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1. Introduction. Let f(z) =
∑∞
n=1 af (n)qn ∈ Sk(Γ0(N), χ) be a new-

form of integer weight k ≥ 2 without complex multiplication. The arith-
metic properties of the Fourier coefficients af (n) have been investigated for
a long time. The reader is referred to a recent monograph of Ono [8] for
an extensive survey on the latest developments on this subject from various
perspectives. It is well known that these Fourier coefficients form a mul-
tiplicative arithmetic function. This fact is essential for detecting nonzero
Fourier coefficients. A famous conjecture of Lehmer predicts that τ(n) 6= 0
for any n ≥ 1 where

∆(z) =
∞∑

n=1

τ(n)qn = q
∞∏

n=1

(1− qn)24

is the unique normalized cusp form of weight 12 on SL2(Z). Here the Fourier
coefficient τ(n) is Ramanujan’s tau function. Ramanujan first realized and
studied many of the fascinating arithmetical properties of this multiplicative
function (see the survey of Berndt and Ono [4]). In relation to Lehmer’s
Conjecture, Serre [9] initiated the general study of estimating the size of
possible gaps in the Fourier expansion of modular forms via the gap function

(1) if (n) = max{i : af (n+ j) = 0 for all 0 ≤ j ≤ i}.
In this direction Balog and Ono [3] recently obtained striking nonvanishing
results about the Fourier coefficients of cusp forms without complex multi-
plication regarding their short interval distribution (see also [1]). In the case
of the gap function the first author proved that if (n)�f,φ φ(n) for almost
all n where φ is essentially any function monotonically tending to infinity.
This shows that the gap function is very small most of the time. Concerning
bounded values of if (n), it was shown in [2] that for every ε > 0 there is
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M = M(f, ε) such that

#{n ≤ x : if (n) ≤M} ≥ (1− ε)x.
Hence even the bounded gaps occur a lot. The average value of if (n) was
further studied in [2]. In particular, it was shown that for almost all elliptic
curves over Q without complex multiplication and for any ε > 0,

1
x

∑

n≤x
ifE (n)�E e

8 log x
log log x �ε x

ε

where fE(z) =
∑∞

n=1 aE(n)qn is the weight 2 newform associated to E/Q.
In this paper we study the nonvanishing of Fourier coefficients of new-

forms without complex multiplication in arithmetic progressions. In our ap-
proach we will not fix an arithmetic progression, but aim at a result that
holds uniformly for all arithmetic progressions with moduli as large as xη

for some fixed η > 0. Our main result is as follows:

Theorem 1. For any σ>9/20 there exists η > 0 (effectively computable)
depending only on σ such that for any newform f(z) =

∑∞
n=1 af (n)qn

∈ Sk(Γ0(N), χ) without complex multiplication, any large x, any y ≥ xσ,
and any relatively prime integers b, a satisfying 1 ≤ b < a ≤ xη, we have

#{x− y < n ≤ x : af (n) 6= 0 and n ≡ b (mod a)} �σ,f
y

a
.

Note that this result applies in particular to Ramanujan’s tau function
mentioned above. For a newform associated to an elliptic curve E/Q without
complex multiplication we can improve the exponent 9/20 from Theorem 1.

Theorem 2. For any σ>9/22 there exists θ > 0 (effectively computable)
depending only on σ such that for any newform fE(z) =

∑∞
n=1 aE(n)qn

associated with an elliptic curve E/Q without complex multiplication, any
large x, any y ≥ xσ, and any relatively prime integers b, a satisfying 1 ≤ b <
a ≤ xθ, we have

#{x− y < n ≤ x : aE(n) 6= 0 and n ≡ b (mod a)} �σ,E
y

a
.

If we consider the problem for almost all n, then a similar conclusion as
in Theorem 1 holds for very short intervals.

Theorem 3. Let f(z) =
∑∞

n=1 af (n)qn ∈ Sk(Γ0(N), χ) be a newform
without complex multiplication and let φ(n) and ψ(n) be functions mono-
tonically tending to infinity such that φ(2n)� φ(n) and ψ(n) = o(φ(n)) for
large n. Then there exists a constant cf,φ,ψ > 0 such that

min
1≤b<a≤ψ(n)
gcd(a,b)=1

a

φ(n)
#{n−φ(n)<m≤n : af (m) 6=0 and m ≡ b (mod a)}≥cf,φ,ψ

for almost all positive integers n.
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2. Proof of Theorem 1. It would be enough to prove the statement
for 9/20 < σ ≤ 1/2, then clearly the statement of the theorem holds for any
σ > 9/20. Hence we may assume in what follows that 9/20 < σ ≤ 1/2. For
a newform f(z) =

∑∞
n=1 af (n)qn ∈ Sk(Γ0(N), χ), let us define

(2) B = {p prime : af (p) = 0}
and

(3) B(x) = #{p ≤ x prime : p ∈ B}.
Recall that f(z) is a newform without complex multiplication. We will

need the following theorem of Serre [9]:

Theorem (Serre). In the above notation,

B(x)�f,ε
x

(log x)3/2−ε

for any ε > 0.

The theorem follows from a study of the p-adic Galois representations
associated to modular forms by Deligne. The form of the estimate follows
by a careful application of the Chebotarev Density Theorem.

It follows that
∑

p∈B 1/p is finite. Using the multiplicativity of af (n), if
n is square-free, then we have that

af (n) =
∏

p|n
af (p)

so that af (n) 6= 0 when n is square-free and B-free. Let A be the set of
primes in B together with squares of primes not in B. Let bs denote the
elements of A in increasing order. Our goal is to find η > 0 such that

∑

x−y<n≤x
n≡b (mod a)
n isA-free

1�σ,f
y

a

where y = xσ for 9/20 < σ ≤ 1/2 and b, a are relatively prime integers
satisfying 1 ≤ b < a ≤ xη. Let us define

P1 = P1(x, δ1, µ) = {xδ1 ≤ p ≤ xδ1+µ : p prime},(4)

P2 = P2(x, δ2, µ) = {xδ2 ≤ u ≤ xδ2+µ : u prime}(5)

where δ2 + µ < δ1 < δ1 + µ < σ and µ > 0 is as small as we please. For
n ≤ x, we use the sieving weight

(6) w(n) =
∑

p∈P1

∑

u∈P2

∑

n≡0 (mod pu)

1.
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It is easy to see that w(n) ≤ C(δ1, δ2) independently of x. Hence it suffices
to show that ∑

x−y<n≤x
n≡b (mod a)
n isA-free

w(n)�σ,f
y

a
.

Consider

(7)
∑

x−y<n≤x
n≡b (mod a)
n isA-free

w(n)

≥
∑

x−y<n≤x
n≡b (mod a)

n6≡0 (mod bs) for all s≤m

w(n)−
∑

x−y<n≤x
n≡b (mod a)
bm<bs≤y/a

n≡0 (mod bs) for some s>m

w(n)−
∑

x−y<n≤x
n≡b (mod a)
y/a<bs≤x

n≡0 (mod bs) for some s>m

w(n).

The parameter m in (7) will be suitably chosen later. Let us denote the
right side of (7) by M0 − E1 − E2. Using the definition of w(n) and the
Inclusion-Exclusion Principle, the main term becomes

(8) M0 =
∑

x−y<n≤x
n≡b (mod a)

n6≡0 (mod bs) for all s≤m
n≡0 (mod pu), p∈P1, u∈P2

1 =
∑

ω

(−1)|ω|
∑

p∈P1

∑

u∈P2

∑

x−y<n≤x
n≡b (mod a)
n≡0 (mod dω)
n≡0 (mod pu)

1

where ω runs through all subsets of {s : 1 ≤ s ≤ m} and dω =
∏
s∈ω bs

(empty products are taken to be 1). Note that once m is fixed and x is large
enough then we have gcd(dω, pu) = 1. Hence

(9)
∑

x−y<n≤x
n≡b (mod a)
n≡0 (mod dω)
n≡0 (mod pu)

1 =
∑

x−y<n≤x
n≡b (mod a)

n≡0 (mod pudω)

1.

Moreover, if η > 0 is small enough, then gcd(a, pu) = 1 since a ≤ xη. Also
if gcd(a, dω) > 1 then using n ≡ 0 (mod pudω) and n ≡ b (mod a) we get
gcd(a, b) > 1 contrary to our assumption. It follows that gcd(a, pudω) = 1
and by the Chinese Remainder Theorem the conditions n ≡ b (mod a) and
n ≡ 0 (mod pudω) are equivalent to n ≡ c (mod apudω) for a suitable c.
Using this on the right side of (9) we get

(10)
∑

x−y<n≤x
n≡b (mod a)

n≡0 (mod pudω)

1 =
∑

x−y<n≤x
n≡c (mod apudω)

1 =
y

apudω
+ rpudω,a,b(x, y)

where rpudω,a,b(x, y) is a remainder term and |rpudω,a,b(x, y)| ≤ 1. Combining
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(8), (9) and (10) we obtain

(11) M0 =
y

a

∏

s≤m

(
1− 1

bs

) ∑

p∈P1

1
p

∑

u∈P2

1
u

+Ra,b(x, y)

where

(12) Ra,b(x, y) =
∑

ω

(−1)|ω|
∑

p∈P1

∑

u∈P2

rpudω,a,b(x, y).

Note that since
∑

p∈B 1/p is finite it follows that
∑∞

s=1 1/bs is finite and we
may put

(13) CA =
∞∏

s=1

(
1− 1

bs

)
> 0.

Using the asymptotic formula for the sum of reciprocals of primes, we deduce
for large x that

(14)
∑

p∈P1

1
p

= log
(

1 +
µ

δ1

)
+O

(
1

log x

)
≥ C1

and similarly

(15)
∑

u∈P2

1
q
≥ C2

where C1 > 0 and C2 > 0 are absolute constants. Hence combining (11),
(13), (14) and (15) we conclude for large x that

(16) M0 ≥ CAC1C2
y

a
+Ra,b(x, y).

Next we estimate the sum of remainder terms Ra,b(x, y). Since the sum over
ω is finite, it is enough to estimate each individual bilinear sum of remainder
terms of the form

(17)
∑

p∈P1

∑

u∈P2

rpudω,a,b(x, y) =
∑

p∈P1

∑

u∈P2

rpu,a,b

(
x

dω
,
y

dω

)
.

The modern version of the linear sieve due to Iwaniec [7] requires non-
trivial estimates for such bilinear forms of remainder terms. Here we will
adapt the approach of Fouvry and Iwaniec [6] to obtain nontrivial upper
bounds for the double sum in (17). Note that the sums we are working with
are supported only on an arithmetic progression and therefore the remain-
der terms are coming only from integers n ≡ b (mod a). To this end we let
χP1 and χP2 be the characteristic functions of P1 and P2 respectively. Our
goal is to transform the problem of estimating (17) to estimating certain
exponential sums. Let g(z) be a C∞ function supported in a short interval
of the form [x− y − yx−λ, x+ yx−λ] for some λ > 0 such that g(z) = 1 for
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all x− y ≤ z ≤ x, g(z) is increasing in [x− y − yx−λ, x− y] and decreasing
in [x, x+ yx−λ]. Furthermore

(18) |g(j)(z)| � (yx−λ)−j

for any j ≥ 0 where the implied constant in (18) depends only on j (i.e. g(z)
is a very smooth compactly supported approximation to the characteristic
function of the interval [x − y, x]). We will approximate a sum involving
χP1 ·χP2 with the help of g(z). If either x ≤ n ≤ x+yx−λ or x−y−yx−λ ≤
n ≤ x − y, then there are only finitely many pairs (p, u) with p ∈ P1 and
u ∈ P2 (depending on δ1 and δ2 and independent of x) such that n = lpu
for some l ∈ Z. It follows that

S =
∑

l∈Z

∑

p≤M=xδ1+µ

∑

u≤N=xδ2+µ

∑

x−y<lpu≤x
lpu≡b (mod a)

χP1(p)χP2(u)(19)

=
∑

l∈Z

∑

p≤M,u≤N
lpu≡b (mod a)

χP1(p)χP2(u)g(lpu) +O(yx−λ)

since 0 ≤ g(lpu) ≤ 1 and the number of (p, u) such that x ≤ n = lpu ≤
x+yx−λ or x−y−yx−λ ≤ n = lpu ≤ x−y is O(yx−λ). Let 1 ≤ p∗ < a and
1 ≤ u∗ < a be the inverses of p and u modulo a. Then l ≡ bp∗u∗ (mod a)
and we may put l = aν + bp∗u∗ for ν ∈ Z. We can rewrite (19) as

(20) S =
∑

p≤M

∑

u≤N

∑

ν∈Z
χP1(p)χP2(u)g(apuν + bpp∗uu∗) +O(yx−λ).

Let

(21) g∗(z) =
∞�

−∞
g(t)e−2πizt dt

be the Fourier transform of g and define G(t) = g(aput+bpp∗uu∗) for t ∈ R.
Then we can compute the Fourier transform of G as

(22) G∗(z) =
∞�

−∞
G(t)e−2πizt dt =

∞�

−∞
g(aput+ bpp∗uu∗)e−2πizt dt

and making the change of variable h = aput + bpp∗uu∗ we get from (22)
that

G∗(z) =
e2πi bap

∗u∗z

apu

∞�

−∞
g(h)e−2πi z

apuh dh(23)

=
e
(
b
ap
∗u∗z

)

apu
g∗
(

z

apu

)
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where we used the notation e(z) = e2πiz . By the Poisson Summation For-
mula applied to G we have

(24)
∑

ν∈Z
G(ν) =

∑

ν∈Z
G∗(ν).

Hence, combining (20), (23) and (24), we obtain

S =
∑

p≤M

∑

u≤N
χP1(p)χP2(u)

∑

ν∈Z
G∗(ν) +O(yx−λ)(25)

=
1
a

∑

p≤M

∑

u≤N

χP1(p)χP2(u)
pu

∑

ν∈Z
e

(
b

a
p∗u∗ν

)
g∗
(

ν

apu

)
+O(yx−λ).

Note that

g∗(0) =
∞�

−∞
g(t) dt = y +O(yx−λ).

The main contribution to S comes from the term ν = 0 in (25) which is

(26)
g∗(0)
a

∑

p≤M

∑

u≤N

χP1(p)χP2(u)
pu

=
y

a

∑

p≤M

∑

u≤N

χP1(p)χP2(u)
pu

+O

(
y

a
x−λ

∑

p≤M

∑

u≤N

χP1(p)χP2(u)
pu

)
.

Using (14) and (15), it is easy to see that
∑

p≤M

∑

u≤N

χP1(p)χP2(u)
pu

=
∑

p∈P1

1
p

∑

u∈P2

1
u

= O(1).

Hence from (26) we get

(27)
g∗(0)
a

∑

p≤M

∑

u≤N

χP1(p)χP2(u)
pu

=
y

a

∑

p≤M

∑

u≤N

χP1(p)χP2(u)
pu

+O

(
y

a
x−λ

)
.

The sum of all terms with |ν| ≥ 1 in (25) will form an upper bound for the
sum of all remainder terms so that we have

(28)
∣∣∣
∑

p∈P1

∑

u∈P2

rpu,a,b(x, y)
∣∣∣

≤
∣∣∣∣
1
a

∑

p≤M

∑

u≤N

χP1(p)χP2(u)
pu

∑

|ν|≥1

e

(
b

a
p∗u∗ν

)
g∗
(

ν

apu

)∣∣∣∣+O(yx−λ).

Next we estimate the tail of the sum over ν appearing in (28). Applying in-
tegration by parts repeatedly and using the fact that g has compact support
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we find that

(29) g∗(z) =
∞�

−∞
g(t)e−2πizt dt =

∞�

−∞

e−2πizt

(2πiz)j
g(j)(t) dt

for any j ≥ 1. Using (18) and the fact that g(j)(z) = 0 for x − y ≤ z ≤ x,
we obtain the estimate

(30) |g∗(z)| �j
1

(yx−λ)j−1|z|j .

Replacing z by ν/pu in (30) we have

(31)
∣∣∣∣g∗
(
ν

pu

)∣∣∣∣�j
(pu)j

(yx−λ)j−1|ν|j .

Let us assume that

(32) |ν| > H ′ =
MN

y
x2λ.

Note that the inequality
(pu)j

(yx−λ)j−1|ν|j �j
1
|ν|2

holds when

(33)
(pu)j

(yx−λ)j−1 �j |ν|j−2.

Using (32) and the fact that p ≤M and u ≤ N , we see that (33) holds when

(MN)2 �j yx
(j−3)λ

which is clearly true when j is large enough. Combining (31) and (33) we
conclude that

(34)
∣∣∣∣g∗
(

ν

apu

)∣∣∣∣�
1
ν2

when

(35) |ν| > H =
aMN

y
x2λ.

It follows that

(36)
∣∣∣∣
1
a

∑

p≤M

∑

u≤N

χP1(p)χP2(u)
pu

∑

|ν|>H
e

(
b

a
p∗u∗ν

)
g∗
(

ν

apu

)∣∣∣∣

� 1
aH

= O(yx−2λ).
Combining (28) and (36) we obtain

(37)
∣∣∣
∑

p∈P1

∑

u∈P2

rpu,a,b(x, y)
∣∣∣

≤
∣∣∣∣
1
a

∑

p≤M

∑

u≤N

χP1(p)χP2(u)
pu

∑

|ν|≤H
e

(
b

a
p∗u∗ν

)
g∗
(

ν

apu

)∣∣∣∣+O(yx−λ).
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Using the definition of g∗, we may rewrite the right side of (37) to obtain

(38)
∣∣∣
∑

p∈P1

∑

u∈P2

rpu,a,b(x, y)
∣∣∣

≤ 1
a

x+yx−λ�

x−y−yx−λ

∣∣∣∣
∑

|ν|≤H

∑

p≤M

∑

u≤N

χP1(p)χP2(u)
pu

e

(
b

a
p∗u∗ν

)
e

(
− νt

apu

)
g(t)

∣∣∣∣dt

+O(yx−λ).

Note that g(t) = 1 for x− y ≤ t ≤ x and |g(t)| ≤ 1 when x ≤ t ≤ x+ yx−λ

or x− y− yx−λ ≤ t ≤ x− y, moreover the integrand in (38) is O(1) in these
intervals. Hence we finally get from (38) that

(39)
∣∣∣
∑

p∈P1

∑

u∈P2

rpu,a,b(x, y)
∣∣∣

≤ 1
a

x�

x−y

∣∣∣∣
∑

|ν|≤H

∑

p≤M

∑

u≤N

χP1(p)χP2(u)
pu

e

(
b

a
p∗u∗ν

)
e

(
− νt

apu

)∣∣∣∣ dt

+O(yx−λ).

It now suffices to obtain nontrivial upper bounds for an exponential sum of
the type

(40)
∑

1≤ν≤H

∑

1≤p≤M

∑

1≤u≤N

χP1(p)χP2(u)
pu

e

(
b

a
p∗u∗ν

)
e

(
νt

apu

)
.

Decomposing [1,H], [1,M ] and [1, N ] into dyadic intervals will bring in only
a factor which is O((log x)3) to our estimates, so that we consider

∑

H/2≤ν≤H

∑

M/2≤p≤M

∑

N/2≤u≤N

χP1(p)χP2(u)
pu

e

(
b

a
p∗u∗ν

)
e

(
νt

apu

)
.

Clearly this further reduces to estimating

(41) G(H,M,N, t)

=
∑

H/2≤ν≤H

∑

M/2≤p≤M

∑

N/2≤u≤N
χP1(p)χP2(u)e

(
b

a
p∗u∗ν

)
e

(
νt

apu

)
.

We recall the following result of Fouvry and Iwaniec [6, Theorem 6],
which provides strong upper bounds for exponential sums with monomials:

Let α 6= 0, 1 and H,M,N,X ≥ 1. Let χ(ν) be an additive character and
φp, ψu be complex numbers with |φp| ≤ 1 and |ψu| ≤ 1. Then
∣∣∣∣

∑

H/2≤ν≤H

∑

M/2≤p≤M

∑

N/2≤u≤N
φpψuχ(ν)e

(
X

νu−1pα

HN−1Mα

)∣∣∣∣

� (HMN)1/2(log(2HMNX))4×
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× [X1/8(H +N)1/2(X1/8H−1/6M1/12N1/6

+X1/8H−1/8N3/8 +N1/2 +N1/4M1/8)

+M1/2 +X−1/4M1/2N ].

We cannot directly apply this theorem to our situation since our additive
character χ(ν) = e

(
b
ap
∗u∗ν

)
depends on the inverses of p and u modulo a.

Therefore, we consider instead the following exponential sum

Es1,s2(H,M,N, t)

=
∑

H/2≤ν≤H

∑

M/2≤p≤M
p∗≡s1 (mod a)

∑

N/2≤u≤N
u∗≡s2 (mod a)

χP1(p)χP2(u)e
(
b

a
s1s2ν

)
e

(
νt

apu

)

where 1 ≤ s1 < a and 1 ≤ s2 < a are fixed and relatively prime to a.
We can apply the above theorem to Es1,s2(H,M,N, t) with φp = χ∗P1

(p),
ψu = χ∗P2

(u) where χ∗P1
is the characteristic function of the primes in p ∈ P1

that are in the progression p ≡ s∗1 (mod a) and χ∗P2
is defined similarly. We

also take α = −1 and

X =
tH

aMN
=
t

y
x2λ.

Note that X ≥ 1 since x − y ≤ t ≤ x. We have aMN
y x2λ = H < N since

using M = xδ1+µ this reduces to axδ1+2λ+µ < xσ = y and clearly we can
find η > 0 small enough such that a ≤ xη and δ1 + 2λ+ µ+ η < σ. Hence

(42) |Es1,s2(H,M,N, t)| �MNa1/2y−1/2xλ(log x)4S

where

S = N1/2(yM)−1/12x1/4+λ/6a−1/6 +N3/4(yM)−1/8x1/4+λ/4a−1/8(43)

+Nx1/8+λ/4y−1/8 +N3/4M1/8x1/8+λ/4y−1/8

+M1/2 +M1/2Nx−1/4−λ/2y1/4.

Next we estimate each summand in S. Let ε′ > 0 denote an arbitrarily small
number. We impose the following conditions on M and N :

M < yx−ε
′
,(44)

N6 < My7x−3−ε′ ,(45)

M2N4 < yx1−ε′ .(46)

Since y ≤ x1/2, it follows from (44)–(46) that

N6 < My5x−2−ε′ ,(47)

N8 < y5x−1−ε′ ,(48)

MN6 < y5x−1−ε′ .(49)
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Using (45) we get

(50) N1/2(yM)−1/12x1/4+λ/6a−1/6 < y1/2xλ/6−ε
′/12.

By (47) it follows that

(51) N3/4(yM)−1/8x1/4+λ/4a−1/8 < y1/2xλ/4−ε
′/8.

From (48) we obtain

(52) Nx1/8+λ/4y−1/8 < y1/2xλ/4−ε
′/8.

Using (49) we see that

(53) N3/4M1/8x1/8+λ/4y−1/8 < y1/2xλ/4−ε
′/8.

Obviously (44) implies that

(54) M1/2 < y1/2x−ε
′/2,

and finally using (46) we obtain

(55) M1/2Nx−1/4−λ/2y1/4 < y1/2x−λ/2−ε
′/4.

Clearly we can choose ε′ > 0 such that

(56) max
(

7λ
6
− ε′

12
,

5λ
4
− ε′

8

)
= −γ < 0.

Hence

(57) |Es1,s2(H,M,N, t)| �MNa1/2x−γ(log x)4.

Since the number of pairs of reduced residue classes (s1, s2) modulo a is
ϕ(a)2 (ϕ is Euler’s function) we find that

(58) |G(H,M,N, t)| �MNϕ(a)2a1/2(log x)4x−γ �MNa5/2(log x)4x−γ .

From (39) we finally obtain that

(59)
∣∣∣
∑

p∈P1

∑

u∈P2

rpu,a,b(x, y)
∣∣∣ ≤ Ca3/2(log x)7x−γy +O(yx−λ)

where C > 0 is an absolute constant. Since a ≤ xη, choosing η > 0 small
enough and replacing x by x/dω and y by y/dω we get from (16) that

(60) M0 ≥ CAC1C2
y

a
+ o(y/a).

Next we estimate E1. The number of x − y < n ≤ x satisfying n ≡ b
(mod a) and n ≡ 0 (mod bs) is

≤
[
y

abs

]
+ 1 ≤ 2y

abs



92 E. Alkan and A. Zaharescu

since bs ≤ y/a. It follows that

(61) E1 =
∑

x−y<n≤x
n≡b (mod a)
bm<bs≤y/a

n≡0 (mod bs) for some s>m

w(n) ≤ 2C(δ1, δ2)
y

a

∞∑

s=m+1

1
bs
.

We may fix the value of m such that

(62) CAC1C2 − 2C(δ1, δ2)
∞∑

s=m+1

1
bs

= C0 > 0.

Hence we have

(63) M0 − E1 ≥ C0
y

a
+ o

(
y

a

)
.

To complete the proof we show that E2 = o(y/a). By the definition of
w(n) we get

(64) E2 =
∑

y/a<v2≤x

∑

p∈P1

∑

u∈P2

∑

x−y<n≤x
n≡b (mod a)
n≡0 (mod v2)
n≡0 (mod pu)

1 +
∑

y/a<r≤x

∑

p∈P1

∑

u∈P2

∑

x−y<n≤x
n≡b (mod a)
n≡0 (mod r)
n≡0 (mod pu)

1

where r denotes a prime in B and v denotes a prime not in B. Note that
there is at most one x − y < n ≤ x satisfying either n ≡ 0 (mod v2) and
n ≡ b (mod a) or n ≡ 0 (mod r) and n ≡ b (mod a), since these congruences
can be combined to n ≡ c (mod av2) and n ≡ c′ (mod ar) for suitable c and
c′ when a ≤ xη and η > 0 is small enough. But av2 and ar are both > y.
Moreover for any such n there are at most finitely many (independent of x)
pairs (p, u) with p ∈ P1 and u ∈ P2 satisfying n ≡ 0 (mod pu). Hence

V =
∑

p∈P1

∑

u∈P2

∑

x−y<n≤x
n≡b (mod a)
n≡0 (mod v2)
n≡0 (mod pu)

1 = O(1),(65)

R =
∑

p∈P1

∑

u∈P2

∑

x−y<n≤x
n≡b (mod a)
n≡0 (mod r)
n≡0 (mod pu)

1 = O(1),(66)

where the implied constants are independent of v, r and x. It follows from
(64)–(66) that

(67) E2 �
∑

V >0
y/a<v2≤x

1 +
∑

R>0
y/a<r≤x

1.
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Let us assume that

(68) δ1 + δ2 + σ > 1.

If y2/a2 < v2 ≤ x and V > 0, then v is not in P1 or P2 (since a ≤ xη

and η > 0 is small enough) so that n ≡ 0 (mod puv2) for some n with
x − y < n ≤ x. But puv2 ≥ xδ1+δ2+2σ−2η > x by (68) when η is small
enough. Hence

(69)
∑

V >0
y/a<v2≤x

1 ≤
∑

y<v2≤y2/a2

1 = O

(
y/a

log(y/a)

)
= o

(
y

a

)
.

If y/a < r ≤ x and R > 0 then n ≡ 0 (mod pur) for some x − y < n ≤ x.
But pur ≥ xδ1+δ2+σ−η > x by (68) when η is small enough. Hence the sum
over r in (67) is empty. This shows that E2 = o(y/a). Combining this with
(63) we have

M0 − E1 − E2 ≥ C0
y

a
+ o

(
y

a

)
.

The conditions (44), (45) and (46) are equivalent to δ1 < σ, 6δ2 < δ1 +7σ−3
and 2δ1 + 4δ2 < 1 + σ. Combining the first two conditions we get δ2 <
(8σ − 3)/6. Hence from (68) we obtain 1 < δ1 + δ2 + σ < 2σ + (8σ − 3)/6
which is equivalent to σ > 9/20. Moreover 2δ1 + 4δ2 < 2σ + (16σ − 6)/3 ≤
1 + σ gives σ ≤ 9/19. Hence all of our conditions are compatible for 9/20 <
σ ≤ 9/19. This completes the proof of Theorem 1.

3. Proof of Theorem 2. The proof is similar to the proof of Theorem 1
so we will only mention the changes that need to be made. Let

fE(z) =
∞∑

n=1

aE(n)qn

be the weight two newform associated to E/Q without complex multiplica-
tion. We define

(70) BE = {p prime : aE(p) = 0}.
Recall that a prime p not dividing the conductor NE of E/Q is a supersingu-
lar prime if and only if aE(p) = 0. Elkies [5] proved the striking unconditional
estimate

(71) #{p ≤ x : aE(p) = 0} �E x3/4.

As in the proof of Theorem 1, aE(n) 6= 0 when n is square-free and BE-free.
Let AE be the set of primes in BE together with squares of primes not
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in BE . It suffices to show that
∑

x−y<n≤x
n≡b (mod a)
n isAE-free

w(n)�σ,E
y

a

where w(n) is defined as in (6), y = xσ for 9/22 < σ ≤ 1/2 and b, a are
relatively prime integers satisfying 1 ≤ b < a ≤ xθ. Let bs,E denote the
elements of AE in increasing order. Consider

(72)
∑

x−y<n≤x
n≡b (mod a)
n isAE-free

w(n)

≥
∑

x−y<n≤x
n≡b (mod a)

n6≡0 (mod bs,E) for all s≤m

w(n)−
∑

x−y<n≤x
n≡b (mod a)

bm,E<bs,E≤y/a
n≡0 (mod bs,E) for some s>m

w(n)

−
∑

x−y<n≤x
n≡b (mod a)
y/a<bs,E≤x

n≡0 (mod bs,E) for some s>m

w(n).

Let us denote the right side of (72) by M0 − E1 − E2. Note that M0 and
E1 can be estimated as in the proof of Theorem 1. Using the definition of
w(n), E2 becomes

(73) E2 =
∑

y/a<v2≤x

∑

p∈P1

∑

u∈P2

∑

x−y<n≤x
n≡b (mod a)
n≡0 (mod v2)
n≡0 (mod pu)

1 +
∑

y/a<r≤x

∑

p∈P1

∑

u∈P2

∑

x−y<n≤x
n≡b (mod a)
n≡0 (mod r)
n≡0 (mod pu)

1

where r denotes a prime in BE and v denotes a prime not in BE . Similarly
we obtain

(74) E2 �
∑

V >0
y/a<v2≤x

1 +
∑

R>0
y/a<r≤x

1

where V and R are defined as in (65) and (66). Let us assume that

(75) δ1 + δ2 +
4σ
3
> 1.

Note that if for small ε′ > 0, x4σ/3−ε′ < r ≤ x and R > 0, then x−y < n ≤ x
and n ≡ 0 (mod pur) gives us a contradiction since

pur ≥ xδ1+δ2+4σ/3−ε′ > x.
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Hence using (71) we obtain

∑

R>0
y/a<r≤x

1 ≤
∑

y/a<r≤x4σ/3−ε′

1� xσ−3ε′/4 = o

(
y

a

)

when θ > 0 is small enough. The sum on v can be estimated as before.
Consequently E2 = o(y/a). The conditions (44), (45), (46) and (75) are
compatible for 9/22 < σ ≤ 9/19. This completes the proof of Theorem 2.

4. Proof of Theorem 3. Let B be defined as in (2) and let A be the
set of primes in B together with squares of primes not in B. Let bs denote
the elements of A in increasing order. As before af (n) 6= 0 when n is A-free.
We consider

(76)
∑

n−φ(n)<m≤n
m≡b (mod a)
m isA-free

1

≥
∑

n−φ(n)<m≤n
m≡b (mod a)

m6≡0 (mod bs) for all s≤r

1−
∑

n−φ(n)<m≤n
m≡b (mod a)
br<bs≤φ(n)/a

m≡0 (mod bs) for some s>r

1−
∑

n−φ(n)<m≤n
m≡b (mod a)
φ(n)/a<bs≤n

m≡0 (mod bs) for some s>r

1.

We denote the right side of (76) by M0 − E1 − E2. Using the Inclusion-
Exclusion Principle we have

(77) M0 =
∑

ω

(−1)|ω|
∑

n−φ(n)<m≤n
m≡b (mod a)
m≡0 (mod dω)

1

where ω runs over all subsets of {s : 1 ≤ s ≤ r} and dω =
∏
s∈ω bs. Since the

congruences m ≡ b (mod a) and m ≡ 0 (mod dω) are equivalent to m ≡ c
(mod adω) for some c we obtain

(78)
∑

n−φ(n)<m≤n
m≡b (mod a)
m≡0 (mod dω)

1 =
φ(n)
adω

+ rdω,a,b(n, φ(n))

where rdω,a,b(n, φ(n)) is a remainder term with absolute value ≤ 1. Com-
bining (77) and (78) we get

(79) M0 =
φ(n)
a

∏

s≤r

(
1− 1

bs

)
+Ra,b(n, φ(n))
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where Ra,b(n, φ(n)) is the sum of 2r remainder terms so that |Ra,b(n, φ(n))|
≤ 2r. As before we may put

CA =
∞∏

s=1

(
1− 1

bs

)
> 0

so that from (79) we obtain

(80) M0 ≥ CA
φ(n)
a

+Ra,b(n, φ(n)).

The number of n − φ(n) < m ≤ n satisfying m ≡ b (mod a) and m ≡ 0
(mod bs) is

≤
[
φ(n)
abs

]
+ 1 ≤ 2φ(n)

abs

when bs ≤ φ(n)/a so that

(81) E1 ≤
2φ(n)
a

∞∑

s=r+1

1
bs
.

We may now fix r such that

CA − 2
∞∑

s=r+1

1
bs

= C > 0.

Combining (80) and (81) we get

(82) M0 − E1 ≥ C
φ(n)
a

+Ra,b(n, φ(n)).

Moreover since r is fixed and a ≤ ψ(n) = o(φ(n)) we have

|Ra,b(n, φ(n))| ≤ 2r = o

(
φ(n)
a

)
.

Next we estimate E2 on the average. Let N be a large integer and consider
for a ≤ ψ(2N)

(83)
∑

N≤n≤2N

∑

n−φ(2N)<m≤n
m≡b (mod a)

φ(N)/ψ(2N)<bs≤n
m≡0 (mod bs) for some s>r

1.

Changing the order of summation we see that (83) is

(84) ≤
∑

N−φ(2N)<m≤2N
m≡b (mod a)

bs>φ(N)/ψ(2N)
m≡0 (mod bs)

∑

m≤n<m+φ(2N)

1� φ(2N)
N

a

∑

bs>φ(N)/ψ(2N)

1
bs
.
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Using φ(2N)� φ(n) when N ≤ n ≤ 2N and the monotonicity of φ(n), we
get from (84) that

(85) E2 =
∑

n−φ(n)<m≤n
m≡b (mod a)
φ(n)/a<bs≤n

m≡0 (mod bs) for some s>r

1 ≤
∑

n−φ(2N)<m≤n
m≡b (mod a)

bs>φ(N)/ψ(2N)
m≡0 (mod bs)

1 ≤ C

2
φ(n)
a

except for a subset of [N, 2N ] of cardinality

O

(
N

∑

bs>φ(N)/ψ(2N)

1
bs

)
.

Using a dyadic partition of [1, N ] we get that the total number of exceptions
≤ N is

(86) �
∑

j≥1

∑

bs>φ(N/2j)/ψ(N/2j−1)

N

2jbs
.

Let φ(N)/ψ(2N) = f(N) and note that f(N) tends to infinity as N tends
to infinity. Hence we may rewrite the right side of (86) as

(87)
∑

j< 1
2 log2 N

∑

bs>f(N/2j)

N

2jbs
+

∑

j≥ 1
2 log2 N

∑

bs>f(N/2j)

N

2jbs
.

If j < 1
2 log2 N , then f(N/2j) ≥ f(

√
N) and

∑
bs>f(

√
N) 1/bs tends to zero

as N tends to infinity. Moreover the sum on j ≥ 1
2 log2 N is majorized by

the tail of a geometric series. It follows from (87) that the total number of
exceptions to (85) that are ≤ N is o(N). Hence

M0 − E1 − E2 ≥
C

2
φ(n)
a

+ o

(
φ(n)
a

)

for almost all n. This completes the proof of Theorem 3.
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