−s(−2πi)sH1(V z, s; χ1χ2; r1, r2)

+ χ1χ2(−r1)(cz + d)−sΓ (s)Z+(s, r2)

= χ1(d)χ2(−c)
(
G(χ2)(−2πi/h)sH(z, s;χ1, χ2;R1, R2)

+ χ1(−R1)Γ (s)L−(s, χ2, R2)

+ χ1χ2(−1)e(−s/2)

×
c∑

j=1

h−1∑

µ=0

k−1∑

ν=0

χ1(j + [R1])χ2(−µ+ [R2 + d(j − {R1})/c])

× f(z, s, r1, r2, j, ν, µ, k, h)
)
.

Here V z and the convention for a character χ is as in Theorem 3.4.

Proof. The proof goes as that of Theorem 3.4.
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Corollary 3.8. (i) If c ≡ 0 (modh) and d ≡ 0 (mod k), then

(3.11) H1(V z, 0;χ1χ2; 0, 0)

= χ1(−c)χ2(d)G(χ1)H(z, 0;χ2, χ1; 0, 0)

− kπi

cz + d
χ1(−c)χ2(−d)

c∑

j=1

k−1∑

ν=0

χ1(ν)χ2(j)B2

(
ν + dj/c

k

)

+ 2πiχ1(−c)χ2(−d)
c∑

j=1

k−1∑

ν=0

χ1(ν)χ2(j)B1

(
j

c

)
B1

(
ν + dj/c

k

)
.

(ii) If c ≡ 0 (mod k) and d ≡ 0 (modh), then

(3.12) H1(V z, 0;χ1χ2; 0, 0)

= χ1(d)χ2(−c)G(χ2)H(z, 0;χ1, χ2; 0, 0)

− hπi

cz + d
χ1(−d)χ2(−c)

c∑

j=1

h−1∑

µ=0

χ1(j)χ2(µ)B2

(
µ+ dj/c

h

)

+ 2πiχ1(−d)χ2(−c)
c∑

j=1

h−1∑

µ=0

χ1(j)χ2(µ)B1

(
j

c

)
B1

(
µ+ dj/c

h

)
.

(iii) If a ≡ 0 (modh) and d ≡ 0 (mod k), then

(3.13) G(χ2)H(V z, 0;χ1, χ2; 0, 0)

= χ1(−c)χ2(−b)G(χ1)H(z, 0;χ2, χ1; 0, 0)

+ 2πiχ1(−c)χ2(b)

×
c∑

j=1

h−1∑

µ=0

k−1∑

ν=0

χ1(ν)χ2(cµ+ j)B1

(
cµ+ j

ch

)
B1

(
ν + dj/c

k

)
.

Proof. Put s = r1 = r2 = 0 in (3.9), (3.10) and (3.4), respectively, and
use (3.3).

Proof of Theorem A. Let V ∗z = (bz − a)/(dz − c) and set c = k and
d = h. Apply (3.11) to V ∗. Then

(3.14) H1(V ∗z, 0;χ1χ2; 0, 0)

= χ1(−h)χ2(−k)G(χ1)H(z, 0;χ2, χ1; 0, 0)− πiχ1χ2(−1)
h(hz − k)

B2,χ1χ2

+ πiχ1χ2(−1)B1,χ1χ2 − 2πiχ1(−h)χ2(−k)s1((χ1, k), (χ2, h)),
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where we used the fact that{{
hν + kµ

kh

} ∣∣∣∣ ν, µ ∈ Z, 0 ≤ ν < k, 0 ≤ µ < h

}
=
{
i

kh

∣∣∣∣ 0 ≤ i ≤ hk − 1
}
,

and B1(−{x}) = B1(1− {x}) = −{x}+ 1/2 for x /∈ Z, and (2.3).
Applying (3.12) with z replaced by −1/z, we have

(3.15) H1(V ∗z, 0;χ1χ2; 0, 0)

= χ1(h)χ2(−k)G(χ2)H
(
−1
z
, 0;χ1, χ2; 0, 0

)
− πizχ1χ2(−1)

k(hz − k)
B2,χ1χ2

− πiχ1χ2(−1)B1,χ1χ2 + 2πiχ1(−h)χ2(−k)s1((χ2, h), (χ1, k)).

Lastly, taking a = d = 0, c = 1, and b = −1 in (3.13), we get

(3.16) G(χ2)H
(
−1
z
, 0;χ1, χ2; 0, 0

)

= χ1(−1)G(χ1)H(z, 0;χ2, χ1; 0, 0)− 2πiχ1(−1)B1,χ1B1,χ2 ,

where we used B1,χ2 = −χ2(−1)B1,χ2 . By subtracting (3.14) from (3.15),
combining with (3.16), and dividing both sides by 2πiχ1(−h)χ2(−k), we
obtain (1.2).
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